# MA 3021：Numerical Analysis I Solutions of Nonlinear Equations 



Suh－Yuh Yang（楊肅暟）

Department of Mathematics，National Central University Jhongli District，Taoyuan City 32001，Taiwan
syyang＠math．ncu．edu．tw
http：／／www．math．ncu．edu．tw／～syyang／

## Introduction

－A nonlinear equation：
Let $f: \varnothing \neq A \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a nonlinear real－valued function in variable $x$ ．We are interested in finding the roots（solutions）of the equation $f(x)=0$ ，i．e．，zeros of the function $f(x)$ ．
－A system of nonlinear equations：
Let $F: \varnothing \neq A \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a nonlinear vector－valued function in a vector variable $X=\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{\top}$ ．We are interested in finding the roots（solutions）of the equation $F(X)=\mathbf{0}$ ，i．e．，zeros of the function $F(X)$ ．

## Examples

－Let us look at three functions（polynomials）：
－$f(x)=x^{4}-12 x^{3}+47 x^{2}-60 x$
－$f(x)=x^{4}-12 x^{3}+47 x^{2}-60 x+24$
－$f(x)=x^{4}-12 x^{3}+47 x^{2}-60 x+24.1$
－Find the zeros of these polynomials is not an easy task．
－The first function has real zeros $0,3,4$ ，and 5 ．
－The real zeros of the second function are 1 and $0.888 \ldots$ ．．．
－The third function has no real zeros at all．
－Matlab：$p=\left[\begin{array}{llll}1 & -12 & 47 & -60\end{array}\right] ; r=\operatorname{roots}(p)$

## Objectives

Consider the nonlinear equation $f(x)=0$ or $F(X)=\mathbf{0}$ ．
－The basic questions：
－Does the solution exist？
－Is the solution unique？
－How to find it？
－In this lecture，we will mainly focus on the third question and we always assume that the problem under considered has a solution $x^{*}$ ．
－We will study iterative methods for finding the solution：first find an initial guess $x_{0}$ ，then a better guess $x_{1}, \ldots$ ，in the end we hope that $\lim _{n \rightarrow \infty} x_{n}=x^{*}$ ．
－Iterative methods：
－bisection method；
－fixed－point method；
－Newton＇s method；
－secant method．

## Bisection method

－Bolzano＇s Theorem：$f \in C[a, b]$ and $f(a) f(b)<0 \Longrightarrow \exists p \in(a, b)$ such that $f(p)=0$ ．
－The basic idea：assume that $f(a) f(b)<0$ ．
－set $a_{1}=a$ and $b_{1}=b$ ，compute $p_{1}=\frac{1}{2}\left(a_{1}+b_{1}\right)$ ．
－if $f\left(p_{1}\right) f\left(a_{1}\right)=0$ then $f\left(p_{1}\right)=0 \Longrightarrow p=p_{1}$ ； if $f\left(p_{1}\right) f\left(a_{1}\right)>0$ then $p \in\left(p_{1}, b_{1}\right)$ ，set $a_{2}=p_{1}$ and $b_{2}=b_{1}$ ； if $f\left(p_{1}\right) f\left(a_{1}\right)<0$ then $p \in\left(a_{1}, p_{1}\right)$ ，set $a_{2}=a_{1}$ and $b_{2}=p_{1}$ ；
－$p_{2}=\frac{1}{2}\left(a_{2}+b_{2}\right)$ ．
－repeat the process until the interval is very small then any point in the interval can be used as approximations of the zero．In fact，$p_{1} \curvearrowright p_{2} \curvearrowright p_{3} \curvearrowright \cdots \curvearrowright p$ ．

## The bisection algorithm

Input $a, b$ ，tolerance TOL，max．no．of iteration $N_{0}$ ．
Output approximate sol．of $p$ or message of failure．
Step 1：$i=1, F A=f(a)$ ．
Step 2：while $i \leq N_{0}$ do step 3－6．
Step 3：set $p=a+\frac{1}{2}(b-a) ; F P=f(p)$ ．
Step 4：if $F P=0$ or $\frac{1}{2}(b-a)<\operatorname{TOL}$ then $\operatorname{output}(\mathrm{p})$ ；stop．
Step 5：$i=i+1$ ．
Step 6：if $F A \times F P>0$ then set $a=p$ and $F A=F P$ ；else set $b=p$ ．
Step 7：output（method failed after $N_{0}$ iterations）；stop．

