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Introduction

@ A nonlinear equation:
Letf: @ # A C R — R be a nonlinear real-valued function in
variable x. We are interested in finding the roots (solutions) of
the equation f(x) = 0, i.e., zeros of the function f(x).

@ A system of nonlinear equations:
LetF: @ # A CR" — R" be a nonlinear vector-valued function
in a vector variable X = (xq,x2,- -+ ,X;) . We are interested in

finding the roots (solutions) of the equation F(X) = 0, i.e., zeros
of the function F(X).
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Examples

@ Let us look at three functions (polynomials):
o f(x) = x* — 1223 + 47x% — 60x
o f(x) = x* — 1223 + 47x% — 60x + 24
o f(x) = x* — 1223 + 47x% — 60x + 24.1

@ Find the zeros of these polynomials is not an easy task.
o The first function has real zeros 0, 3, 4, and 5.

e The real zeros of the second function are 1 and 0.888....

o The third function has no real zeros at all.
@ Matlab: p = [1 -12 47 -60 0]; r = roots(p)
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Objectives

Consider the nonlinear equation f(x) = 0 or F(X) = 0.

@ The basic questions:
e Does the solution exist?
o Is the solution unique?
e How to find it?

@ In this lecture, we will mainly focus on the third question and
we always assume that the problem under considered has a
solution x™.

@ We will study iterative methods for finding the solution: first
find an initial guess xo, then a better guess x1, ..., in the end we
hope that lim x, = x*.

n—oo

@ Iterative methods:

bisection method;
fixed-point method;
Newton’s method;
secant method.
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Bisection method

@ Bolzano’s Theorem: f € Cla,b| and f(a)f (b)) < 0= 3p € (a,b)
such that f(p) = 0.

@ The basic idea: assume that f(a)f (b) < 0.

e seta; =aand by = b, compute p; = %(m +by).

o if f(p1)f(am) = Othenf(p1) = 0= p =py;
if f(p1)f(a1) > O thenp € (p1,b1), seta, = py and by = by;
if f(p1)f(a1) < Othenp € (a1,p1), setay =aj and by = py;

1
° p2= 5 (a2 +bo).
o repeat the process until the interval is very small then any

point in the interval can be used as approximations of the
zero. Infact, p1 ~po ~p3 - p.
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The bisection algorithm

Input g, b, tolerance TOL, max. no. of iteration Nj.
Output approximate sol. of p or message of failure.
Step1:i=1,FA =f(a).

Step 2: while i < Ny do step 3-6.

Step 3:setp =a+ %(b —a); FP =f(p).

1
Step 4: if FP =0 or 3 (b —a) < TOL then output(p); stop.
Step5:i=i+1.
Step 6: if FA x FP > 0 then seta = p and FA = FP; else set b = p.
Step 7: output(method failed after Ny iterations); stop.
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Stopping criteria

Let ¢ > 0 be a given tolerance.

1
@ |[py —pn-1| <e  (Notethat [py —pn-_1] = i|bN—1 —an-1|);

PN — N1
Ipn|
° [f(pn)| <e

° <egifpy #0;
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Example

Find a root of f(x) = x® + 4x> — 10. Note that (1)
Therefore, 3 root p € [1,2]. Actual root is p = 1.365230013...
Using the bisection method, we get the table:

—5,f(2) = 14.

Ll i l b l P [ f) |
1 || 1.000000000000 | 2.000000000000 | 1.500000000000 | 2.375000000000
2 || 1.000000000000 | 1.500000000000 | 1.250000000000 | -1.796875000000
3 || 1.250000000000 | 1.500000000000 | 1.375000000000 | 0.162109375000
13 || 1.364990234375 | 1.365234375000 | 1.365112304687 | -0.001943659010
14 || 1.365112304687 | 1.365234375000 | 1.365173339843 | -0.000935847281
18 || 1.365226745605 | 1.365234375000 | 1.365230560302 | 0.000009030992

See the details of the M-file: bisection.m
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Properties of the bisection method

@ Drawbacks: often slow; a good intermediate approximation
may be discarded; doesn’t work for higher dimensional
problems: F(X) =

@ Advantage: it always converges to a solution if a suitable initial
interval can be chosen.

