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Initial-value problems

@ Initial-value problem (IVP): find x() such that
{ X(t) = ftx),

x(ty) = xo,
where f(t,x), to, xo € R are given.
© Example 1:
x'(t) = xtan(t+3),
x(=3) = 1

The analytic solution of this IVP is x(t) =
solution is valid only for -5 <t+3 < J

© Example 2:

sec(t+3). The

X(t) = «x
{x(O) = 1

Try x(t) = ce" = cre" = ce = r =1, x = ce! general solution
Use x(0) =1 = x = ¢! particular solution
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Existence and uniqueness

@ Existence: do all IVPs has a solution? No! Some assumptions
must be made about f, and even then we can expect the solution
to exist only in a neighborhood of t = t.

© Example:
() = 1443
x(0) = 0.

Try x(t) = tant = x(0) =0

sin? t

;. cos? t 4 sin® t

LHS: (tant) RHS: 1 +tan?t =1+

cos? t cos? t

Hence x(t) = tant is a solution of the IVP.
If t — 71/2 then x — oo. For the solution starting at t = 0, it has

to “stop the clock” before t = 71/2. Here we can only say that
there exists a solution for a limited time.
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Existence Theorem

Consider the IVP:
{ X(t) = f(tx),
x(t)) = xo,
If f is continuous in a rectangle R centered at (t, xg), say
R={(tx): [t—to] <, [x—x0| <),
then the IVP has a solution x(t) for
|t —to] < min{a, B/ M},

where M is maximum of |f (t,x)| in the rectangular R.
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Example

Prove that
X(t) = (t+sinx)?,
x(0) = 3
has a solution on the interval —1 < t < 1.
@ Consider f(t,x) = (t + sinx)?, where (tp,x0) = (0,3).
@ LetR={(t,x):|t|] <a,|x—3| <B}. Then
f(t,x)| < (a+1)%:= M.
@ Wewant |t — 0] <1 < min{«, B/M}.
@ Leta = 1then M = (1+1)2 = 4 and force > 4. By the

Existence Theorem, the IVP has a solution on
|t —to] < min{a, B/ M} =1.
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Uniqueness

@ Iff is continuous, we may still have more than one solution, e.g.,
X' (t) x2/3,
x(0) = 0.
Note that x = 0 is a solution for all {. Another solution is

x(t) = £3/27.

@ To have a unique solution, we need to assume somewhat more
about f.
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Uniqueness Theorem

Consider the IVP:
{ () = f(tx),

x(t)) = xo,
Iff and % are continuous in the rectangle R centered at (t, xo),
R={(t,x):|t—to] <w, |x—2x0| <PB},
then the IVP has a unique solution x(t) for
|t — to] < min{a, B/ M},

where M is maximum of |f (t,x)| in the rectangular R.
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Another Uniqueness Theorem

Consider the IVP: )
{ X(t) = f(tx),
x(t)) = xo,
Iff is continuous ina < t < b, —oo < x < oo and satisfies
[f(t,x1) = f(t,x2)| < Llxy — xa, (%)

then the IVP has a unique solution x(t) in the interval [a, b].

Note: Inequality (*) is called the Lipschitz condition in the 2nd
variable.
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Example

Prove that

x(0) = 0
has a solution on the interval 0 < t < 2.

{x’(t) = 1+ tsin(tx),

@ Since f(t,x) = 1+ tsin(tx), we have |%(t,x)| = |2 cos(tx)| < 4
for0 <t<2and —oo < x < oo.

@ By the MVT, 3 ¢ between x1 and x; such that
Ft,x2) —f(t,x1) = L8 () — xy).
= [f(t,x2) —f(t,x1)| < 4|xp — xq].

= f satisfies (*) with L = 4 and f is continuous
N0 <t<2, —0 < x < oo,

— the IVP has a unique solution x(t) fora <t < b.
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Numerical methods

@ Consider the IVP:
{ () = f(tx),

x(ty) = xop.

