MA 3021: Numerical Analysis I Solutions of Nonlinear Equations

Suh-Yuh Yang (楊肅煜)

Department of Mathematics, National Central University Jhongli District, Taoyuan City 32001, Taiwan

syyang@math.ncu.edu.tw http://www.math.ncu.edu.tw/~syyang/

Introduction

• A nonlinear equation:

Let $f : \emptyset \neq A \subseteq \mathbb{R} \to \mathbb{R}$ be a nonlinear real-valued function in variable *x*. We are interested in finding the roots (solutions) of the equation f(x) = 0, i.e., zeros of the function f(x).

• A system of nonlinear equations:

Let $F : \emptyset \neq A \subseteq \mathbb{R}^n \to \mathbb{R}^n$ be a nonlinear vector-valued function in a vector variable $X = (x_1, x_2, \dots, x_n)^\top$. We are interested in finding the roots (solutions) of the equation $F(X) = \mathbf{0}$, i.e., zeros of the function F(X).

Examples

• Let us look at three functions (polynomials):

•
$$f(x) = x^4 - 12x^3 + 47x^2 - 60x$$

•
$$f(x) = x^4 - 12x^3 + 47x^2 - 60x + 24$$

•
$$f(x) = x^4 - 12x^3 + 47x^2 - 60x + 24.1$$

- Find the zeros of these polynomials is not an easy task.
 - The first function has real zeros 0, 3, 4, and 5.
 - The real zeros of the second function are 1 and 0.888....
 - The third function has no real zeros at all.
- Matlab: p = [1 -12 47 -60 0]; r = roots(p)

Objectives

Consider the nonlinear equation f(x) = 0 or F(X) = 0.

- The basic questions:
 - Does the solution exist?
 - Is the solution unique?
 - How to find it?
- In this lecture, we will mainly focus on the third question and we always assume that the problem under considered has a solution *x**.
- We will study iterative methods for finding the solution: first find an initial guess x_0 , then a better guess x_1, \ldots , in the end we hope that $\lim_{n\to\infty} x_n = x^*$.
- Iterative methods:
 - bisection method;
 - fixed-point method;
 - Newton's method;
 - secant method.

Bisection method

- **Bolzano's Theorem:** $f \in C[a, b]$ and $f(a)f(b) < 0 \implies \exists p \in (a, b)$ such that f(p) = 0.
- The basic idea: assume that f(a)f(b) < 0.
 - set $a_1 = a$ and $b_1 = b$, compute $p_1 = \frac{1}{2}(a_1 + b_1)$.
 - if $f(p_1)f(a_1) = 0$ then $f(p_1) = 0 \implies p = p_1$; if $f(p_1)f(a_1) > 0$ then $p \in (p_1, b_1)$, set $a_2 = p_1$ and $b_2 = b_1$; if $f(p_1)f(a_1) < 0$ then $p \in (a_1, p_1)$, set $a_2 = a_1$ and $b_2 = p_1$; • $p_2 = \frac{1}{2}(a_2 + b_2)$.
 - repeat the process until the interval is very small then any point in the interval can be used as approximations of the zero. In fact, *p*₁ ∼ *p*₂ ∼ *p*₃ ∼ · · · ∼ *p*.

The bisection algorithm

Input *a*, *b*, tolerance *TOL*, max. no. of iteration N_0 . **Output** approximate sol. of *p* or message of failure. **Step 1:** i = 1, FA = f(a). **Step 2:** while $i \le N_0$ do step 3-6. **Step 3:** set $p = a + \frac{1}{2}(b-a)$; FP = f(p). **Step 4:** if FP = 0 or $\frac{1}{2}(b-a) < TOL$ then output(p); stop. **Step 5:** i = i + 1. **Step 6:** if $FA \times FP > 0$ then set a = p and FA = FP; else set b = p. **Step 7:** output(method failed after N_0 iterations); stop.

Stopping criteria

Let $\varepsilon > 0$ be a given tolerance.