@ Theorem: f € Cla, b, f(a)f(b) <O, f(p) =
method generates {p,} with |p, — p| < %
Proof:

Forn > 1, wehave b, —a, =

U pn = %(an+bn) V> 1.

copn—p < 5(bn—ay) = 355 (b—a) = 5 (b—a).
® Note: ' |py—p| < 3(b—a) ..pn=p+O0(z)

0. The bisection
(b—a), Vn>1.

2”1—,1(19 —a)and p € (ay,by).
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Fixed points

@ XCR,g:X— R Ifpe Xand g(p) = p, then p is called a fixed
point of g.
@ Root-finding problem & fixed-point problem are equivalent in
the following sense:
o If pisarootof f(x) =0, pis a fixed point of

f()
x):=x—f(x), h(x) := x — Z-—%, etc.
e If pisa fixed point of g(x), i.e., g(p) = p, then p is a root of
f(x) :=x—g(x), h(x) := 3x — 3g(x), etc.
(root-finding problem) <= (fixed-point problem).
@ Example: ¢(x) = x> —2,x € [-2,3].
g(-1)=(-1)?-2=—-1landg(2) =22 -2 =2.

.. —1 and 2 are fixed points of g.
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A fixed point theorem

@ If g € Cla,b] and g(x) € [a,b],V x € [a,]], then g has a fixed point
in [a,b],ie,3p € [a,b] st. g(p) =p.
@ If, in addition, ¢’ exists on (a,b) and 30 < k < 1 such that
19/ (x)| <k, Vx € (a,b), then the fixed point is unique in [a, b].
@ Then, for any py € [a,b] and p,, := g(py—1), 1 > 1, the sequence
{pn} converges to the unique fixed point p € [a, b] and
o [pn—pl <K'max{po—a,b—po}, Vn>1;
o pn—pl < 15lp1 —pol, ¥ > 1.
Proof:

@ Ifg(a) =aorg(b) = bthen g has a fixed point in [, b]. Suppose not, then
a < g(a) <banda < g(b) < b. Define h(x) := g(x) — x. Then h is continuous on
[a,b] and h(a) > 0, h(b) < 0. By the Intermediate Value Theorem, 3 p € (a,b)
such that h(p) =0, i.e., g(p) = p.

@ Suppose that 3p < q € [a,b] are fixed points of g. Then g(p) = p and g(q) = 4.
By the Mean Value Theorem, 3 ¢ € (p, g) such that 8a)-g(p) ) <p) =4 (¢) =

7|‘3(‘; & nl @) <k<l=1= }q Z} <k<l Th151sacontrad1ct1on

Therefore, the fixed point is unique.
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Proof (continued)

@ Forn > 1, by the Mean Value Theorem, 3 ¢ € (a, b) such that
0< |pn —pl=I8(pn-1) —g(p)| = Izg’(é)llpn-l = pl <klpu-1—pl|-
=0 < |pu—p| <klpur —pl <K|pn2—pl <+ <K'[po—pl.
= lim [py —p[ =0 & limp, —p=0 & lim p, =p.

® . |pn—p| < K'|po—plandp € [a,b].
cpn —pl < K'max{po —a,b—po}, Vn > 1.
@ Forn>1,

IPns1 = pul = 18(pn) — 8(Pu-1)| < klpn —pp—a| < - <K"|p1 —pol-
. Form >n > 1, we have

|p7ﬂ - pﬂ‘ = ‘pm —Pm-1t+Pm-1—Pm—2+" "+ Puy1 — Pn‘
< Apm = Pl Pt — P2l + - [Pus1 — pul
< K" pr —pol + K" 2|1 — pol + - - - + K" |p1 — pol

Y1 +k+ - " pr — pol.
o limy e Pn = p-
) =, 1
Sl =pal = Hm [pw = pul < K'[py —poligok‘ =K'lpr = pol3—%-
(.- geometric series with 0 < k < 1)
AP =pul < 5l —pol.
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Fixed-point iterations

@ Fixed point iterations:

pn=8pn-1), n=12,---

Assume that g is continuous and lim pn = p. Then
— 00

8(p) = g(lim pn) = g(lim p, 1) = lim g(p, 1) = lim p, = p.

n—oo n—oo

Therefore, p is a fixed point of the function g.

@ Example: f(x) = x> + 4x? — 10 = 0 has a unique root in [1,2].
L f(1) = -5<0,f(2) =14 > 0,
and f'(x) = 3x% +8x > 0,V x € (1,2).

.".f is increasing on [1,2].
.".f has a unique root in [1,2].
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Fixed-point problem

root-finding problem <= fixed-point problem.
(@) x=g1(x) :=x — 2% —4x2 +10.

(b) x =g (x) := (% —4x>1/2.

1 1/2
() x=g3(x) := E(lO—x) .
1/2
@ v=8109= (375)
4x* —10
© r=go() = x - 10
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Numerical results

Using the fixed-point iterations, we have

Ll @ [ b [ © [ (d) [ (e
015 15 15 15 15
3 || -469.7 (—8.65)1/2
4 || 103 x 108 1.365230013
15 1.365223680 | 1.365230013
30 1.365230013

The actual root is p = 1.365230013...
Computer project 1: write the Matlab files for (c), (d), and (e).
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Newton’s method

@ Motivation: we know how to solve f(x) = 0 if f is linear. For
nonlinear f, we can always approximate it with a linear function.