## Stopping criteria

Let $\varepsilon>0$ be a given tolerance．
－$\left|p_{N}-p_{N-1}\right|<\varepsilon \quad$（Note that $\left|p_{N}-p_{N-1}\right|=\frac{1}{4}\left|b_{N-1}-a_{N-1}\right|$ ）；
－$\frac{\left|p_{N}-p_{N-1}\right|}{\left|p_{N}\right|}<\varepsilon$ ，if $p_{N} \neq 0$ ；
－$\left|f\left(p_{N}\right)\right|<\varepsilon$

## Example

Find a root of $f(x)=x^{3}+4 x^{2}-10$ ．Note that $f(1)=-5, f(2)=14$ ． Therefore，$\exists$ root $p \in[1,2]$ ．Actual root is $p=1.365230013$ ．．． Using the bisection method，we get the table：

| $n$ | $a_{n}$ | $b_{n}$ | $p_{n}$ | $f\left(p_{n}\right)$ |
| ---: | :---: | :---: | :---: | :---: |
| 1 | 1.000000000000 | 2.000000000000 | 1.500000000000 | 2.375000000000 |
| 2 | 1.000000000000 | 1.500000000000 | 1.250000000000 | -1.796875000000 |
| 3 | 1.250000000000 | 1.500000000000 | 1.375000000000 | 0.162109375000 |
| $\vdots$ | $\vdots$ | $\vdots$ | $\vdots$ | $\vdots$ |
| 13 | 1.364990234375 | 1.365234375000 | 1.365112304687 | -0.001943659010 |
| 14 | 1.365112304687 | 1.365234375000 | 1.365173339843 | -0.000935847281 |
| $\vdots$ | $\vdots$ | $\vdots$ | $\vdots$ | $\vdots$ |
| 18 | 1.365226745605 | 1.365234375000 | 1.365230560302 | 0.000009030992 |

See the details of the M－file：bisection．m

## Properties of the bisection method

－Drawbacks：often slow；a good intermediate approximation may be discarded；doesn＇t work for higher dimensional problems：$F(X)=0$ ．
－Advantage：it always converges to a solution if a suitable initial interval can be chosen．
－Theorem：$f \in C[a, b], f(a) f(b)<0, f(p)=0$ ．The bisection method generates $\left\{p_{n}\right\}$ with $\left|p_{n}-p\right| \leq \frac{1}{2^{n}}(b-a), \forall n \geq 1$ ． Proof：
For $n \geq 1$ ，we have $b_{n}-a_{n}=\frac{1}{2^{n-1}}(b-a)$ and $p \in\left(a_{n}, b_{n}\right)$ ．
$\because p_{n}=\frac{1}{2}\left(a_{n}+b_{n}\right), \forall n \geq 1$ ．
$\therefore p_{n}-p \leq \frac{1}{2}\left(b_{n}-a_{n}\right)=\frac{1}{2} \frac{1}{2^{n-1}}(b-a)=\frac{1}{2^{n}}(b-a)$ ．
－Note：$\because\left|p_{n}-p\right| \leq \frac{1}{2^{n}}(b-a) \quad \therefore p_{n}=p+O\left(\frac{1}{2^{n}}\right)$ ．

## Fixed points

－$X \subseteq \mathbb{R}, g: X \rightarrow \mathbb{R}$ ．If $p \in X$ and $g(p)=p$ ，then $p$ is called a fixed point of $g$ ．
－Root－finding problem \＆fixed－point problem are equivalent in the following sense：
－If $p$ is a root of $f(x)=0, p$ is a fixed point of

$$
g(x):=x-f(x), h(x):=x-\frac{f(x)}{f^{\prime}(x)}, \text { etc. }
$$

－If $p$ is a fixed point of $g(x)$ ，i．e．，$g(p)=p$ ，then $p$ is a root of

$$
f(x):=x-g(x), h(x):=3 x-3 g(x), \text { etc. }
$$

（root－finding problem）$\Longleftrightarrow$（fixed－point problem）．
－Example：$g(x)=x^{2}-2, x \in[-2,3]$ ．
$\because g(-1)=(-1)^{2}-2=-1$ and $g(2)=2^{2}-2=2$ ．
$\therefore-1$ and 2 are fixed points of $g$ ．