@ Strategy: Instead of finding x(t) for all t in some interval
containing ty, we find x(t) at some fixed points.
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Taylor-series method

@ For the Taylor-series method, it is necessary to assume that
various partial derivatives of f exist.

© We use a concrete example to illustrate the method. Consider an
IVP as
X'(t) = cost—sinx+ 12,
{ x(—-1) = 3.

© Assume that we know x(t) and we wish to compute x(t + ). By
the Taylor series for x, we have

2 3 4

x(t+h) =x(t)+hx(t) + h—x”(t) + h—x”’(t) + i

5 3 Ex“)(t) +O(K).
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Taylor-series method (cont’d)

@ How to compute ¥ (t), x”(t), ¥’ (t) and x* (¢) in the last

equation?
x'(t) = cost—sinx+ 12,
x"(t) = —sint— (cosx)x’ +2t,
X"'(t) = —cost+sinx(x')? — (cosx)x” +2,
x@(t) = sint+ (cosx)(x')3 + 3(sinx)x'x” — (cosx)x".

@ If we truncate at /* then the local truncation error for obtaining
x(t + h) is O(h°). We say the method is of order 4.

© Definition: The order of the Taylor-series method is # if terms
up to and include #"x(") (t) /n! are used.
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Algorithm

Starting t = —1 with 1 = 0.01, we can compute the solution in [—1, 1]
with 200 steps:
input M <200, h < 0.01,t < —1,x <3
output 0,1, x
fork=1toMdo
X'+ cost—sinx -+t
x" + —sint — (cosx)x’ + 2t
X"« —cost+sinx(x')? — (cosx)x" +2
x®  — sint+ (cosx)(x')? 4 3(sinx)x'x" — (cos x)x"
x o xhE + A+ B+ B )
t < t+h
output k, t, x
end do
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Error estimate

@ Estimate of the local truncation error can be done by looking at

= 1 n+1..(n+1)
E, = (n—i—l)!h X (t+6h) forsome 6 € (0,1).

Hence 1
Ey= ah5x<5>(t +6n) 6€(0,1).

@ Replace x% (t + 6h) by a simple finite-difference approximation

- 1 5 x<4)(t+h)—x(4)(t) - h4 (4) (4)
Ey~ gl ( 2 —m(x (t+h) —x (t)).

© Suppose that the local truncation error (LTE) is O(h"*1). The
accumulation of all many LTEs gives rise the global truncation
error (GTE).

T—ty
GTE ~ ——
h

O(hn+1) _ O(hn).

And we say the numerical method is of O(h").
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Advantages and disadvantages of the Taylor-series method

@ Disadvantages:

o The method depends on repeated differentiation of the
differential equation, unless we intend to use only the
method of order 1.
= f(t,x) must have partial derivatives of sufficient high
order in the region where are solving the problem. Such an
assumption is not necessary for the existence of a solution.

o The various derivatives formula need to be programmed.

© Advantages:

e Conceptual simplicity.

o Potential for high precision.
If we get e.g. 20 derivatives of x(t), then the method is
ogéler 20 (i.e. terms up to and including the one involving
h=0).
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Euler’s method

@ If n =1, the Taylor series method reduces to Euler’s method.
© Advantage of the method is not to require any differentiation of
f.
© Disadvantage of the method is that the necessity of taking small
value for & to gain acceptable precision.
© Consider the following IVP:
x'(t) = cost—sinx+ 12,
x(0) = 3.

Derive Euler’s method based on the Taylor series and compute
x(0.1) when h = 0.1.
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Basic concepts of Runge-Kutta methods

We wish to approximate the following IVP:

{ X(t) = f(tx),

x(l’g) = XQ.

@ From the Taylor theorem, we have

x(t+h) = x(t) +hx'(t) + Z—Tx”(t) +O(K%).

