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Introduction

A nonlinear equation:
Let f : ∅ 6= A ⊆ R→ R be a nonlinear real-valued function in
variable x. We are interested in finding the roots (solutions) of
the equation f (x) = 0, i.e., zeros of the function f (x).

A system of nonlinear equations:
Let F : ∅ 6= A ⊆ Rn → Rn be a nonlinear vector-valued function
in a vector variable X = (x1, x2, · · · , xn)>. We are interested in
finding the roots (solutions) of the equation F(X) = 0, i.e., zeros
of the function F(X).
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Examples

Let us look at three functions (polynomials):
f (x) = x4 − 12x3 + 47x2 − 60x
f (x) = x4 − 12x3 + 47x2 − 60x + 24
f (x) = x4 − 12x3 + 47x2 − 60x + 24.1

Find the zeros of these polynomials is not an easy task.
The first function has real zeros 0, 3, 4, and 5.
The real zeros of the second function are 1 and 0.888....
The third function has no real zeros at all.

Matlab: p = [1 -12 47 -60 0]; r = roots(p)
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Objectives

Consider the nonlinear equation f (x) = 0 or F(X) = 0.

The basic questions:
Does the solution exist?
Is the solution unique?
How to find it?

In this lecture, we will mainly focus on the third question and
we always assume that the problem under considered has a
solution x∗.

We will study iterative methods for finding the solution: first
find an initial guess x0, then a better guess x1, . . . , in the end we
hope that lim

n→∞
xn = x∗.

Iterative methods:
bisection method;
fixed-point method;
Newton’s method;
secant method.
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Bisection method

Bolzano’s Theorem: f ∈ C[a, b] and f (a)f (b) < 0 =⇒ ∃ p ∈ (a, b)
such that f (p) = 0.

The basic idea: assume that f (a)f (b) < 0.
set a1 = a and b1 = b, compute p1 = 1

2 (a1 + b1).
if f (p1)f (a1) = 0 then f (p1) = 0 =⇒ p = p1;
if f (p1)f (a1) > 0 then p ∈ (p1, b1), set a2 = p1 and b2 = b1;
if f (p1)f (a1) < 0 then p ∈ (a1, p1), set a2 = a1 and b2 = p1;

p2 =
1
2
(a2 + b2).

repeat the process until the interval is very small then any
point in the interval can be used as approximations of the
zero. In fact, p1 y p2 y p3 y · · ·y p.
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The bisection algorithm

Input a, b, tolerance TOL, max. no. of iteration N0.
Output approximate sol. of p or message of failure.
Step 1: i = 1, FA = f (a).
Step 2: while i ≤ N0 do step 3-6.

Step 3: set p = a +
1
2
(b− a); FP = f (p).

Step 4: if FP = 0 or
1
2
(b− a) < TOL then output(p); stop.

Step 5: i = i + 1.
Step 6: if FA× FP > 0 then set a = p and FA = FP; else set b = p.

Step 7: output(method failed after N0 iterations); stop.
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Stopping criteria

Let ε > 0 be a given tolerance.

|pN − pN−1| < ε (Note that |pN − pN−1| =
1
4
|bN−1 − aN−1|);

|pN − pN−1|
|pN|

< ε, if pN 6= 0;

|f (pN)| < ε

Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Nonlinear Equations – 7/31



Example

Find a root of f (x) = x3 + 4x2 − 10. Note that f (1) = −5, f (2) = 14.
Therefore, ∃ root p ∈ [1, 2]. Actual root is p = 1.365230013...
Using the bisection method, we get the table:

n an bn pn f (pn)

1 1.000000000000 2.000000000000 1.500000000000 2.375000000000
2 1.000000000000 1.500000000000 1.250000000000 -1.796875000000
3 1.250000000000 1.500000000000 1.375000000000 0.162109375000
...

...
...

...
...

13 1.364990234375 1.365234375000 1.365112304687 -0.001943659010
14 1.365112304687 1.365234375000 1.365173339843 -0.000935847281

...
...

...
...

...
18 1.365226745605 1.365234375000 1.365230560302 0.000009030992

See the details of the M-file: bisection.m
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Properties of the bisection method

Drawbacks: often slow; a good intermediate approximation
may be discarded; doesn’t work for higher dimensional
problems: F(X) = 0.

Advantage: it always converges to a solution if a suitable initial
interval can be chosen.