@ Suppose that f € C?[a,b] and f(p) = 0. Let pg € [a,b] be an
approximation to p, f'(pg) # 0 and |p — po| is “small”. Using
Taylor Theorem, we have

)2
0=F(p) = F(p) + (p — po)f () + L2572 )
If |p — po| is small, then we can drop the (p — pp)? term,

0~ f(po) + (p = po)f' (po)-
Solving for p gives

p A pLi=po— ;((r;?))) , provided f'(pg) # 0.

@ Newton’s method can be defined as follows: forn =1,2,- - -

_ _ f(pn-1) . /
Pn = Pn—1 Flon ) provided f'(p,—1) # 0.
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Geometrical interpretation

@ Anillustration of one iteration of Newton’s method. The
function f is shown in blue and the tangent line is in red. We see
that p,, is a better approximation than p,,_; for the root p of the
function f.

@ What is the geometrical meaning of f'(p,, 1) = 0?
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Example

@ Consider the function f(x) = cos(x) —x = f'(x) = —sin(x) — 1.

f(n/2) = —-m/2<0andf(0) =1 > 0.
o.3p € (0,71/2) such that f(p) = 0.

Newton’s method: choose pg € [0, r/2] and

 c08(pu1) — Pu
—sin(py—1) -1~

Pn = Pn—1 n>1.

@ Numerical results: py = /4.

n f (Pn)
0.78539816339745 | -0.07829138221090

0.73953613351524 | -0.00075487468250
0.73908517810601 | -0.00000007512987
0.73908513321516 | -0.00000000000000

WN R~ O

See the details of the M-file: newton.m
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Convergence Theorem

Theorem: Assume that f € C2[a,b], p € (a,b) such that f(p) = 0 and
f'(p) # 0. Then 3 6 > 0 such that if py € [p — 6, p + 6] then Newton’'s
method generates {p, } converging to p.

Proof: Define g(x) = x — J{,(();)) . Then g(p) = p.
Letk € (0,1). We want to find § > 0s.t.
glp=d,p+d)) Clp—é,p+dland [g'(x)| <k Vxe (p—6p+0)
. f'(p) # 0and f’ is continuous on [a, b].
.. By the sign-preserving property, 36; > 0s.t. f'(x) #0
Vxelp—2oy,p+dl.
.. g is continuous on [p — &, p + 4] and
/ ! /! 1
1oy g [ ) = fOf" () | _ f)f"(x) _
gx)=1 { )2 ~ PO Vxep—d,p+dil.
f €Ca,bl. .g€C p—01,p+6.
fp)=0  .¢(p)=0.
"+ ¢ is continuous on [p — 61, p + 41].
S.38>0andé < dyst [¢(x)| <k Vxe[p—0d,p+4).
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Convergence Theorem (continued)

Claim: g([p—d,p+9]) C [p—6,p+4].

Letxe [p—4,p+9].

By the MVT, 3 ¢ between x and p s.t. |g(x) — g(p)| < |¢'(E)]|x — p|.
S 8(x) —pl Sklx—pl < [x—p| <0

Thatis, g(x) € [p—d,p +9].
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Convergence order

@ Definition: Suppose {p,} converges to p (lim p, = p) with

. Pnia —pl
, Vun.If A, a0 >0s.t. lim ————— = A, then we sa
P p n=% |py —p|* g
that {p,,} converges to p of order a with asymptotic error
constant A.

@ Note: If « =1 (and A < 1), then we say {p,} is linearly
convergent. If « = 2, then we say {p,} is quadratically
convergent.
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Newton’s method is quadratically convergent when it

converges
Sketch of the proof:
f € C?[a,b], f(p) = 0. By Taylor’s Theorem, we have

£) = Flpn) +£ () e~ pu) + T4 (2

— 0=f(p) =)+ p)p ) + T (p— )

oy S @) 2
T G T Ay
fpn) f'(©)
== (i) = a0

M
- |p le+1| = 2[](/( )| |P pﬂ|2 n=0

(by the Extreme Value Theorem)
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Some remarks on Newton’s method

Advantages:
@ The convergence is quadratic.

@ Newton’s method works for higher dimensional problems.

Disadvantages:

@ Newton’s method converges only locally; i.e., the initial guess pg
has to be close enough to the solution p.

