MA 3021：Numerical Analysis I Numerical Ordinary Differential Equations

Suh－Yuh Yang（楊肅暗）

Department of Mathematics，National Central University Jhongli District，Taoyuan City 32001，Taiwan
syyang＠math．ncu．edu．tw
http：／／www．math．ncu．edu．tw／～syyang／

Initial－value problems

（1）Initial－value problem（IVP）：find $x(t)$ such that

$$
\left\{\begin{aligned}
x^{\prime}(t) & =f(t, x) \\
x\left(t_{0}\right) & =x_{0}
\end{aligned}\right.
$$

where $f(t, x), t_{0}, x_{0} \in \mathbb{R}^{1}$ are given．
（2）Example 1：

$$
\left\{\begin{aligned}
x^{\prime}(t) & =x \tan (t+3) \\
x(-3) & =1 .
\end{aligned}\right.
$$

The analytic solution of this IVP is $x(t)=\sec (t+3)$ ．The solution is valid only for $-\frac{\pi}{2}<t+3<\frac{\pi}{2}$ ．
（3）Example 2：

$$
\left\{\begin{aligned}
x^{\prime}(t) & =x \\
x(0) & =1 .
\end{aligned}\right.
$$

Try $x(t)=c e^{r t} \Rightarrow c r e^{r t}=c e^{r t} \Rightarrow r=1, x=c e^{t}$ general solution Use $x(0)=1 \Rightarrow x=e^{t}$ particular solution

Existence and uniqueness

（1）Existence：do all IVPs has a solution？No！Some assumptions must be made about f ，and even then we can expect the solution to exist only in a neighborhood of $t=t_{0}$ ．
（2）Example：

$$
\left\{\begin{aligned}
x^{\prime}(t) & =1+x^{2}, \\
x(0) & =0 .
\end{aligned}\right.
$$

Try $x(t)=\tan t \Rightarrow x(0)=0$
LHS：$(\tan t)^{\prime}=\frac{\cos ^{2} t+\sin ^{2} t}{\cos ^{2} t} \quad$ RHS： $1+\tan ^{2} t=1+\frac{\sin ^{2} t}{\cos ^{2} t}$
Hence $x(t)=\tan t$ is a solution of the IVP．
If $t \rightarrow \pi / 2$ then $x \rightarrow \infty$ ．For the solution starting at $t=0$ ，it has to＂stop the clock＂before $t=\pi / 2$ ．Here we can only say that there exists a solution for a limited time．

Existence Theorem

Consider the IVP：

$$
\left\{\begin{aligned}
x^{\prime}(t) & =f(t, x) \\
x\left(t_{0}\right) & =x_{0},
\end{aligned}\right.
$$

Iff is continuous in a rectangle R centered at $\left(t_{0}, x_{0}\right)$ ，say

$$
R=\left\{(t, x):\left|t-t_{0}\right| \leq \alpha,\left|x-x_{0}\right| \leq \beta\right\}
$$

then the IVP has a solution $x(t)$ for

$$
\left|t-t_{0}\right| \leq \min \{\alpha, \beta / M\}
$$

where M is maximum of $|f(t, x)|$ in the rectangular R ．

Example

Prove that

$$
\left\{\begin{array}{l}
x^{\prime}(t)=(t+\sin x)^{2} \\
x(0)=3
\end{array}\right.
$$

has a solution on the interval $-1 \leq t \leq 1$ ．
－Consider $f(t, x)=(t+\sin x)^{2}$ ，where $\left(t_{0}, x_{0}\right)=(0,3)$ ．
－Let $R=\{(t, x):|t| \leq \alpha,|x-3| \leq \beta\}$ ．Then $|f(t, x)| \leq(\alpha+1)^{2}:=M$ ．
－We want $|t-0| \leq 1 \leq \min \{\alpha, \beta / M\}$ ．
－Let $\alpha=1$ then $M=(1+1)^{2}=4$ and force $\beta \geq 4$ ．By the Existence Theorem，the IVP has a solution on $\left|t-t_{0}\right| \leq \min \{\alpha, \beta / M\}=1$ ．

Uniqueness

（1）If f is continuous，we may still have more than one solution，e．g．，

$$
\left\{\begin{aligned}
x^{\prime}(t) & =x^{2 / 3}, \\
x(0) & =0 .
\end{aligned}\right.
$$