## A fixed point theorem

－If $g \in C[a, b]$ and $g(x) \in[a, b], \forall x \in[a, b]$ ，then $g$ has a fixed point in $[a, b]$ ，i．e．，$\exists p \in[a, b]$ s．t．$g(p)=p$ ．
－If，in addition，$g^{\prime}$ exists on $(a, b)$ and $\exists 0<k<1$ such that $\left|g^{\prime}(x)\right| \leq k, \forall x \in(a, b)$ ，then the fixed point is unique in $[a, b]$ ．
－Then，for any $p_{0} \in[a, b]$ and $p_{n}:=g\left(p_{n-1}\right), n \geq 1$ ，the sequence $\left\{p_{n}\right\}$ converges to the unique fixed point $p \in[a, b]$ and
－$\left|p_{n}-p\right| \leq k^{n} \max \left\{p_{0}-a, b-p_{0}\right\}, \forall n \geq 1$ ；
－$\left|p_{n}-p\right| \leq \frac{k^{n}}{1-k}\left|p_{1}-p_{0}\right|, \forall n \geq 1$ ．
Proof：
－If $g(a)=a$ or $g(b)=b$ then $g$ has a fixed point in $[a, b]$ ．Suppose not，then $a<g(a) \leq b$ and $a \leq g(b)<b$ ．Define $h(x):=g(x)-x$ ．Then $h$ is continuous on $[a, b]$ and $h(a)>0, h(b)<0$ ．By the Intermediate Value Theorem，$\exists p \in(a, b)$
such that $h(p)=0$ ，i．e．，$g(p)=p$ ．
－Suppose that $\exists p<q \in[a, b]$ are fixed points of $g$ ．Then $g(p)=p$ and $g(q)=q$ ．
By the Mean Value Theorem，$\exists \xi \in(p, q)$ such that $\frac{g(q)-g(p)}{q-p}=g^{\prime}(\xi) \Longrightarrow$ $\frac{|g(q)-g(p)|}{|q-p|}=\left|g^{\prime}(\xi)\right| \leq k<1 \Longrightarrow 1=\frac{|q-p|}{|q-p|} \leq k<1$ ．This is a contradiction．
Therefore，the fixed point is unique．

## Proof（continued）

－For $n \geq 1$ ，by the Mean Value Theorem，$\exists \xi \in(a, b)$ such that $0 \leq\left|p_{n}-p\right|=\left|g\left(p_{n-1}\right)-g(p)\right|=\left|g^{\prime}(\xi)\right|\left|p_{n-1}-p\right| \leq k\left|p_{n-1}-p\right|$ ． $\Longrightarrow 0 \leq\left|p_{n}-p\right| \leq k\left|p_{n-1}-p\right| \leq k^{2}\left|p_{n-2}-p\right| \leq \cdots \leq k^{n}\left|p_{0}-p\right|$ ．
$\Longrightarrow \lim _{n \rightarrow \infty}\left|p_{n}-p\right|=0 \Leftrightarrow \lim _{n \rightarrow \infty} p_{n}-p=0 \Leftrightarrow \lim _{n \rightarrow \infty} p_{n}=p$ ．
$\because \cdot\left|p_{n}-p\right| \leq k^{n}\left|p_{0}-p\right|$ and $p \in[a, b]$ ．
$\therefore\left|p_{n}-p\right| \leq k^{n} \max \left\{p_{0}-a, b-p_{0}\right\}, \forall n \geq 1$ ．
－For $n \geq 1$ ，
$\left|p_{n+1}-p_{n}\right|=\left|g\left(p_{n}\right)-g\left(p_{n-1}\right)\right| \leq k\left|p_{n}-p_{n-1}\right| \leq \cdots \leq k^{n}\left|p_{1}-p_{0}\right|$.
$\therefore$ For $m>n \geq 1$ ，we have

$$
\begin{aligned}
\left|p_{m}-p_{n}\right| & =\left|p_{m}-p_{m-1}+p_{m-1}-p_{m-2}+\cdots+p_{n+1}-p_{n}\right| \\
& \leq\left|p_{m}-p_{m-1}\right|+\left|p_{m-1}-p_{m-2}\right|+\cdots+\left|p_{n+1}-p_{n}\right| \\
& \leq k^{m-1}\left|p_{1}-p_{0}\right|+k^{m-2}\left|p_{1}-p_{0}\right|+\cdots+k^{n}\left|p_{1}-p_{0}\right| \\
& =k^{n}\left(1+k+\cdots+k^{m-n-1}\right)\left|p_{1}-p_{0}\right| .
\end{aligned}
$$