•
$$|p_N - p_{N-1}| < \varepsilon$$
 (Note that $|p_N - p_{N-1}| = \frac{1}{4}|b_{N-1} - a_{N-1}|$);

•
$$\frac{|p_N - p_{N-1}|}{|p_N|} < \varepsilon$$
, if $p_N \neq 0$;

• $|f(p_N)| < \varepsilon$

Example

Find a root of $f(x) = x^3 + 4x^2 - 10$. Note that f(1) = -5, f(2) = 14. Therefore, \exists root $p \in [1, 2]$. Actual root is p = 1.365230013... Using the bisection method, we get the table:

п	a _n	b_n	p_n	$f(p_n)$
1	1.00000000000	2.00000000000	1.50000000000	2.37500000000
2	1.000000000000	1.500000000000	1.250000000000	-1.796875000000
3	1.250000000000	1.500000000000	1.375000000000	0.162109375000
÷	:			:
13	1.364990234375	1.365234375000	1.365112304687	-0.001943659010
14	1.365112304687	1.365234375000	1.365173339843	-0.000935847281
÷	:	:	: :	:
18	1.365226745605	1.365234375000	1.365230560302	0.000009030992

See the details of the M-file: bisection.m

Properties of the bisection method

- **Drawbacks:** often slow; a good intermediate approximation may be discarded; doesn't work for higher dimensional problems: F(X) = 0.
- Advantage: it always converges to a solution if a suitable initial interval can be chosen.
- **Theorem:** $f \in C[a, b], f(a)f(b) < 0, f(p) = 0$. The bisection method generates $\{p_n\}$ with $|p_n p| \le \frac{1}{2^n}(b a), \forall n \ge 1$. *Proof:*

For
$$n \ge 1$$
, we have $b_n - a_n = \frac{1}{2^{n-1}}(b-a)$ and $p \in (a_n, b_n)$.
 $\therefore p_n = \frac{1}{2}(a_n + b_n), \forall n \ge 1$.
 $\therefore p_n - p \le \frac{1}{2}(b_n - a_n) = \frac{1}{2}\frac{1}{2^{n-1}}(b-a) = \frac{1}{2^n}(b-a)$.
Note: $\therefore |p_n - p| \le \frac{1}{2^n}(b-a) \quad \therefore p_n = p + O(\frac{1}{2^n})$.

Fixed points

- $X \subseteq \mathbb{R}$, $g : X \to \mathbb{R}$. If $p \in X$ and g(p) = p, then p is called a fixed point of g.
- Root-finding problem & fixed-point problem are equivalent in the following sense:

• If *p* is a root of
$$f(x) = 0$$
, *p* is a fixed point of $g(x) := x - f(x)$, $h(x) := x - \frac{f(x)}{f'(x)}$, etc.

• If *p* is a fixed point of g(x), i.e., g(p) = p, then *p* is a root of f(x) := x - g(x), h(x) := 3x - 3g(x), etc.

 $(root-finding \ problem) \Longleftrightarrow (fixed-point \ problem).$

• Example:
$$g(x) = x^2 - 2, x \in [-2, 3]$$
.

$$\therefore g(-1) = (-1)^2 - 2 = -1$$
 and $g(2) = 2^2 - 2 = 2$.

 \therefore -1 and 2 are fixed points of *g*.

A fixed point theorem

- If $g \in C[a, b]$ and $g(x) \in [a, b]$, $\forall x \in [a, b]$, then *g* has a fixed point in [a, b], i.e., $\exists p \in [a, b]$ s.t. g(p) = p.
- If, in addition, g' exists on (a, b) and $\exists 0 < k < 1$ such that $|g'(x)| \le k, \forall x \in (a, b)$, then the fixed point is unique in [a, b].
- Then, for any $p_0 \in [a, b]$ and $p_n := g(p_{n-1}), n \ge 1$, the sequence $\{p_n\}$ converges to the unique fixed point $p \in [a, b]$ and