Theorem: f ∈ C[a, b], f (a)f (b) < 0, f (p) = 0. The bisection
method generates {pn} with |pn − p| ≤ 1

2n (b− a), ∀ n ≥ 1.
Proof:
For n ≥ 1, we have bn − an = 1

2n−1 (b− a) and p ∈ (an, bn).

∵ pn = 1
2 (an + bn), ∀ n ≥ 1.

∴ pn − p ≤ 1
2 (bn − an) =

1
2

1
2n−1 (b− a) = 1

2n (b− a).

Note: ∵ |pn − p| ≤ 1
2n (b− a) ∴ pn = p + O( 1

2n ).
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Fixed points

X ⊆ R, g : X→ R. If p ∈ X and g(p) = p, then p is called a fixed
point of g.

Root-finding problem & fixed-point problem are equivalent in
the following sense:

If p is a root of f (x) = 0, p is a fixed point of

g(x) := x− f (x), h(x) := x− f (x)
f ′(x)

, etc.

If p is a fixed point of g(x), i.e., g(p) = p, then p is a root of
f (x) := x− g(x), h(x) := 3x− 3g(x), etc.

(root-finding problem)⇐⇒ (fixed-point problem).

Example: g(x) = x2 − 2, x ∈ [−2, 3].

∵ g(−1) = (−1)2 − 2 = −1 and g(2) = 22 − 2 = 2.

∴ −1 and 2 are fixed points of g.
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A fixed point theorem

If g ∈ C[a, b] and g(x) ∈ [a, b], ∀ x ∈ [a, b], then g has a fixed point
in [a, b], i.e., ∃ p ∈ [a, b] s.t. g(p) = p.

If, in addition, g′ exists on (a, b) and ∃ 0 < k < 1 such that
|g′(x)| ≤ k, ∀ x ∈ (a, b), then the fixed point is unique in [a, b].

Then, for any p0 ∈ [a, b] and pn := g(pn−1), n ≥ 1, the sequence
{pn} converges to the unique fixed point p ∈ [a, b] and

|pn − p| ≤ kn max{p0 − a, b− p0}, ∀ n ≥ 1;
|pn − p| ≤ kn

1−k |p1 − p0|, ∀ n ≥ 1.

Proof:

If g(a) = a or g(b) = b then g has a fixed point in [a, b]. Suppose not, then
a < g(a) ≤ b and a ≤ g(b) < b. Define h(x) := g(x)− x. Then h is continuous on
[a, b] and h(a) > 0, h(b) < 0. By the Intermediate Value Theorem, ∃ p ∈ (a, b)
such that h(p) = 0, i.e., g(p) = p.

Suppose that ∃ p < q ∈ [a, b] are fixed points of g. Then g(p) = p and g(q) = q.
By the Mean Value Theorem, ∃ ξ ∈ (p, q) such that g(q)−g(p)

q−p = g′(ξ) =⇒
|g(q)−g(p)|
|q−p| = |g′(ξ)| ≤ k < 1 =⇒ 1 = |q−p|

|q−p| ≤ k < 1. This is a contradiction.
Therefore, the fixed point is unique.
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Proof (continued)

For n ≥ 1, by the Mean Value Theorem, ∃ ξ ∈ (a, b) such that
0 ≤ |pn − p| = |g(pn−1)− g(p)| = |g′(ξ)||pn−1 − p| ≤ k|pn−1 − p|.
=⇒ 0 ≤ |pn − p| ≤ k|pn−1 − p| ≤ k2|pn−2 − p| ≤ · · · ≤ kn|p0 − p|.
=⇒ lim

n→∞
|pn − p| = 0 ⇔ lim

n→∞
pn − p = 0 ⇔ lim

n→∞
pn = p.

∵ |pn − p| ≤ kn|p0 − p| and p ∈ [a, b].
∴ |pn − p| ≤ kn max{p0 − a, b− p0}, ∀ n ≥ 1.
For n ≥ 1,
|pn+1 − pn| = |g(pn)− g(pn−1)| ≤ k|pn − pn−1| ≤ · · · ≤ kn|p1 − p0|.
∴ For m > n ≥ 1, we have

|pm − pn| = |pm − pm−1 + pm−1 − pm−2 + · · ·+ pn+1 − pn|
≤ |pm − pm−1|+ |pm−1 − pm−2|+ · · ·+ |pn+1 − pn|
≤ km−1|p1 − p0|+ km−2|p1 − p0|+ · · ·+ kn|p1 − p0|
= kn(1 + k + · · ·+ km−n−1)|p1 − p0|.