$\because \lim _{n \rightarrow \infty} p_{n}=p$ ．
$\therefore\left|p-p_{n}\right|=\lim _{m \rightarrow \infty}\left|p_{m}-p_{n}\right| \leq k^{n}\left|p_{1}-p_{0}\right| \sum_{i=0}^{\infty} k^{i}=k^{n}\left|p_{1}-p_{0}\right| \frac{1}{1-k}$ ．
$(\because$ geometric series with $0<k<1)$
$\therefore\left|p-p_{n}\right| \leq \frac{k^{n}}{1-k}\left|p_{1}-p_{0}\right|$ ．

## Fixed－point iterations

－Fixed point iterations：

$$
p_{n}=g\left(p_{n-1}\right), \quad n=1,2, \cdots
$$

Assume that $g$ is continuous and $\lim _{n \rightarrow \infty} p_{n}=p$ ．Then
$g(p)=g\left(\lim _{n \rightarrow \infty} p_{n}\right)=g\left(\lim _{n \rightarrow \infty} p_{n-1}\right)=\lim _{n \rightarrow \infty} g\left(p_{n-1}\right)=\lim _{n \rightarrow \infty} p_{n}=p$.
Therefore，$p$ is a fixed point of the function $g$ ．
－Example：$f(x)=x^{3}+4 x^{2}-10=0$ has a unique root in $[1,2]$ ．
$\because f(1)=-5<0, f(2)=14>0$ ， and $f^{\prime}(x)=3 x^{2}+8 x>0, \forall x \in(1,2)$ ．
$\therefore f$ is increasing on $[1,2]$ ．
$\therefore f$ has a unique root in $[1,2]$ ．

## Fixed－point problem

root－finding problem $\Longleftrightarrow$ fixed－point problem．
（a）$x=g_{1}(x):=x-x^{3}-4 x^{2}+10$ ．
（b）$x=g_{2}(x):=\left(\frac{10}{x}-4 x\right)^{1 / 2}$ ．
（c）$x=g_{3}(x):=\frac{1}{2}\left(10-x^{3}\right)^{1 / 2}$ ．
（d）$x=g_{4}(x):=\left(\frac{10}{4+x}\right)^{1 / 2}$ ．
（e）$x=g_{5}(x):=x-\frac{x^{3}+4 x^{2}-10}{3 x^{2}+8 x}$ ．

## Numerical results

Using the fixed－point iterations，we have

| $n$ | （a） | （b） | （c） | （d） | $(\mathrm{e})$ |
| ---: | :--- | :--- | :--- | :--- | :--- |
| 0 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 |
| $\vdots$ | $\vdots$ | $\vdots$ | $\vdots$ | $\vdots$ | $\vdots$ |
| 3 | -469.7 | $(-8.65)^{1 / 2}$ |  |  |  |
| 4 | $1.03 \times 10^{8}$ |  |  |  |  |
|  |  |  | $\vdots$ |  |  |
| 15 |  |  | 1.365223680 | 1.365230013 |  |
|  |  |  | $\vdots$ |  |  |
| 30 |  |  | 1.365230013 |  |  |

The actual root is $p=1.365230013$ ．．．
Computer project 1：write the Matlab files for（c），（d），and（e）．

## Newton＇s method

－Motivation：we know how to solve $f(x)=0$ if $f$ is linear．For nonlinear $f$ ，we can always approximate it with a linear function．
－Suppose that $f \in C^{2}[a, b]$ and $f(p)=0$ ．Let $p_{0} \in[a, b]$ be an approximation to $p, f^{\prime}\left(p_{0}\right) \neq 0$ and $\left|p-p_{0}\right|$ is＂small＂．Using Taylor Theorem，we have

$$
0=f(p)=f\left(p_{0}\right)+\left(p-p_{0}\right) f^{\prime}\left(p_{0}\right)+\frac{\left(p-p_{0}\right)^{2}}{2} f^{\prime \prime}(\xi(p))
$$

If $\left|p-p_{0}\right|$ is small，then we can drop the $\left(p-p_{0}\right)^{2}$ term，

$$
0 \approx f\left(p_{0}\right)+\left(p-p_{0}\right) f^{\prime}\left(p_{0}\right)
$$

Solving for $p$ gives

$$
p \approx p_{1}:=p_{0}-\frac{f\left(p_{0}\right)}{f^{\prime}\left(p_{0}\right)}, \quad \text { provided } f^{\prime}\left(p_{0}\right) \neq 0
$$