•
$$|p_n - p| \le k^n \max\{p_0 - a, b - p_0\}, \forall n \ge 1;$$

•
$$|p_n - p| \le \frac{k^n}{1-k} |p_1 - p_0|, \forall n \ge 1.$$

Proof:

- If g(a) = a or g(b) = b then g has a fixed point in [a, b]. Suppose not, then $a < g(a) \le b$ and $a \le g(b) < b$. Define h(x) := g(x) x. Then h is continuous on [a, b] and h(a) > 0, h(b) < 0. By the Intermediate Value Theorem, $\exists p \in (a, b)$ such that h(p) = 0, i.e., g(p) = p.
- Suppose that ∃ *p* < *q* ∈ [*a*, *b*] are fixed points of *g*. Then *g*(*p*) = *p* and *g*(*q*) = *q*. By the Mean Value Theorem, ∃ ξ ∈ (*p*, *q*) such that ^{g(q)-g(p)}/_{q-p} = g'(ξ) ⇒
 ^{|g(q)-g(p)|}/_{|q-p|} = |g'(ξ)| ≤ k < 1 ⇒ 1 = |q-p|/_{|q-p|} ≤ k < 1. This is a contradiction. Therefore, the fixed point is unique.

Proof (continued)

• For
$$n \ge 1$$
, by the Mean Value Theorem, $\exists \xi \in (a, b)$ such that
 $0 \le |p_n - p| = |g(p_{n-1}) - g(p)| = |g'(\xi)||p_{n-1} - p| \le k|p_{n-1} - p|.$
 $\implies 0 \le |p_n - p| \le k|p_{n-1} - p| \le k^2|p_{n-2} - p| \le \dots \le k^n|p_0 - p|.$
 $\implies \lim_{n \to \infty} |p_n - p| = 0 \Leftrightarrow \lim_{n \to \infty} p_n - p = 0 \Leftrightarrow \lim_{n \to \infty} p_n = p.$
• $\therefore |p_n - p| \le k^n |p_0 - p| \text{ and } p \in [a, b].$
 $\therefore |p_n - p| \le k^n \max\{p_0 - a, b - p_0\}, \forall n \ge 1.$
• For $n \ge 1$,
 $|p_{n+1} - p_n| = |g(p_n) - g(p_{n-1})| \le k|p_n - p_{n-1}| \le \dots \le k^n|p_1 - p_0|.$
 \therefore For $m > n \ge 1$, we have
 $|p_m - p_n| = |p_m - p_{m-1} + p_{m-1} - p_{m-2} + \dots + p_{n+1} - p_n|$
 $\le |p_m - p_{m-1}| + |p_{m-1} - p_{m-2}| + \dots + |p_{n+1} - p_n|$
 $\le k^{m-1}|p_1 - p_0| + k^{m-2}|p_1 - p_0| + \dots + k^n|p_1 - p_0|$
 $= k^n(1 + k + \dots + k^{m-n-1})|p_1 - p_0|.$
 $\therefore |p - p_n| = \lim_{m \to \infty} |p_m - p_n| \le k^n|p_1 - p_0| \sum_{i=0}^{\infty} k^i = k^n|p_1 - p_0| \frac{1}{1-k}.$
 $(\because \text{ geometric series with } 0 < k < 1)$
 $\therefore |p - p_n| \le \frac{k^n}{1-k}|p_1 - p_0|.$

Fixed-point iterations

• Fixed point iterations:

$$p_n = g(p_{n-1}), \quad n = 1, 2, \cdots$$

Assume that *g* is continuous and $\lim_{n \to \infty} p_n = p$. Then
$$g(p) = g(\lim_{n \to \infty} p_n) = g(\lim_{n \to \infty} p_{n-1}) = \lim_{n \to \infty} g(p_{n-1}) = \lim_{n \to \infty} p_n = p.$$

Therefore, *p* is a fixed point of the function *g*.