@ By the chain rule, we obtain

{ Xty = fitfiX =fi +hf,
X"t = futfof + (fe+ A )+ f (et + fuof )
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Basic concepts of Runge-Kutta methods (cont’d)

@ In the Taylor expansion, we have
x(t+h) = x(t) +hf(t,x)+ hz—z(ft(t,x) + fe(t, 0)f (t,x)) + O(h®)
= x(t) + () + 5 [F(63) + (1) + W, 2)f ()]
+0(K%)
= x(t)+ gf(t,x) + gf(t+h,x+hf(t,x)) + O(K%).

@ Note that the term in the square blankets above can be obtained
by the Taylor expansion in two variables

F(t+hx+hf(t,x)) = f(t,x) + fi(t,x) + B (£, x)fc (£, x) + O(H?).
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A second-order Runge-Kutta method

@ Then a 2nd-order Runge-Kutta (RK) method is given by
x(t+h) ~ x(t) + gf(t,x) + gf(t +h,x+ hf(t,x)),
or alternating
x(t+h) =~ x(t) + %(Fl + Fp),

where

Fl = hf(f,X),
F, = hf(t+h,x+F1).

@ Itis also known as Heun’s method.
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The general second-order Runge-Kutta method

@ In general, the 2nd order RK method needs
x(t4+h) = x(t) + wihf + wahf (t + ah, x + Bhf) + O(13),
= x(t) + wihf + woh [f + ahfi + Bhff] + O(K®).
© Compare with

x(t+h) = x(t) + hf + g(ﬁ + ff) + O(1®),

we have
wi+w = 1,
wn = 1/2,
a}zﬁ = 1/2.
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The modified Euler method

@ The previous method (Heun’s method) is obtained by setting
{ wi =wy=1/2,

x=p=1
Q Setting
w1 =0,
wZ:L
xn=p=1/2,

we obtain the following modified Euler method:
x(t+h) ~ x(t) + F,
where

1 1
F = hf(t,x), F, = hf(f + Eh,x + iFl)
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Fourth-order RK methods

@ The derivations of higher order RK methods are tedious.
However, the formulas are rather elegant and easily
programmed once they have been derived.

@ The most popular 4th order RK is:

1
x(t+ 1)~ x(t) + o (F1 +2F2 + 2F3 + Fy),

where
F, =
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hf(t,x),
hf(t+ 5, x+ 1F),
hf(t+ % x+1F),

hf(t+h,x + F3).
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Computer project

© Use the most popular 4th order RK with 1 = 1/128 to solve the
following IVP for t € [1,3] and then plot the piecewise linear
approximate solution:

{x’(t) = t72(tx — x?),
x(1) = 2.

@ Also plot the exact solution:
x(t) = (1/2 +Int)1t.
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Algorithm

input M < 256, t < 1.0, h < 0.0078125, x < 2.0
define f(t,x) = (tx — x2) /1

define u(t) =t/(1/2+Int)

e+ |u(t) — x|

output 0,1, x,e

fork =1to M do

Fy <« hf(tx)

Fy « hf(t+5,x+1F)

F3 <+ f(t+2,x+1F2)

F4 — ”lf(t+h x+F3)

X 4 x+ L(Fy+2F +2F; +Fy)
I+ t+h

e <+ |u(t)—x|

outputk, t,x,e
end do
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A system of first-order differential equations

The standard form for a system of first-order ODEs is given by

xll(t) = fl(t1x1/x2/"' /xn)/
Bt = faltxy,x, - xn),
: (%)
x(t) = falt,xr,x2, - xn).
There are n unknown functions, x1,xp, - - - , x;; to be determined. Here
T oat
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Example

Consider the system of first-order differential equations:
X(t) = x+4y-—e,
y(t) = x+y+2

The general solution:

x(t) = 2ae —2bet —2¢,
y(t) = aed +be~t +1/4¢,

where a,b € R. If the system of differential equations with the initial
conditions, e.g., x(0) = 4 and y(0) = 5/4, then the solution is unique,
and
x(t) = 4¢3 +2e7t —2¢,
{ y(t) = 23 —et+1/4¢.
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Vector notation and higher-order ODEs

@ Notation: let X := [x1,xp,- - -

x| and F = [fy,fo, -+, fa] ')

where X € R" and F : R"T! — R".