－Newton＇s method can be defined as follows：for $n=1,2, \ldots$

$$
p_{n}=p_{n-1}-\frac{f\left(p_{n-1}\right)}{f^{\prime}\left(p_{n-1}\right)}, \quad \text { provided } f^{\prime}\left(p_{n-1}\right) \neq 0
$$

## Geometrical interpretation


－An illustration of one iteration of Newton＇s method．The function $f$ is shown in blue and the tangent line is in red．We see that $p_{n}$ is a better approximation than $p_{n-1}$ for the root $p$ of the function $f$ ．
－What is the geometrical meaning of $f^{\prime}\left(p_{n-1}\right)=0$ ？

## Example

－Consider the function $f(x)=\cos (x)-x \Rightarrow f^{\prime}(x)=-\sin (x)-1$ ．
$\because f(\pi / 2)=-\pi / 2<0$ and $f(0)=1>0$.
$\therefore \exists p \in(0, \pi / 2)$ such that $f(p)=0$ ．
Newton＇s method：choose $p_{0} \in[0, \pi / 2]$ and

$$
p_{n}:=p_{n-1}-\frac{\cos \left(p_{n-1}\right)-p_{n-1}}{-\sin \left(p_{n-1}\right)-1}, \quad n \geq 1 .
$$

－Numerical results：$p_{0}=\pi / 4$ ．

| $n$ | $p_{n}$ | $f\left(p_{n}\right)$ |
| :--- | :--- | :--- |
| 0 | 0.78539816339745 | -0.07829138221090 |
| 1 | 0.73953613351524 | -0.00075487468250 |
| 2 | 0.73908517810601 | -0.00000007512987 |
| 3 | 0.73908513321516 | -0.00000000000000 |

See the details of the M－file：newton．m

## Convergence Theorem

Theorem：Assume that $f \in C^{2}[a, b], p \in(a, b)$ such that $f(p)=0$ and $f^{\prime}(p) \neq 0$ ．Then $\exists \delta>0$ such that if $p_{0} \in[p-\delta, p+\delta]$ then Newton＇s method generates $\left\{p_{n}\right\}$ converging to $p$ ．
Proof：Define $g(x)=x-\frac{f(x)}{f^{\prime}(x)}$ ．Then $g(p)=p$ ．
Let $k \in(0,1)$ ．We want to find $\delta>0$ s．t．
$g([p-\delta, p+\delta]) \subseteq[p-\delta, p+\delta]$ and $\left|g^{\prime}(x)\right| \leq k, \forall x \in(p-\delta, p+\delta)$ ．
$\because f^{\prime}(p) \neq 0$ and $f^{\prime}$ is continuous on $[a, b]$ ．
$\therefore$ By the sign－preserving property，$\exists \delta_{1}>0$ s．t．$f^{\prime}(x) \neq 0$
$\forall x \in\left[p-\delta_{1}, p+\delta_{1}\right]$ ．
$\therefore g$ is continuous on $\left[p-\delta_{1}, p+\delta_{1}\right]$ and
$g^{\prime}(x)=1-\left\{\frac{f^{\prime}(x) f^{\prime}(x)-f(x) f^{\prime \prime}(x)}{\left(f^{\prime}(x)\right)^{2}}\right\}=\frac{f(x) f^{\prime \prime}(x)}{\left(f^{\prime}(x)\right)^{2}}, \forall x \in\left[p-\delta_{1}, p+\delta_{1}\right]$ ．
$\because f \in C^{2}[a, b] . \quad \therefore g \in C^{1}\left[p-\delta_{1}, p+\delta_{1}\right]$.
$\because f(p)=0 \quad \therefore g^{\prime}(p)=0$ ．
$\because g^{\prime}$ is continuous on $\left[p-\delta_{1}, p+\delta_{1}\right]$ ．
$\therefore \exists \delta>0$ and $\delta<\delta_{1}$ s．t．$\left|g^{\prime}(x)\right| \leq k, \forall x \in[p-\delta, p+\delta]$ ．

## Convergence Theorem（continued）

Claim：$g([p-\delta, p+\delta]) \subseteq[p-\delta, p+\delta]$ ．
Let $x \in[p-\delta, p+\delta]$ ．
By the MVT，$\exists \xi$ between $x$ and $p$ s．t．$|g(x)-g(p)| \leq\left|g^{\prime}(\xi)\right||x-p|$ ．
$\therefore|g(x)-p| \leq k|x-p|<|x-p| \leq \delta$ ．
That is，$g(x) \in[p-\delta, p+\delta]$ ．