∵ limn→∞ pn = p.

∴ |p− pn| = lim
m→∞

|pm − pn| ≤ kn|p1 − p0|
∞

∑
i=0

ki = kn|p1 − p0|
1

1− k
.

(∵ geometric series with 0 < k < 1)
∴ |p− pn| ≤ kn

1−k |p1 − p0|.
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Fixed-point iterations

Fixed point iterations:

pn = g(pn−1), n = 1, 2, · · ·

Assume that g is continuous and lim
n→∞

pn = p. Then

g(p) = g( lim
n→∞

pn) = g( lim
n→∞

pn−1) = lim
n→∞

g(pn−1) = lim
n→∞

pn = p.

Therefore, p is a fixed point of the function g.

Example: f (x) = x3 + 4x2 − 10 = 0 has a unique root in [1, 2].

∵ f (1) = −5 < 0, f (2) = 14 > 0,

and f ′(x) = 3x2 + 8x > 0, ∀ x ∈ (1, 2).

∴ f is increasing on [1, 2].
∴ f has a unique root in [1, 2].
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Fixed-point problem

root-finding problem⇐⇒ fixed-point problem.

(a) x = g1(x) := x− x3 − 4x2 + 10.

(b) x = g2(x) :=
(10

x
− 4x

)1/2
.

(c) x = g3(x) :=
1
2

(
10− x3

)1/2
.

(d) x = g4(x) :=
( 10

4 + x

)1/2
.

(e) x = g5(x) := x− x3 + 4x2 − 10
3x2 + 8x

.
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Numerical results

Using the fixed-point iterations, we have

n (a) (b) (c) (d) (e)
0 1.5 1.5 1.5 1.5 1.5
...

...
...

...
...

...
3 -469.7 (−8.65)1/2

4 1.03× 108 1.365230013
...

...
15 1.365223680 1.365230013

...
30 1.365230013

The actual root is p = 1.365230013...

Computer project 1: write the Matlab files for (c), (d), and (e).
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Newton’s method

Motivation: we know how to solve f (x) = 0 if f is linear. For
nonlinear f , we can always approximate it with a linear function.

Suppose that f ∈ C2[a, b] and f (p) = 0. Let p0 ∈ [a, b] be an
approximation to p, f ′(p0) 6= 0 and |p− p0| is “small”. Using
Taylor Theorem, we have

0 = f (p) = f (p0) + (p− p0)f ′(p0) +
(p− p0)

2

2
f ′′(ξ(p)).

If |p− p0| is small, then we can drop the (p− p0)
2 term,

0 ≈ f (p0) + (p− p0)f ′(p0).

Solving for p gives

p ≈ p1 := p0 −
f (p0)

f ′(p0)
, provided f ′(p0) 6= 0.

Newton’s method can be defined as follows: for n = 1, 2, · · ·

pn = pn−1 −
f (pn−1)

f ′(pn−1)
, provided f ′(pn−1) 6= 0.
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Geometrical interpretation

An illustration of one iteration of Newton’s method. The
function f is shown in blue and the tangent line is in red. We see
that pn is a better approximation than pn−1 for the root p of the
function f .

What is the geometrical meaning of f ′(pn−1) = 0?
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Example

Consider the function f (x) = cos(x)− x⇒ f ′(x) = − sin(x)− 1.

∵ f (π/2) = −π/2 < 0 and f (0) = 1 > 0.
∴ ∃ p ∈ (0, π/2) such that f (p) = 0.

Newton’s method: choose p0 ∈ [0, π/2] and

pn := pn−1 −
cos(pn−1)− pn−1

− sin(pn−1)− 1
, n ≥ 1.

Numerical results: p0 = π/4.

n pn f (pn)
0 0.78539816339745 -0.07829138221090
1 0.73953613351524 -0.00075487468250
2 0.73908517810601 -0.00000007512987
3 0.73908513321516 -0.00000000000000

See the details of the M-file: newton.m
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Convergence Theorem

Theorem: Assume that f ∈ C2[a, b], p ∈ (a, b) such that f (p) = 0 and
f ′(p) 6= 0. Then ∃ δ > 0 such that if p0 ∈ [p− δ, p + δ] then Newton’s
method generates {pn} converging to p.

Proof: Define g(x) = x− f (x)
f ′(x)

. Then g(p) = p.