Example: f(x) = x³ + 4x² - 10 = 0 has a unique root in [1,2].
∴ f(1) = -5 < 0, f(2) = 14 > 0, and f'(x) = 3x² + 8x > 0, ∀ x ∈ (1,2).
∴ f is increasing on [1,2].
∴ f has a unique root in [1,2].

Fixed-point problem

root-finding problem \iff fixed-point problem. (a) $x = g_1(x) := x - x^3 - 4x^2 + 10$. (b) $x = g_2(x) := \left(\frac{10}{x} - 4x\right)^{1/2}$. (c) $x = g_3(x) := \frac{1}{2} (10 - x^3)^{1/2}$. (d) $x = g_4(x) := \left(\frac{10}{4 \perp r}\right)^{1/2}$. (e) $x = g_5(x) := x - \frac{x^3 + 4x^2 - 10}{3x^2 + 8x}$.

Numerical results

Using the fixed-point iterations, we have

п	(a)	(b)	(c)	(d)	(e)
0	1.5	1.5	1.5	1.5	1.5
:	-469.7	$(-8.65)^{1/2}$:	:	:
4	1.03×10^{8}	(0.00)			1.365230013
45					
15			1.365223680 :	1.365230013	
30			1.365230013		

The actual root is p = 1.365230013...

Computer project 1: write the Matlab files for (c), (d), and (e).

Newton's method

- **Motivation:** we know how to solve f(x) = 0 if f is linear. For nonlinear f, we can always approximate it with a linear function.
- Suppose that $f \in C^2[a, b]$ and f(p) = 0. Let $p_0 \in [a, b]$ be an approximation to $p, f'(p_0) \neq 0$ and $|p p_0|$ is "small". Using Taylor Theorem, we have

$$0 = f(p) = f(p_0) + (p - p_0)f'(p_0) + \frac{(p - p_0)^2}{2}f''(\xi(p)).$$

If $|p - p_0|$ is small, then we can drop the $(p - p_0)^2$ term, $0 \approx f(p_0) + (p - p_0)f'(p_0).$

Solving for *p* gives

$$p \approx p_1 := p_0 - \frac{f(p_0)}{f'(p_0)}, \quad \text{provided } f'(p_0) \neq 0.$$

• Newton's method can be defined as follows: for $n = 1, 2, \cdots$ $p_n = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}$, provided $f'(p_{n-1}) \neq 0$.

Geometrical interpretation

- An illustration of one iteration of Newton's method. The function f is shown in blue and the tangent line is in red. We see that p_n is a better approximation than p_{n-1} for the root p of the function f.
- What is the geometrical meaning of $f'(p_{n-1}) = 0$?

Example

• Consider the function $f(x) = \cos(x) - x \Rightarrow f'(x) = -\sin(x) - 1$.

∴
$$f(\pi/2) = -\pi/2 < 0$$
 and $f(0) = 1 > 0$.
∴ $\exists p \in (0, \pi/2)$ such that $f(p) = 0$.

Newton's method: choose $p_0 \in [0, \pi/2]$ and

$$p_n := p_{n-1} - \frac{\cos(p_{n-1}) - p_{n-1}}{-\sin(p_{n-1}) - 1}, \quad n \ge 1.$$

• Numerical results: $p_0 = \pi/4$.

n	p_n	$f(p_n)$
0	0.78539816339745	-0.07829138221090
1	0.73953613351524	-0.00075487468250
2	0.73908517810601	-0.00000007512987
3	0.73908513321516	-0.000000000000000

See the details of the M-file: newton.m

Convergence Theorem

Theorem: Assume that $f \in C^2[a, b]$, $p \in (a, b)$ such that f(p) = 0 and $f'(p) \neq 0$. Then $\exists \delta > 0$ such that if $p_0 \in [p - \delta, p + \delta]$ then Newton's method generates $\{p_n\}$ converging to p.