Then an IVP associated with the system of ODEs () is given by

{ X'(t)
X(to)

= F(t,X(t)),
= XpeR"

© A higher-order ODE can be converted to a first-order system.

Consider y(”)(t) =f(tyy,--

-,y"=1) and introduce

xi=yx2=y, - ,xn = y(”_l). Then we have

() =

]
x(t) =
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X2,
X3,

xn/
f(t/xl/-XQ/ T /x'rl)-
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Example 1

Convert the higher-order IVP

/1

(sin t)y"" + cos(ty) + sin(y” + £2) + (y)® = log

withy(2) =7,1/(2) = 3,y"(2) = —4 to a system of 1st-order
equations with initial values.

Solution: Let x1(t) = y(t),x2(t) = y/'(t), x3(t) =y (t). Then,

() = x
x/Z(t) = X3,
x3(t) = {logt—x3 —sin(t? + x3) — cos(tx;)}/ sint,

with x1(2) = 7,x2(2) = 3,x3(2) = —4.

Suh-Yuh Yang ( ), Math. Dept., NCU, Taiwan Numerical ODEs - 28/52



Example 2

Convert the system

(X2 4t +y = ¥ —x,
y'y" — cos(xy) + sin(tx"y)

to a system of 1st-order equations.

|
=
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Taylor-series method for systems

For each variable, use the Taylor-series method

h? 1 3 " h" (n)
Xi(t+h) & xi(8) + b () 4 0 (8) 4 5o (6) - (1),
or in the vector form
/ & " W 1" h" (n)
X(t+h) =~ X(t) + hX (t)+iX (t)+§X (t)+~~~+ax” (t).
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Autonomous systems

@ From the theoretical standpoint, there is no loss of generality in
assuming that the equations in system (*) do not contain ¢
explicitly. We can take xo(t) = t, x;(t) = 1. Then
xX; = fi(xo,x1,- -+ ,xn),i=0,1,--- ,n,0or X'(t) = F(X), where

X(t) = (xo(t), x1(t), -+, xu(t)) .
© Example: convert the following IVP to an autonomous system
(sint)y”" + cos(ty) + sin(y” + #*) + (') = logt,
withy(2) =7,/ (2) =3,y"(2) = —4.

Solution: Let xo(t) = . Then x{(t) = 1. Let x} (t) = x» and
x5 (t) = x3. Then we have

xp(t) = 1,

() = x

X/Z(t> = X3,

x(t) = {logxy— x5 —sin(x3 + x3) — cos(xpx1) }/ sinxo,

with the initial condition X(2) = (2,7,3,—4)".
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RK4 method for X'(t) = F(X)

@ For an autonomous system of equations, X'(t) = F(X), we have
4th-order Runge-Kutta method:

1
X(t+h) =~ X(t) + é(Fl +2F, +2F3+ Fy),

where
F, = hE(X),
F, = hP(X+%F1),
1
Fs = hF(X+§F2),
Fy = hF(X+F3)

@ Other methods, they are all similar to the single equation case.
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Collocation method

Suppose that we have a linear differential operator L and we wish to
solve the equation:

Lu(t) =f(t), a<t<pb,
where f is given and u is sought.

©Q Let{vy,vy,---,v,} be a set of functions that are linearly
independent. Suppose that
u(t) = c1v1(t) + cova(t) + - - - + cuvn(t), where ¢; € R.
@ Thensolve L()_ cjvj(t)) = f(t). How to determine cj,
j=1
ji=12--,n?
© Lett;,i=1,2,---,n, ben prescribed points (collocation points)
in the domain of # and f. Then we require the following
equations to determine Cj, j=1,2,--,m
n

Yo c(Lop) (k) =f(t), i=12,--,n.

j=1
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Collocation method for Sturm-Liouville BVPs

@ Consider a Sturm-Liouville two-point BVP:

u" () +pB)u'(t) +q(Hu(t) = f(t), 0<t<],
u(0) =0, (%)
u(l) = 0,
where p, q,f are given continuous functions on [0, 1]
@ Let Lu := u” + pu’ 4 qu. Define the vector space
V ={uecC*0,1)NC[0,1] : u(0) = u(1) = 0}.
If u is an exact solution of (), thenu € V.