Note that $x=0$ is a solution for all t ．Another solution is $x(t)=t^{3} / 27$ ．
（2）To have a unique solution，we need to assume somewhat more about f ．

Uniqueness Theorem

Consider the IVP：

$$
\left\{\begin{aligned}
x^{\prime}(t) & =f(t, x) \\
x\left(t_{0}\right) & =x_{0}
\end{aligned}\right.
$$

Iff and $\frac{\partial f}{\partial x}$ are continuous in the rectangle R centered at $\left(t_{0}, x_{0}\right)$ ，

$$
R=\left\{(t, x):\left|t-t_{0}\right| \leq \alpha,\left|x-x_{0}\right| \leq \beta\right\}
$$

then the IVP has a unique solution $x(t)$ for

$$
\left|t-t_{0}\right| \leq \min \{\alpha, \beta / M\},
$$

where M is maximum of $|f(t, x)|$ in the rectangular R ．

Another Uniqueness Theorem

Consider the IVP：

$$
\left\{\begin{aligned}
x^{\prime}(t) & =f(t, x) \\
x\left(t_{0}\right) & =x_{0}
\end{aligned}\right.
$$

Iff is continuous in $a \leq t \leq b,-\infty<x<\infty$ and satisfies

$$
\begin{equation*}
\left|f\left(t, x_{1}\right)-f\left(t, x_{2}\right)\right| \leq L\left|x_{1}-x_{2}\right| \tag{*}
\end{equation*}
$$

then the IVP has a unique solution $x(t)$ in the interval $[a, b]$ ．

Note：Inequality $\left({ }^{*}\right)$ is called the Lipschitz condition in the 2nd variable．

Example

Prove that

$$
\left\{\begin{aligned}
x^{\prime}(t) & =1+t \sin (t x) \\
x(0) & =0
\end{aligned}\right.
$$

has a solution on the interval $0 \leq t \leq 2$ ．
－Since $f(t, x)=1+t \sin (t x)$ ，we have $\left|\frac{\partial f}{\partial x}(t, x)\right|=\left|t^{2} \cos (t x)\right| \leq 4$ for $0 \leq t \leq 2$ and $-\infty<x<\infty$ ．
－By the MVT，$\exists \xi$ between x_{1} and x_{2} such that

$$
f\left(t, x_{2}\right)-f\left(t, x_{1}\right)=\frac{\partial f(t, \tilde{\xi})}{\partial x}\left(x_{2}-x_{1}\right) .
$$

$$
\Longrightarrow\left|f\left(t, x_{2}\right)-f\left(t, x_{1}\right)\right| \leq 4\left|x_{2}-x_{1}\right| .
$$

$\Longrightarrow f$ satisfies $\left(^{*}\right)$ with $L=4$ and f is continuous in $0 \leq t \leq 2,-\infty<x<\infty$ ．
\Longrightarrow the IVP has a unique solution $x(t)$ for $a \leq t \leq b$ ．

Numerical methods

（1）Consider the IVP：

$$
\left\{\begin{aligned}
x^{\prime}(t) & =f(t, x), \\
x\left(t_{0}\right) & =x_{0} .
\end{aligned}\right.
$$

（2）Strategy：Instead of finding $x(t)$ for all t in some interval containing t_{0} ，we find $x(t)$ at some fixed points．

Taylor－series method

（1）For the Taylor－series method，it is necessary to assume that various partial derivatives of f exist．
（2）We use a concrete example to illustrate the method．Consider an IVP as

$$
\begin{cases}x^{\prime}(t) & =\cos t-\sin x+t^{2} \\ x(-1) & =3\end{cases}
$$

（3）Assume that we know $x(t)$ and we wish to compute $x(t+h)$ ．By the Taylor series for x ，we have

$$
x(t+h)=x(t)+h x^{\prime}(t)+\frac{h^{2}}{2!} x^{\prime \prime}(t)+\frac{h^{3}}{3!} x^{\prime \prime \prime}(t)+\frac{h^{4}}{4!} x^{(4)}(t)+O\left(h^{5}\right) .
$$