Proof: Define
$$g(x) = x - \frac{f(x)}{f'(x)}$$
. Then $g(p) = p$.
Let $k \in (0, 1)$. We want to find $\delta > 0$ s.t.
 $g([p - \delta, p + \delta]) \subseteq [p - \delta, p + \delta]$ and $|g'(x)| \le k, \forall x \in (p - \delta, p + \delta)$.
 $\therefore f'(p) \ne 0$ and f' is continuous on $[a, b]$.
 \therefore By the sign-preserving property, $\exists \delta_1 > 0$ s.t. $f'(x) \ne 0$
 $\forall x \in [p - \delta_1, p + \delta_1]$.
 $\therefore g$ is continuous on $[p - \delta_1, p + \delta_1]$ and
 $g'(x) = 1 - \left\{ \frac{f'(x)f'(x) - f(x)f''(x)}{(f'(x))^2} \right\} = \frac{f(x)f''(x)}{(f'(x))^2}, \forall x \in [p - \delta_1, p + \delta_1]$.
 $\therefore f \in C^2[a, b]$. $\therefore g \in C^1[p - \delta_1, p + \delta_1]$.
 $\therefore f(p) = 0$ $\therefore g'(p) = 0$.
 $\therefore g'$ is continuous on $[p - \delta_1, p + \delta_1]$.
 $\therefore \exists \delta > 0$ and $\delta < \delta_1$ s.t. $|g'(x)| \le k, \forall x \in [p - \delta, p + \delta]$.

Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Nonlinear Equations – 19/31

Convergence Theorem (continued)

Claim: $g([p - \delta, p + \delta]) \subseteq [p - \delta, p + \delta]$. Let $x \in [p - \delta, p + \delta]$. By the MVT, $\exists \xi$ between x and p s.t. $|g(x) - g(p)| \le |g'(\xi)||x - p|$. $\therefore |g(x) - p| \le k|x - p| < |x - p| \le \delta$. That is, $g(x) \in [p - \delta, p + \delta]$.

Convergence order

- **Definition:** Suppose $\{p_n\}$ converges to $p(\lim_{n\to\infty} p_n = p)$ with $p_n \neq p, \forall n$. If $\exists \lambda, \alpha > 0$ s.t. $\lim_{n\to\infty} \frac{|p_{n+1}-p|}{|p_n-p|^{\alpha}} = \lambda$, then we say that $\{p_n\}$ converges to p of order α with asymptotic error constant λ .
- Note: If *α* = 1 (and *λ* < 1), then we say {*p_n*} is linearly convergent. If *α* = 2, then we say {*p_n*} is quadratically convergent.

Newton's method is quadratically convergent when it converges

Sketch of the proof:

 $f \in C^{2}[a, b], f(p) = 0.$ By Taylor's Theorem, we have $f(x) = f(p_{n}) + f'(p_{n})(x - p_{n}) + \frac{f''(\xi)}{2!}(x - p_{n})^{2}$ $\implies 0 = f(p) = f(p_{n}) + f'(p_{n})(p - p_{n}) + \frac{f''(\xi)}{2!}(p - p_{n})^{2}$ $\implies (p - p_{n}) + \frac{f(p_{n})}{f'(p_{n})} = -\frac{f''(\xi)}{2f'(p_{n})}(p - p_{n})^{2}$ $\implies p - \left(p_{n} - \frac{f(p_{n})}{f'(p_{n})}\right) = -\frac{f''(\xi)}{2f'(p_{n})}(p - p_{n})^{2}$

$$\implies |p - p_{n+1}| \le \frac{M}{2|f'(p_n)|}|p - p_n|^2, \quad n \ge 0$$

(by the Extreme Value Theorem)

Some remarks on Newton's method

Advantages:

- The convergence is quadratic.
- Newton's method works for higher dimensional problems.

Disadvantages:

- Newton's method converges only locally; i.e., the initial guess *p*₀ has to be close enough to the solution *p*.
- It needs the first derivative of f(x).