© One set of functions is given by

v() =#(1 -1 e?0,1, 1<j<ml<k<n
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Variational formulation of a 1-dim model problem

Consider the following two-point boundary value problem (BVP):

—u'"(x)=f(x), 0<x<1,
{ u(O)(:)u(1]; =0, (D)

where f is a given function in C[0, 1].

Remark: (D) has a unique classical solution u € C%(0,1) N C[0,1].
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Some notation and definitions

fo x)dx for real-valued piecewise continuous
and bounded funchons v and w defined on [0, 1].

Q@ V:={v|veC0,1],v(0) =v(1) = 0,7 is piecewise continuous and
bounded on [0,1]}.

Q@ F: VR,
F(v) = 3(¢/,0') - =3 Jp (0/(x))%dx — [y f(x)o(x)dx.
(represents the total potentlal energy)
© Define the following minimization and variational problems:
Find u € V such that F(u) < F(v), VveV. (M)
Find u € V such that (u/,7") = (f,v), VoveV. (V)
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D) = (V)

The solution of problem (D) is also a solution of problem (V):
c=u(x)=f(x), 0<x<1l
fol —u" (x)v(x)dx = folf(x)v(x)dx, VoeV.
(=u"v)=(f,v), YveV.

1
(W, — ' (x)o(x) ‘0 =(f,v), VovelV. (integration by parts)
(WY =(f,v), YovelV.
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V)& M)

Problems (V) and (M) have the same solutions:

Q (V) = (M): Let u be a solution of problem (V). Letv € V and
w=v—ucV.Thenv=u+wand

Fo) = Flu+w) = ~((u+w), (u+w)) - (f,u+w)

2

() + (o) + 5 @) = () = (f )

() + 3@ 0) = (F0) = 5(0) = (F) = F(u).

Q@ (M) = (V): Let u be a solution of problem (M). Then for any
veV,e € R, wehave F(u) < F(u + ev), since u + ev € V. Define

2(e) = F(utev)= %((u +e0), (4 £0)') — (F, u + £0)
= )+ 5P, 0) el ) — () —elf,0)

'.'g’(s):(u U)+£(v v') — (f,v) and ¢'(0) = 0.
§'(0) = (', 7") — (f,0).

NI~ N -
—_

N
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Both problems (V) & (M) have at most one solution

It suffices to prove that problem (V) has at most one solution.
Suppose that 11 and u; are solutions of problem (V). Then

(uy,d) = (f,o) VoeV,
(uh,o') = (f,v) VoeV.
Sy —uh,v)=0 YoeV,

Takmg v = uy — up, we have (1} — u, u}] —ul) =0.

) (%) — (%)) 2dx = 0.

couy(x) —ub(x) =0,x €[0,1] ae.

.. — up is a step function on [0, 1].

" 11 — up is continuous on [0, 1].

.. u1 — Uy is a constant function on [0, 1].

u1(0) = uy(1) = 0and up(0) = up(1) = 0.

g —up =0o0n0,1].

That is, u3 (x) = up(x), V¥ x € [0,1].

Suh-Yuh Yang ( 7), Math. Dept., NCU, Taiwan Numerical ODEs - 39/52



(V) + smoothness = (D)

Let u be a solution of problem (V). Then (#/,v') = (f,v),Vov € V.
fol u' (x)v' (x)dx — folf(x)v(x)dx =0, YoeV.

Suppose that 1" exists and continuous on [0,1],i.e., u € C?[0,1].
Then — fol u” (x)v(x)dx — folf(x)v(x)dx =0, VYoelV.

s Jo @ (x) + f(x)o(x)dx =0, YoveV.

By the sign-preserving property for continuous functions, we can
conclude that

u”(x)+f(x) =0,Vxe[01].