Let k ∈ (0, 1). We want to find δ > 0 s.t.
g([p− δ, p + δ]) ⊆ [p− δ, p + δ] and |g′(x)| ≤ k, ∀ x ∈ (p− δ, p + δ).
∵ f ′(p) 6= 0 and f ′ is continuous on [a, b].
∴ By the sign-preserving property, ∃ δ1 > 0 s.t. f ′(x) 6= 0
∀ x ∈ [p− δ1, p + δ1].
∴ g is continuous on [p− δ1, p + δ1] and

g′(x) = 1−
{

f ′(x)f ′(x)− f (x)f ′′(x)
(f ′(x))2

}
=

f (x)f ′′(x)
(f ′(x))2 , ∀ x ∈ [p− δ1, p+ δ1].

∵ f ∈ C2[a, b]. ∴ g ∈ C1[p− δ1, p + δ1].
∵ f (p) = 0 ∴ g′(p) = 0.
∵ g′ is continuous on [p− δ1, p + δ1].
∴ ∃ δ > 0 and δ < δ1 s.t. |g′(x)| ≤ k, ∀ x ∈ [p− δ, p + δ].
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Convergence Theorem (continued)

Claim: g([p− δ, p + δ]) ⊆ [p− δ, p + δ].

Let x ∈ [p− δ, p + δ].

By the MVT, ∃ ξ between x and p s.t. |g(x)− g(p)| ≤ |g′(ξ)||x− p|.
∴ |g(x)− p| ≤ k|x− p| < |x− p| ≤ δ.

That is, g(x) ∈ [p− δ, p + δ].
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Convergence order

Definition: Suppose {pn} converges to p ( lim
n→∞

pn = p) with

pn 6= p, ∀ n. If ∃ λ, α > 0 s.t. lim
n→∞

|pn+1 − p|
|pn − p|α = λ, then we say

that {pn} converges to p of order α with asymptotic error
constant λ.

Note: If α = 1 (and λ < 1), then we say {pn} is linearly
convergent. If α = 2, then we say {pn} is quadratically
convergent.
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Newton’s method is quadratically convergent when it
converges

Sketch of the proof:

f ∈ C2[a, b], f (p) = 0. By Taylor’s Theorem, we have

f (x) = f (pn) + f ′(pn)(x− pn) +
f ′′(ξ)

2!
(x− pn)

2

=⇒ 0 = f (p) = f (pn) + f ′(pn)(p− pn) +
f ′′(ξ)

2!
(p− pn)

2

=⇒ (p− pn) +
f (pn)

f ′(pn)
= − f ′′(ξ)

2f ′(pn)
(p− pn)

2

=⇒ p−
(

pn −
f (pn)

f ′(pn)

)
= − f ′′(ξ)

2f ′(pn)
(p− pn)

2

=⇒ |p− pn+1| ≤
M

2|f ′(pn)|
|p− pn|2, n ≥ 0

(by the Extreme Value Theorem)

Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Nonlinear Equations – 22/31



Some remarks on Newton’s method

Advantages:

The convergence is quadratic.

Newton’s method works for higher dimensional problems.

Disadvantages:

Newton’s method converges only locally; i.e., the initial guess p0
has to be close enough to the solution p.

It needs the first derivative of f (x).

Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Nonlinear Equations – 23/31



Secant method

Secant method: given two initial approximations p0 and p1 with
p0 6= p1 and f (p0) 6= f (p1). Then for n ≥ 2,

compute a = f (pn−1)−f (pn−2)
pn−1−pn−2

, if pn−1 6= pn−2.

compute pn = pn−1 − f (pn−1)
a , if f (pn−1) 6= f (pn−2).

Remarks:
we need only one function evaluation per iteration.
pn depends on two previous iterations. For example, to
compute p2, we need both p1 and p0.
how do we obtain p1? We need to use FD-Newton: pick a
small parameter h, compute a0 = (f (p0 + h)− f (p0))/h,
then p1 = p0 − f (p0)/a0.

The convergence of secant method is superlinear (i.e., better
than linear). More precisely, we have

lim
n→∞

|pn+1 − p|
|pn − p|(1+

√
5)/2

= C, (1 +
√

5)/2 ≈ 1.62 < 2.

Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Nonlinear Equations – 24/31



Geometrical interpretation of the secant method

The first two iterations of the secant method. The red curve shows
the function f and the blue lines are the secants.

This picture is quoted from http://en.wikipedia.org/wiki/
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Example

Consider the function f (x) = cos(x)− x. ∃ p ∈ (0, π/2) such
that f (p) = 0. Let p0 = 0.5 and p1 = π/4.