Secant method

- Secant method: given two initial approximations p_0 and p_1 with $p_0 \neq p_1$ and $f(p_0) \neq f(p_1)$. Then for $n \ge 2$,
 - compute $a = \frac{f(p_{n-1}) f(p_{n-2})}{p_{n-1} p_{n-2}}$, if $p_{n-1} \neq p_{n-2}$.
 - compute $p_n = p_{n-1} \frac{f(p_{n-1})}{a}$, if $f(p_{n-1}) \neq f(p_{n-2})$.
- Remarks:
 - we need only one function evaluation per iteration.
 - *p_n* depends on two previous iterations. For example, to compute *p*₂, we need both *p*₁ and *p*₀.
 - how do we obtain p_1 ? We need to use FD-Newton: pick a small parameter h, compute $a_0 = (f(p_0 + h) f(p_0))/h$, then $p_1 = p_0 f(p_0)/a_0$.
- The convergence of secant method is superlinear (i.e., better than linear). More precisely, we have

$$\lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|^{(1 + \sqrt{5})/2}} = C, \quad (1 + \sqrt{5})/2 \approx 1.62 < 2.$$

Geometrical interpretation of the secant method

The first two iterations of the secant method. The red curve shows the function f and the blue lines are the secants.

This picture is quoted from http://en.wikipedia.org/wiki/

Example

• Consider the function $f(x) = \cos(x) - x$. $\exists p \in (0, \pi/2)$ such that f(p) = 0. Let $p_0 = 0.5$ and $p_1 = \pi/4$.

The secant method:

$$p_n := p_{n-1} - \frac{(p_{n-1} - p_{n-2})(\cos(p_{n-1}) - p_{n-1})}{(\cos(p_{n-1}) - p_{n-1}) - (\cos(p_{n-2}) - p_{n-2})}, \quad n \ge 2.$$

• Numerical results:

n	p_n	$f(p_n)$
0	0.500000000000000	0.37758256189037
1	0.78539816339745	-0.07829138221090
2	0.73638413883658	0.00451771852217
3	0.73905813921389	0.00004517721596
4	0.73908514933728	-0.0000002698217
5	0.73908513321506	0.00000000000016

See the details of the M-file: secant.m

Newton's method for systems of nonlinear equations

• We wish to solve

$$\begin{cases} f_1(x_1, x_2) &= 0, \\ f_2(x_1, x_2) &= 0, \end{cases}$$

where f_1 and f_2 are nonlinear functions of x_1 and x_2 .

• Applying Taylor's expansion in two variables around (*x*₁, *x*₂) to the system of equations, we obtain

$$\begin{cases} 0 = f_1(x_1 + h_1, x_2 + h_2) &\approx f_1(x_1, x_2) + h_1 \frac{\partial f_1(x_1, x_2)}{\partial x_1} + h_2 \frac{\partial f_1(x_1, x_2)}{\partial x_2}, \\ 0 = f_2(x_1 + h_1, x_2 + h_2) &\approx f_2(x_1, x_2) + h_1 \frac{\partial f_2(x_1, x_2)}{\partial x_1} + h_2 \frac{\partial f_2(x_1, x_2)}{\partial x_2}. \end{cases}$$

• Putting it into the matrix form, we have

$$\begin{bmatrix} 0\\0 \end{bmatrix} = \begin{bmatrix} f_1(x_1, x_2)\\f_2(x_1, x_2) \end{bmatrix} + \begin{bmatrix} \frac{\partial f_1(x_1, x_2)}{\partial x_1} & \frac{\partial f_1(x_1, x_2)}{\partial x_2}\\ \frac{\partial f_2(x_1, x_2)}{\partial x_1} & \frac{\partial f_2(x_1, x_2)}{\partial x_2} \end{bmatrix} \begin{bmatrix} h_1\\h_2 \end{bmatrix}.$$

Newton's method for systems of nonlinear equations (cont.)