## Convergence order

－Definition：Suppose $\left\{p_{n}\right\}$ converges to $p\left(\lim _{n \rightarrow \infty} p_{n}=p\right)$ with $p_{n} \neq p, \forall n$ ．If $\exists \lambda, \alpha>0$ s．t． $\lim _{n \rightarrow \infty} \frac{\left|p_{n+1}-p\right|}{\left|p_{n}-p\right|^{\alpha}}=\lambda$ ，then we say that $\left\{p_{n}\right\}$ converges to $p$ of order $\alpha$ with asymptotic error constant $\lambda$ ．
－Note：If $\alpha=1$（and $\lambda<1$ ），then we say $\left\{p_{n}\right\}$ is linearly convergent．If $\alpha=2$ ，then we say $\left\{p_{n}\right\}$ is quadratically convergent．

Newton＇s method is quadratically convergent when it converges

Sketch of the proof：
$f \in C^{2}[a, b], f(p)=0$ ．By Taylor＇s Theorem，we have

$$
\begin{aligned}
& f(x)=f\left(p_{n}\right)+f^{\prime}\left(p_{n}\right)\left(x-p_{n}\right)+\frac{f^{\prime \prime}(\xi)}{2!}\left(x-p_{n}\right)^{2} \\
& \Longrightarrow 0=f(p)=f\left(p_{n}\right)+f^{\prime}\left(p_{n}\right)\left(p-p_{n}\right)+\frac{f^{\prime \prime}(\xi)}{2!}\left(p-p_{n}\right)^{2} \\
& \Longrightarrow\left(p-p_{n}\right)+\frac{f\left(p_{n}\right)}{f^{\prime}\left(p_{n}\right)}=-\frac{f^{\prime \prime}(\xi)}{2 f^{\prime}\left(p_{n}\right)}\left(p-p_{n}\right)^{2} \\
& \Longrightarrow p-\left(p_{n}-\frac{f\left(p_{n}\right)}{f^{\prime}\left(p_{n}\right)}\right)=-\frac{f^{\prime \prime}(\xi)}{2 f^{\prime}\left(p_{n}\right)}\left(p-p_{n}\right)^{2} \\
& \Longrightarrow\left|p-p_{n+1}\right| \leq \frac{M}{2\left|f^{\prime}\left(p_{n}\right)\right|}\left|p-p_{n}\right|^{2}, \quad n \geq 0
\end{aligned}
$$

（by the Extreme Value Theorem）

## Some remarks on Newton＇s method

## Advantages：

－The convergence is quadratic．
－Newton＇s method works for higher dimensional problems．

Disadvantages：
－Newton＇s method converges only locally；i．e．，the initial guess $p_{0}$ has to be close enough to the solution $p$ ．
－It needs the first derivative of $f(x)$ ．

## Secant method

－Secant method：given two initial approximations $p_{0}$ and $p_{1}$ with $p_{0} \neq p_{1}$ and $f\left(p_{0}\right) \neq f\left(p_{1}\right)$ ．Then for $n \geq 2$ ，
－compute $a=\frac{f\left(p_{n-1}\right)-f\left(p_{n-2}\right)}{p_{n-1}-p_{n-2}}$, if $p_{n-1} \neq p_{n-2}$ ．
－compute $p_{n}=p_{n-1}-\frac{f\left(p_{n-1}\right)}{a}$ ，if $f\left(p_{n-1}\right) \neq f\left(p_{n-2}\right)$ ．
－Remarks：
－we need only one function evaluation per iteration．
－$p_{n}$ depends on two previous iterations．For example，to compute $p_{2}$ ，we need both $p_{1}$ and $p_{0}$ ．
－how do we obtain $p_{1}$ ？We need to use FD－Newton：pick a small parameter $h$ ，compute $a_{0}=\left(f\left(p_{0}+h\right)-f\left(p_{0}\right)\right) / h$ ， then $p_{1}=p_{0}-f\left(p_{0}\right) / a_{0}$ ．
－The convergence of secant method is superlinear（i．e．，better than linear）．More precisely，we have

$$
\lim _{n \rightarrow \infty} \frac{\left|p_{n+1}-p\right|}{\left|p_{n}-p\right|^{(1+\sqrt{5}) / 2}}=C, \quad(1+\sqrt{5}) / 2 \approx 1.62<2
$$