Taylor－series method（cont＇d）

（1）How to compute $x^{\prime}(t), x^{\prime \prime}(t), x^{\prime \prime \prime}(t)$ and $x^{(4)}(t)$ in the last equation？

$$
\left\{\begin{aligned}
x^{\prime}(t) & =\cos t-\sin x+t^{2} \\
x^{\prime \prime}(t) & =-\sin t-(\cos x) x^{\prime}+2 t \\
x^{\prime \prime \prime}(t) & =-\cos t+\sin x\left(x^{\prime}\right)^{2}-(\cos x) x^{\prime \prime}+2 \\
x^{(4)}(t) & =\sin t+(\cos x)\left(x^{\prime}\right)^{3}+3(\sin x) x^{\prime} x^{\prime \prime}-(\cos x) x^{\prime \prime \prime}
\end{aligned}\right.
$$

（2）If we truncate at h^{4} then the local truncation error for obtaining $x(t+h)$ is $O\left(h^{5}\right)$ ．We say the method is of order 4 ．
（3）Definition：The order of the Taylor－series method is n if terms up to and include $h^{n} x^{(n)}(t) / n!$ are used．

Algorithm

Starting $t=-1$ with $h=0.01$ ，we can compute the solution in $[-1,1]$ with 200 steps：
input $M \leftarrow 200, h \leftarrow 0.01, t \leftarrow-1, x \leftarrow 3$
output $0, t, x$
for $k=1$ to M do

$$
\begin{aligned}
x^{\prime} & \leftarrow \cos t-\sin x+t^{2} \\
x^{\prime \prime} & \leftarrow-\sin t-(\cos x) x^{\prime}+2 t \\
x^{\prime \prime \prime} & \leftarrow-\cos t+\sin x\left(x^{\prime}\right)^{2}-(\cos x) x^{\prime \prime}+2 \\
x^{(4)} & \leftarrow \sin t+(\cos x)\left(x^{\prime}\right)^{3}+3(\sin x) x^{\prime} x^{\prime \prime}-(\cos x) x^{\prime \prime \prime} \\
x & \left.\leftarrow x+h\left(x^{\prime}+\frac{h}{2}\left(x^{\prime \prime}+\frac{h}{3}\left(x^{\prime \prime \prime}+\frac{h}{4} x^{(4)}\right)\right)\right)\right) \\
t & \leftarrow t+h
\end{aligned}
$$

output k, t, x end do

Error estimate

（1）Estimate of the local truncation error can be done by looking at

$$
E_{n}=\frac{1}{(n+1)!} h^{n+1} x^{(n+1)}(t+\theta h) \quad \text { for some } \theta \in(0,1) .
$$

Hence

$$
E_{4}=\frac{1}{5!} h^{5} x^{(5)}(t+\theta h) \quad \theta \in(0,1)
$$

（2）Replace $x^{(5)}(t+\theta h)$ by a simple finite－difference approximation

$$
E_{4} \approx \frac{1}{5!} h^{5}\left(\frac{x^{(4)}(t+h)-x^{(4)}(t)}{h}\right)=\frac{h^{4}}{120}\left(x^{(4)}(t+h)-x^{(4)}(t)\right) .
$$

（3）Suppose that the local truncation error（LTE）is $O\left(h^{n+1}\right)$ ．The accumulation of all many LTEs gives rise the global truncation error（GTE）．

$$
G T E \approx \frac{T-t_{0}}{h} O\left(h^{n+1}\right)=O\left(h^{n}\right) .
$$

And we say the numerical method is of $O\left(h^{n}\right)$ ．

Advantages and disadvantages of the Taylor－series method

（1）Disadvantages：
－The method depends on repeated differentiation of the differential equation，unless we intend to use only the method of order 1. $\Longrightarrow f(t, x)$ must have partial derivatives of sufficient high order in the region where are solving the problem．Such an assumption is not necessary for the existence of a solution．
－The various derivatives formula need to be programmed．
（2）Advantages：
－Conceptual simplicity．
－Potential for high precision．
If we get e．g． 20 derivatives of $x(t)$ ，then the method is order 20 （i．e．terms up to and including the one involving h^{20} ）．

Euler＇s method

（1）If $n=1$ ，the Taylor series method reduces to Euler＇s method．
（2）Advantage of the method is not to require any differentiation of f ．
（3）Disadvantage of the method is that the necessity of taking small value for h to gain acceptable precision．
（9）Consider the following IVP：

$$
\left\{\begin{aligned}
x^{\prime}(t) & =\cos t-\sin x+t^{2} \\
x(0) & =3 .
\end{aligned}\right.
$$