.. u is a solution of problem (D).
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FEM for the model problem with piecewise linear functions

Construct a finite-dimensional space V, (finite element space)
Let0=xp <xp < --- <xp < xp4+1 = 1 bea partition of [0, 1].

[Insert partition figure here!]

Define
o Ij = [x]-_l,x]-], j: 1,2,--- , M+ 1.
ohj::xj—x]',l, j:1,2,"',M+1.

@ h:= max hj ameasure of how fine the partition is.
j=12,+ M+1

Define
V), == {v), € V| vy, is linear on each subinterval I;, v, (0) = v;,(1) = 0}.
Notice that V;, C V.
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Construct a basis of V),

Here is a typical v, € Vy;:

[Insert vy, figure here!]

Forj=1,2,---,M, we define @ € V), such that
1 ifi=j,
"’f(x")_{ 0 ifi#].

[Insert ¢; figure here!]

Then we have

O {9 }]Ai 1 is a basis of the finite-dimensional vector space V.

@ For each v, € V}, v, can be written as a unique linear

combination of ¢;’s: v,(x) = ) ;9;(x), where 17; = v},(x;).
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Numerical methods for solution of problem (D)

We now define the following two numerical methods for
approximating the solution of problem (D):

@ Ritz method:
Find uy, € Vy, such that F(uy) < F(v,), Vo, € V). (My,)

@ Galerkin method (finite element method):
Find uy, € Vy, such that (uy,v),) = (f,v;), Yo, € V. (V)

One can claim that (M},) < (V},).
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(Vi) & Finduy, € Viysit. (uy, ¢)) = (f,9i), 1 <i<M& AL =b

Q (V) <= Find uy, € Vy, such that (uy, ¢;) = (f, ¢;), 1 <i < M.
Proof. (=): trivial!
(«<=): For any v}, € V},, we have v, = Y™ 17,9, for some 77; € R,
1<i<M.

M M
(o) = (u, Yo i) = Y ni(uy, @)
i=1 M i=1

M
= Y nilf.0i) = (£, Y miei) = (f,on)-
i=1 i=1
@Q Find u;, € Vy, such that (u, 9)) = (f, i), 1 <i<M<= A =b.
Proof. Let 1, (x Zéjqoj ), where i = uy(x;), 1 <j <M, are

unknown. Then N
(@) = (f, @), L< i< M () 595, 91) = (F0), 1<i<M
j=1
M Do ’
<) C(ej ) =(f91), 1<i<M& AL =b.
j=1
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A=

A = (@) mxm: stiffness matrix

b = (b;)pmx1: load vector

¢ = (&) Mx1: unknown vector
(@1, 91)  (@301) - (@hr ) &1 (f, ¢1)
(p1,92)  (92,95) -+ (@y 93) & B (f, ¢2)
(91 o0m) (@2 00) - (9 Pin) 1 L Sm (f, om)
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Some remarks

Q (¢, ¢;) =0if[i—j| >1 .. Aisa tri-diagonal matrix.
Q = (¢, ¢)) = (¢, ¢)) =a; ..Ais symmetric!
© Claim: A is positive definite.
For any given 7 = (171,172, -+ ,jm) | € RM, define
M

op(x) = ;Uiqﬂi(x)- Then

M M M
0 < (v, vy) = Y mion, Yo mi90) = Y i@, 9p)mj = 11 - An.
i=1 =1 ij=1

If (v}, v;,) = 0, then fol(vjl(x))zdx =0= v, (x)=0ae.
" vy € Vy, vy, is continuous on [0, 1] and v;,(0) = vy, (1) = 0.
sop=0o0n(0,1],ie.,n7=0.
S-Ap >0, e RM, y £0.
©Q '~ AisSPD . Aisnonsingular .. A = b has a unique solution!
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Evaluate 2;; and 4; 1

[Insert a figure of ¢; 1 and ¢; here!]