## Geometrical interpretation of the secant method

The first two iterations of the secant method．The red curve shows the function f and the blue lines are the secants．


This picture is quoted from http：／／en．wikipedia．org／wiki／

## Example

－Consider the function $f(x)=\cos (x)-x . \exists p \in(0, \pi / 2)$ such that $f(p)=0$ ．Let $p_{0}=0.5$ and $p_{1}=\pi / 4$ ．
The secant method：

$$
p_{n}:=p_{n-1}-\frac{\left(p_{n-1}-p_{n-2}\right)\left(\cos \left(p_{n-1}\right)-p_{n-1}\right)}{\left(\cos \left(p_{n-1}\right)-p_{n-1}\right)-\left(\cos \left(p_{n-2}\right)-p_{n-2}\right)}, \quad n \geq 2 .
$$

－Numerical results：

| $n$ | $p_{n}$ | $f\left(p_{n}\right)$ |
| :--- | :--- | ---: |
| 0 | 0.50000000000000 | 0.37758256189037 |
| 1 | 0.78539816339745 | -0.07829138221090 |
| 2 | 0.73638413883658 | 0.00451771852217 |
| 3 | 0.73905813921389 | 0.00004517721596 |
| 4 | 0.73908514933728 | -0.00000002698217 |
| 5 | 0.73908513321506 | 0.00000000000016 |

See the details of the M－file：secant ．m

## Newton＇s method for systems of nonlinear equations

－We wish to solve

$$
\left\{\begin{array}{l}
f_{1}\left(x_{1}, x_{2}\right)=0, \\
f_{2}\left(x_{1}, x_{2}\right)=0,
\end{array}\right.
$$

where $f_{1}$ and $f_{2}$ are nonlinear functions of $x_{1}$ and $x_{2}$ ．
－Applying Taylor＇s expansion in two variables around $\left(x_{1}, x_{2}\right)$ to the system of equations，we obtain

$$
\begin{cases}0=f_{1}\left(x_{1}+h_{1}, x_{2}+h_{2}\right) & \approx f_{1}\left(x_{1}, x_{2}\right)+h_{1} \frac{\partial f_{1}\left(x_{1}, x_{2}\right)}{\partial x_{1}}+h_{2} \frac{\partial f_{1}\left(x_{1}, x_{2}\right)}{\partial x_{2}} \\ 0=f_{2}\left(x_{1}+h_{1}, x_{2}+h_{2}\right) & \approx f_{2}\left(x_{1}, x_{2}\right)+h_{1} \frac{\partial f_{2}\left(x_{1}, x_{2}\right)}{\partial x_{1}}+h_{2} \frac{\partial f_{2}\left(x_{1}, x_{2}\right)}{\partial x_{2}}\end{cases}
$$

－Putting it into the matrix form，we have

$$
\left[\begin{array}{l}
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
f_{1}\left(x_{1}, x_{2}\right) \\
f_{2}\left(x_{1}, x_{2}\right)
\end{array}\right]+\left[\begin{array}{ll}
\frac{\partial f_{1}\left(x_{1}, x_{2}\right)}{\partial x_{1}} & \frac{\partial f_{1}\left(x_{1}, x_{2}\right)}{\partial x_{2}} \\
\frac{\partial f_{2}\left(x_{1}, x_{2}\right)}{\partial x_{1}} & \frac{\partial f_{2}\left(x_{1}, x_{2}\right)}{\partial x_{2}}
\end{array}\right]\left[\begin{array}{l}
h_{1} \\
h_{2}
\end{array}\right] .
$$

## Newton＇s method for systems of nonlinear equations（cont．）

－To simplify the notation we introduce the Jacobian matrix：

$$
J\left(x_{1}, x_{2}\right)=\left[\begin{array}{ll}
\frac{\partial f_{1}\left(x_{1}, x_{2}\right)}{\partial x_{1}} & \frac{\partial f_{1}\left(x_{1}, x_{2}\right)}{\partial_{2}} \\
\frac{\partial f_{2}\left(\frac{x}{1}, x_{2}\right)}{\partial x_{1}} & \frac{\partial f_{2}\left(x_{1}, x_{2}\right)}{\partial x_{2}}
\end{array}\right] .
$$