@ It needs the first derivative of f(x).
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Secant method

@ Secant method: given two initial approximations pg and p; with
po # p1and f(po) # f(p1). Then forn > 2,
o computea = fi(p; 11) J;Ef”z 2) if p, 1 # pps.
o compute p; = pu_1 — L, i £ (pu1) # flpu-2)-

@ Remarks:

e we need only one function evaluation per iteration.

e py, depends on two previous iterations. For example, to
compute pp, we need both p; and py.

e how do we obtain p;? We need to use FD-Newton: pick a
small parameter h, compute ag = (f(po +h) — f(po))/h,
then p1 = po —f(po)/ao-

@ The convergence of secant method is superlinear (i.e., better
than linear). More precisely, we have

. |pn+l _P| _ ~
lim. I — p A C, (1+V5)/2~162<2.

Suh-Yuh Yang ( 1BiiE), Math. Dept., NCU, Taiwan Nonlinear Equations —24/31



Geometrical interpretation of the secant method

The first two iterations of the secant method. The red curve shows
the function f and the blue lines are the secants.

X3

)
e —

This picture is quoted from http:/ /en.wikipedia.org/wiki/
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Example

@ Consider the function f(x) = cos(x) —x. 3p € (0, 7/2) such
that f(p) = 0. Letpg = 0.5 and p; = /4.

The secant method:

Pn = Pnfl - (

(Pn-1—pn2)(c

0s(Pn—1) = Pu-1)

cos(pu—1) = Pn-1) — (cos(pn—2) — pn-2)’

@ Numerical results:

L | pn [f(pn)
0 || 0.50000000000000 | 0.37758256189037
1 || 0.78539816339745 | -0.07829138221090
2 || 0.73638413883658 | 0.00451771852217
3 || 0.73905813921389 | 0.00004517721596
4 || 0.73908514933728 | -0.00000002698217
5 || 0.73908513321506 | 0.00000000000016

See the details of the M-file: secant .m
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Newton’s method for systems of nonlinear equations

@ We wish to solve
{ filx1,x2) =0,
fa(x1,0) =0,
where f] and f, are nonlinear functions of x; and x,.
@ Applying Taylor’s expansion in two variables around (x1,x7) to
the system of equations, we obtain
0=filx1+hi,x2+h) = fi(xr,x) + by DGR 4 22),
0=falx1 +hi,x2+hp) = fo(x1,x2) +M afz%’iﬁf‘” +hy afz%’;g"“ :

@ Putting it into the matrix form, we have

of1 (xq,x oy (x1,x
0] [ | [ 2 ]
0 f2 (xl/ xZ) of» %3;11,3(2) of (aygclzer) hz .
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Newton’s method for systems of nonlinear equations (cont.)

@ To simplify the notation we introduce the Jacobian matrix:

af1(axl,3fz) afl(axerZ)
](xl’x2> - [ afz(xll/xz) afZ(xlerZ) ]

axl axz

@ Then we have
0] _ [ Al x) ] [ hy ]
{ 0 } {fz(xl,xz) I 72) hy |
@ If J(x1,xp) is nonsingular then we can solve for [k, 1]

i [ 1] == [ ].

Suh-Yuh Yang ( ), Math. Dept., NCU, Taiwan Nonlinear Equations —28/31



Newton’s method for systems of nonlinear equations (cont.)

@ Newton’s method for the system of nonlinear equations is
defined as follows: fork =0,1,- - -,

k+1 [ (k k
x§k 7 x§k> . hg}()
e [ = [ J* [l

i (k) (k) (k)
K _(k h X, x
J(xP,xé))[ o =[f1( o %”
hy flq,x7)
@ Example:

Use Newton’s method with initial guess
x(0) = (xgo), xéo) )T =(0,1)" to solve the following nonlinear

system (perform two iterations):

4X12 - X22 = 0,
dxix2 —x; =1.

Nonlinear Equations —29/31

Suh-Yuh Yang ( Wi 1), Math. Dept., NCU, Taiwan



Newton’s method for higher dimensional problems

@ In general, we can use Newton’s method for F(X) = 0, where
X = (xl,xz, . ,xn)T and F = (fler/ . ,fn)T.

@ For higher dimensional problem, the first derivative is defined
as a matrix (the Jacobian matrix)

GRS eI 1e

h(X)  hX) o (%)
DF(X):=| @ % o

hulX) K h(X)

oxq oxp oxy nxn

@ Newton’s method: given x(0) = [xgo),- . ,xﬁ,o)]—r, define
xk+1) — x®) 4 gk

where
DE(X®)H® = —p(x®),

which requires solving a large linear system at every iteration.
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Operations involved in Newton’s method

@ vector operations: not expensive.
@ function evaluations: can be expensive.
@ compute the Jacobian: can be expensive.

@ solving matrix equations (linear system): very expensive!

Computer project 2: write the computer code of Newton’s method
for solving the system of equations

1
3x —cos(yz) — 5 = 0,
x? —81(y+0.1)2 +sin(z) +1.06 = 0,
1 _
e xy+202+¥ = 0,

with initial guess (x,v,z) " = (0.1,0.1,-0.1) ".
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