Forj=1,2,--- ,M, wehave

X Xj+1
(¢), 9)) = / (fp,’-)de+/ (¢))%dx
X]',l Xj
Yol Y11 1 1
_ 2 dx+ / A=t
51 12 5 Ky hi iy
/ / / / xj 1 1
iy . = 1, . = — id = ——.
((P] (P] l) <(P] 1 (P]> - h2 X h]

For uniform partition: h; = h = W Then A¢ = b becomes

2 -1.0 -0 1 (f, ¢1)
1 -1 2 -1 - 0 Cz B (f,qu)
0 - 0 1 2)lan] | o
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Taylor’s Theorem with Lagrange remainder

If f € C"[a,b] and f("*1) exists on (a,b), then for any points ¢ and x in

[a,b] we have
f(x) = Py(x) 4+ En(x),
where the n-th Taylor polynomial P, (x) is given by

Zklf k) x—c)

and the remainder (error) term E,(x) is given by

1
(n+1) _ \n+l
for some point ¢ between ¢ and x (means that either ¢ < ¢ < x or
x < ¢ <o)

Eu(x) =
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Numerical differentiation

Assume that u € C*[0,1] and 0 = xy < x2 < < < xMH =1lisa
uniform partition of [0, 1]. Then hj = h = M+1 for] =12,--- M+1
Fori=1,2,---,M, we have

u(xi +h) = u(x;) + ' (x)h+ 3 W) 4 §u® () + 55ul® (G )h,
u(xi—h) =u(x;) —u (xl)h + ( )hz 1” ®) (xz)h3 24”(4)(5 2)h4/
for some {;1 € (x;,x; +h) and &;p € (x; — h,x;). Then
u(x; +h) + u(xj —h) = 2u(x;) + ”N(xi)hz + 9 (W (Gn) +u® (&) yit.
W (xi) = o {u (i h) = 2u(x) +ulx = 1)} = B {u® (&) +u® (&)}
cu € CHo,1] and 2{u™® (&) +u®) (&)} between u® (&) and
@ (n).
. By IVT, 3 ¢; between &;; and & (= &; € (x; — h,x; + h)) such that
u®(g) = 3{u (En) +u® (&n)}-
s (%) = {u(x+h) = 2u(x;) + u(x; —h)} — 5H2u®(E),
for some ¢; € (x; — h,x; + h).
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Finite difference method for problem (D)

u(0) =u(1) =0.
Fori=1,2,--- ,M, we have
— i {u(xi + h) = 2u(x) +u(x; — )} + 5P2u (&) = f(xi).
= — b {u(xin) — 2u(x) + u(xi) } + 7P (E) = f(x).
We wish to find U; ~ u(x;) fori =1,2,--- ,Mand Uy = Up41 :=0
such that

{ —u"(x) =f(x), 0<x<1, (D)

(24 )} = fn). (=

— (2L W)} = fw). (i=2)

_hlz{uM_l—ZUM—l-UMJrl)} = flam)-
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Finite difference method for problem (D) (cont’d)

Finally, we reach at the following linear system:

2 -1 0 - 0 U1 f(xl)
-1 2 -1 --- 0 Uy f(x2)
N 2

A comparison: what is the difference between FEM with piecewise
linear basis functions and FDM for problem (D)? Answer: They are
essentially the same!

Consider the first component in the right hand side:
@ Finite difference method: hf (x1).

@ Finite element method:

(o) = [ 1= f) [ g1 (x)ax = f(xa).

X0
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Computer project

Consider the following one-dimensional convection-diffusion
problem:

—eu” (x) +u'(x) =0 forxe (0,1), ()
u(0) =1, u(1) =0.
Write the computer codes for numerical solution of problem (x) by

using the finite difference methods on the uniform mesh of [0, 1] with
mesh size h:

Replace 1"’ (x;) ~ Uiy —2Ui+ Uiy and u/(x;) ~ Ui — Uiy and consider
P 2 2h
(e,h) = (0.01,0.1), () = (0.01,0.01). Plot 1.
@ Replace v’ (x;) ~ % and v/ (x;) ~ % (upwinding) and

consider (¢, 1) = (0.01,0.1), (¢, k) = (0.01,0.01). Plot u,.
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