－Then we have

$$
\left[\begin{array}{l}
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
f_{1}\left(x_{1}, x_{2}\right) \\
f_{2}\left(x_{1}, x_{2}\right)
\end{array}\right]+J\left(x_{1}, x_{2}\right)\left[\begin{array}{l}
h_{1} \\
h_{2}
\end{array}\right] .
$$

－If $J\left(x_{1}, x_{2}\right)$ is nonsingular then we can solve for $\left[h_{1}, h_{2}\right]^{\top}$ ：

$$
J\left(x_{1}, x_{2}\right)\left[\begin{array}{l}
h_{1} \\
h_{2}
\end{array}\right]=-\left[\begin{array}{l}
f_{1}\left(x_{1}, x_{2}\right) \\
f_{2}\left(x_{1}, x_{2}\right)
\end{array}\right] .
$$

## Newton＇s method for systems of nonlinear equations（cont．）

－Newton＇s method for the system of nonlinear equations is defined as follows：for $k=0,1, \cdots$ ，

$$
\left[\begin{array}{l}
x_{1}^{(k+1)} \\
x_{2}^{(k+1)}
\end{array}\right]=\left[\begin{array}{l}
x_{1}^{(k)} \\
x_{2}^{(k)}
\end{array}\right]+\left[\begin{array}{l}
h_{1}^{(k)} \\
h_{2}^{(k)}
\end{array}\right]
$$

with

$$
J\left(x_{1}^{(k)}, x_{2}^{(k)}\right)\left[\begin{array}{l}
h_{1}^{(k)} \\
h_{2}^{(k)}
\end{array}\right]=-\left[\begin{array}{l}
f_{1}\left(x_{1}^{(k)}, x_{2}^{(k)}\right) \\
f_{2}\left(x_{1}^{(k)}, x_{2}^{(k)}\right)
\end{array}\right] .
$$

－Example：
Use Newton＇s method with initial guess $\mathbf{x}^{(0)}=\left(x_{1}^{(0)}, x_{2}^{(0)}\right)^{\top}=(0,1)^{\top}$ to solve the following nonlinear system（perform two iterations）：

$$
\left\{\begin{array}{l}
4 x_{1}^{2}-x_{2}^{2}=0 \\
4 x_{1} x_{2}^{2}-x_{1}=1
\end{array}\right.
$$

## Newton＇s method for higher dimensional problems

－In general，we can use Newton＇s method for $F(X)=\mathbf{0}$ ，where $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\top}$ and $F=\left(f_{1}, f_{2}, \ldots, f_{n}\right)^{\top}$ ．
－For higher dimensional problem，the first derivative is defined as a matrix（the Jacobian matrix）

$$
D F(X):=\left[\begin{array}{cccc}
\frac{\partial f_{1}(X)}{\partial x_{1}} & \frac{\partial f_{1}(X)}{\partial x_{2}} & \cdots & \frac{\partial f_{1}(X)}{\partial x_{n}} \\
\frac{\partial f_{2}(X)}{\partial x_{1}} & \frac{\partial f_{2}(X)}{\partial x_{2}} & \cdots & \frac{\partial f_{2}(X)}{\partial x_{n}} \\
\vdots & \vdots & \vdots & \vdots \\
\frac{\partial f_{n}(X)}{\partial x_{1}} & \frac{\partial f_{n}(X)}{\partial x_{2}} & \cdots & \frac{\partial f_{n}(X)}{\partial x_{n}}
\end{array}\right]_{n \times n} .
$$

－Newton＇s method：given $X^{(0)}=\left[x_{1}^{(0)}, \cdots, x_{n}^{(0)}\right]^{\top}$ ，define

$$
X^{(k+1)}=X^{(k)}+H^{(k)}
$$

where

$$
D F\left(X^{(k)}\right) H^{(k)}=-F\left(X^{(k)}\right),
$$

which requires solving a large linear system at every iteration．

## Operations involved in Newton＇s method

－vector operations：not expensive．
－function evaluations：can be expensive．
－compute the Jacobian：can be expensive．
－solving matrix equations（linear system）：very expensive！

Computer project 2：write the computer code of Newton＇s method for solving the system of equations

$$
\left\{\begin{aligned}
3 x-\cos (y z)-\frac{1}{2} & =0 \\
x^{2}-81(y+0.1)^{2}+\sin (z)+1.06 & =0 \\
e^{-x y}+20 z+\frac{10 \pi-3}{3} & =0
\end{aligned}\right.
$$

with initial guess $(x, y, z)^{\top}=(0.1,0.1,-0.1)^{\top}$ ．