The secant method:

pn := pn−1 −
(pn−1 − pn−2)(cos(pn−1)− pn−1)

(cos(pn−1)− pn−1)− (cos(pn−2)− pn−2)
, n ≥ 2.

Numerical results:
n pn f (pn)

0 0.50000000000000 0.37758256189037
1 0.78539816339745 -0.07829138221090
2 0.73638413883658 0.00451771852217
3 0.73905813921389 0.00004517721596
4 0.73908514933728 -0.00000002698217
5 0.73908513321506 0.00000000000016

See the details of the M-file: secant.m
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Newton’s method for systems of nonlinear equations

We wish to solve {
f1(x1, x2) = 0,
f2(x1, x2) = 0,

where f1 and f2 are nonlinear functions of x1 and x2.

Applying Taylor’s expansion in two variables around (x1, x2) to
the system of equations, we obtain{

0 = f1(x1 + h1, x2 + h2) ≈ f1(x1, x2) + h1
∂f1(x1,x2)

∂x1
+ h2

∂f1(x1,x2)
∂x2

,

0 = f2(x1 + h1, x2 + h2) ≈ f2(x1, x2) + h1
∂f2(x1,x2)

∂x1
+ h2

∂f2(x1,x2)
∂x2

.

Putting it into the matrix form, we have[
0
0

]
=

[
f1(x1, x2)
f2(x1, x2)

]
+

[
∂f1(x1,x2)

∂x1

∂f1(x1,x2)
∂x2

∂f2(x1,x2)
∂x1

∂f2(x1,x2)
∂x2

] [
h1
h2

]
.
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Newton’s method for systems of nonlinear equations (cont.)

To simplify the notation we introduce the Jacobian matrix:

J(x1, x2) =

[
∂f1(x1,x2)

∂x1

∂f1(x1,x2)
∂x2

∂f2(x1,x2)
∂x1

∂f2(x1,x2)
∂x2

]
.

Then we have[
0
0

]
=

[
f1(x1, x2)
f2(x1, x2)

]
+ J(x1, x2)

[
h1
h2

]
.

If J(x1, x2) is nonsingular then we can solve for [h1, h2]
>:

J(x1, x2)

[
h1
h2

]
= −

[
f1(x1, x2)
f2(x1, x2)

]
.
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Newton’s method for systems of nonlinear equations (cont.)

Newton’s method for the system of nonlinear equations is
defined as follows: for k = 0, 1, · · · ,[

x(k+1)
1

x(k+1)
2

]
=

[
x(k)1
x(k)2

]
+

[
h(k)1
h(k)2

]
with

J(x(k)1 , x(k)2 )

[
h(k)1
h(k)2

]
= −

[
f1(x

(k)
1 , x(k)2 )

f2(x
(k)
1 , x(k)2 )

]
.

Example:

Use Newton’s method with initial guess
x(0) = (x(0)1 , x(0)2 )> = (0, 1)> to solve the following nonlinear
system (perform two iterations):{

4x1
2 − x2

2 = 0,
4x1x2

2 − x1 = 1.
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Newton’s method for higher dimensional problems

In general, we can use Newton’s method for F(X) = 0, where
X = (x1, x2, . . . , xn)> and F = (f1, f2, . . . , fn)>.

For higher dimensional problem, the first derivative is defined
as a matrix (the Jacobian matrix)

DF(X) :=


∂f1(X)

∂x1

∂f1(X)
∂x2

· · · ∂f1(X)
∂xn

∂f2(X)
∂x1

∂f2(X)
∂x2

· · · ∂f2(X)
∂xn

...
...

...
...

∂fn(X)
∂x1

∂fn(X)
∂x2

· · · ∂fn(X)
∂xn


n×n

.

Newton’s method: given X(0) = [x(0)1 , · · · , x(0)n ]>, define

X(k+1) = X(k) + H(k),

where
DF(X(k))H(k) = −F(X(k)),

which requires solving a large linear system at every iteration.
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Operations involved in Newton’s method

vector operations: not expensive.

function evaluations: can be expensive.

compute the Jacobian: can be expensive.

solving matrix equations (linear system): very expensive!

Computer project 2: write the computer code of Newton’s method
for solving the system of equations

3x− cos(yz)− 1
2

= 0,

x2 − 81(y + 0.1)2 + sin(z) + 1.06 = 0,

e−xy + 20z +
10π − 3

3
= 0,

with initial guess (x, y, z)> = (0.1, 0.1,−0.1)>.
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