Derive Euler＇s method based on the Taylor series and compute $x(0.1)$ when $h=0.1$ ．

Basic concepts of Runge－Kutta methods

We wish to approximate the following IVP：

$$
\left\{\begin{aligned}
x^{\prime}(t) & =f(t, x), \\
x\left(t_{0}\right) & =x_{0} .
\end{aligned}\right.
$$

（1）From the Taylor theorem，we have

$$
x(t+h)=x(t)+h x^{\prime}(t)+\frac{h^{2}}{2!} x^{\prime \prime}(t)+O\left(h^{3}\right) .
$$

（2）By the chain rule，we obtain

$$
\left\{\begin{aligned}
x^{\prime \prime}(t) & =f_{t}+f_{x} x^{\prime}=f_{t}+f_{x} f, \\
x^{\prime \prime \prime}(t) & =f_{t t}+f_{t x} f+\left(f_{t}+f_{x} f\right) f_{x}+f\left(f_{x t}+f_{x x} f\right) .
\end{aligned}\right.
$$

Basic concepts of Runge－Kutta methods（cont＇d）

－In the Taylor expansion，we have

$$
\begin{aligned}
x(t+h)= & x(t)+h f(t, x)+\frac{h^{2}}{2}\left(f_{t}(t, x)+f_{x}(t, x) f(t, x)\right)+O\left(h^{3}\right) \\
= & \left.x(t)+\frac{h}{2} f(t, x)+\frac{h}{2}\left[f(t, x)+h f_{t}(t, x)+h f_{x}(t, x) f(t, x)\right)\right] \\
& +O\left(h^{3}\right) \\
= & x(t)+\frac{h}{2} f(t, x)+\frac{h}{2} f(t+h, x+h f(t, x))+O\left(h^{3}\right) .
\end{aligned}
$$

－Note that the term in the square blankets above can be obtained by the Taylor expansion in two variables

$$
f(t+h, x+h f(t, x))=f(t, x)+h f_{t}(t, x)+h f(t, x) f_{x}(t, x)+O\left(h^{2}\right) .
$$

A second－order Runge－Kutta method

（1）Then a 2nd－order Runge－Kutta（RK）method is given by

$$
x(t+h) \approx x(t)+\frac{h}{2} f(t, x)+\frac{h}{2} f(t+h, x+h f(t, x)),
$$

or alternating

$$
x(t+h) \approx x(t)+\frac{1}{2}\left(F_{1}+F_{2}\right)
$$

where

$$
\begin{aligned}
& F_{1}=h f(t, x), \\
& F_{2}=h f\left(t+h, x+F_{1}\right) .
\end{aligned}
$$

（2）It is also known as Heun＇s method．

The general second－order Runge－Kutta method

（1）In general，the 2 nd order RK method needs

$$
\begin{aligned}
x(t+h) & =x(t)+\omega_{1} h f+\omega_{2} h f(t+\alpha h, x+\beta h f)+O\left(h^{3}\right) \\
& =x(t)+\omega_{1} h f+\omega_{2} h\left[f+\alpha h f_{t}+\beta h f f_{x}\right]+O\left(h^{3}\right)
\end{aligned}
$$

（2）Compare with

$$
x(t+h)=x(t)+h f+\frac{h^{2}}{2}\left(f_{t}+f_{x} f\right)+O\left(h^{3}\right)
$$

we have

$$
\begin{aligned}
\omega_{1}+\omega_{2} & =1 \\
\omega_{2} \alpha & =1 / 2 \\
\omega_{2} \beta & =1 / 2 .
\end{aligned}
$$

The modified Euler method

（1）The previous method（Heun＇s method）is obtained by setting

$$
\left\{\begin{array}{l}
\omega_{1}=\omega_{2}=1 / 2 \\
\alpha=\beta=1 .
\end{array}\right.
$$

（2）Setting

$$
\left\{\begin{array}{l}
\omega_{1}=0 \\
\omega_{2}=1 \\
\alpha=\beta=1 / 2
\end{array}\right.
$$

we obtain the following modified Euler method：

$$
x(t+h) \approx x(t)+F_{2},
$$

where

$$
F_{1}=h f(t, x), \quad F_{2}=h f\left(t+\frac{1}{2} h, x+\frac{1}{2} F_{1}\right) .
$$