• To simplify the notation we introduce the Jacobian matrix:

$$J(x_1, x_2) = \begin{bmatrix} \frac{\partial f_1(x_1, x_2)}{\partial x_1} & \frac{\partial f_1(x_1, x_2)}{\partial x_2} \\ \frac{\partial f_2(x_1, x_2)}{\partial x_1} & \frac{\partial f_2(x_1, x_2)}{\partial x_2} \end{bmatrix}.$$

Then we have

$$\begin{bmatrix} 0\\0 \end{bmatrix} = \begin{bmatrix} f_1(x_1, x_2)\\f_2(x_1, x_2) \end{bmatrix} + J(x_1, x_2) \begin{bmatrix} h_1\\h_2 \end{bmatrix}.$$

• If $J(x_1, x_2)$ is nonsingular then we can solve for $[h_1, h_2]^{\top}$:

$$J(x_1, x_2) \left[\begin{array}{c} h_1 \\ h_2 \end{array} \right] = - \left[\begin{array}{c} f_1(x_1, x_2) \\ f_2(x_1, x_2) \end{array} \right].$$

Newton's method for systems of nonlinear equations (cont.)

 Newton's method for the system of nonlinear equations is defined as follows: for k = 0, 1, ...,

$$\begin{bmatrix} x_1^{(k+1)} \\ x_2^{(k+1)} \end{bmatrix} = \begin{bmatrix} x_1^{(k)} \\ x_2^{(k)} \end{bmatrix} + \begin{bmatrix} h_1^{(k)} \\ h_2^{(k)} \end{bmatrix}$$
$$J(x_1^{(k)}, x_2^{(k)}) \begin{bmatrix} h_1^{(k)} \\ h_2^{(k)} \end{bmatrix} = -\begin{bmatrix} f_1(x_1^{(k)}, x_2^{(k)}) \\ f_2(x_1^{(k)}, x_2^{(k)}) \end{bmatrix}$$

with

• Example:

Use Newton's method with initial guess $\mathbf{x}^{(0)} = (x_1^{(0)}, x_2^{(0)})^\top = (0, 1)^\top$ to solve the following nonlinear system (perform two iterations):

$$\begin{cases} 4x_1^2 - x_2^2 &= 0, \\ 4x_1x_2^2 - x_1 &= 1. \end{cases}$$

Newton's method for higher dimensional problems

- In general, we can use Newton's method for F(X) = 0, where $X = (x_1, x_2, ..., x_n)^\top$ and $F = (f_1, f_2, ..., f_n)^\top$.
- For higher dimensional problem, the first derivative is defined as a matrix (the Jacobian matrix)

$$DF(X) := \begin{bmatrix} \frac{\partial f_1(X)}{\partial x_1} & \frac{\partial f_1(X)}{\partial x_2} & \dots & \frac{\partial f_1(X)}{\partial x_n} \\ \frac{\partial f_2(X)}{\partial x_1} & \frac{\partial f_2(X)}{\partial x_2} & \dots & \frac{\partial f_2(X)}{\partial x_n} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial f_n(X)}{\partial x_1} & \frac{\partial f_n(X)}{\partial x_2} & \dots & \frac{\partial f_n(X)}{\partial x_n} \end{bmatrix}_{n \times n}$$

• Newton's method: given $X^{(0)} = [x_1^{(0)}, \cdots, x_n^{(0)}]^\top$, define $X^{(k+1)} = X^{(k)} + H^{(k)}$,

where

$$DF(X^{(k)})H^{(k)} = -F(X^{(k)}),$$

which requires solving a large linear system at every iteration.

Operations involved in Newton's method

- vector operations: not expensive.
- function evaluations: can be expensive.
- compute the Jacobian: can be expensive.
- solving matrix equations (linear system): very expensive!

Computer project 2: write the computer code of Newton's method for solving the system of equations

$$\begin{cases} 3x - \cos(yz) - \frac{1}{2} &= 0, \\ x^2 - 81(y+0.1)^2 + \sin(z) + 1.06 &= 0, \\ e^{-xy} + 20z + \frac{10\pi - 3}{3} &= 0, \end{cases}$$

with initial guess $(x, y, z)^{\top} = (0.1, 0.1, -0.1)^{\top}$.