Fourth－order RK methods

－The derivations of higher order RK methods are tedious． However，the formulas are rather elegant and easily programmed once they have been derived．
－The most popular 4th order RK is：

$$
x(t+h) \approx x(t)+\frac{1}{6}\left(F_{1}+2 F_{2}+2 F_{3}+F_{4}\right)
$$

where

$$
\left\{\begin{array}{l}
F_{1}=h f(t, x), \\
F_{2}=h f\left(t+\frac{h}{2}, x+\frac{1}{2} F_{1}\right), \\
F_{3}=h f\left(t+\frac{h}{2}, x+\frac{1}{2} F_{2}\right), \\
F_{4}=h f\left(t+h, x+F_{3}\right) .
\end{array}\right.
$$

Computer project

（1）Use the most popular 4th order RK with $h=1 / 128$ to solve the following IVP for $t \in[1,3]$ and then plot the piecewise linear approximate solution：

$$
\left\{\begin{aligned}
x^{\prime}(t) & =t^{-2}\left(t x-x^{2}\right) \\
x(1) & =2
\end{aligned}\right.
$$

（2）Also plot the exact solution：

$$
x(t)=(1 / 2+\ln t)^{-1} t .
$$

Algorithm

input $M \leftarrow 256, t \leftarrow 1.0, h \leftarrow 0.0078125, x \leftarrow 2.0$
define $f(t, x)=\left(t x-x^{2}\right) / t^{2}$
define $u(t)=t /(1 / 2+\ln t)$
$e \leftarrow|u(t)-x|$
output $0, t, x, e$
for $k=1$ to M do

$$
\begin{aligned}
F_{1} & \leftarrow h f(t, x) \\
F_{2} & \leftarrow h f\left(t+\frac{h}{2}, x+\frac{1}{2} F_{1}\right) \\
F_{3} & \leftarrow h f\left(t+\frac{h}{2}, x+\frac{1}{2} F_{2}\right) \\
F_{4} & \leftarrow h f\left(t+h, x+F_{3}\right) \\
x & \leftarrow x+\frac{1}{6}\left(F_{1}+2 F_{2}+2 F_{3}+F_{4}\right) \\
t & \leftarrow t+h \\
e & \leftarrow|u(t)-x|
\end{aligned}
$$

output k, t, x, e end do

A system of first－order differential equations

The standard form for a system of first－order ODEs is given by

$$
\left\{\begin{align*}
x_{1}^{\prime}(t) & =f_{1}\left(t, x_{1}, x_{2}, \cdots, x_{n}\right) \tag{*}\\
x_{2}^{\prime}(t) & =f_{2}\left(t, x_{1}, x_{2}, \cdots, x_{n}\right) \\
& \vdots \\
x_{n}^{\prime}(t) & =f_{n}\left(t, x_{1}, x_{2}, \cdots, x_{n}\right)
\end{align*}\right.
$$

There are n unknown functions，$x_{1}, x_{2}, \cdots, x_{n}$ to be determined．Here $x_{i}^{\prime}(t):=\frac{d x_{i}}{d t}$ ．

Example

Consider the system of first－order differential equations：

$$
\left\{\begin{array}{l}
x^{\prime}(t)=x+4 y-e^{t} \\
y^{\prime}(t)=x+y+2 e^{t}
\end{array}\right.
$$

The general solution：

$$
\left\{\begin{array}{l}
x(t)=2 a e^{3 t}-2 b e^{-t}-2 e^{t}, \\
y(t)=a e^{3 t}+b e^{-t}+1 / 4 e^{t}
\end{array}\right.
$$

where $a, b \in \mathbb{R}$ ．If the system of differential equations with the initial conditions，e．g．，$x(0)=4$ and $y(0)=5 / 4$ ，then the solution is unique， and

$$
\left\{\begin{array}{l}
x(t)=4 e^{3 t}+2 e^{-t}-2 e^{t} \\
y(t)=2 e^{3 t}-e^{-t}+1 / 4 e^{t}
\end{array}\right.
$$

Vector notation and higher－order ODEs

（1）Notation：let $X:=\left[x_{1}, x_{2}, \cdots, x_{n}\right]^{\top}$ and $F:=\left[f_{1}, f_{2}, \cdots, f_{n}\right]^{\top}$ ， where $X \in \mathbb{R}^{n}$ and $F: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}$ ．

Then an IVP associated with the system of ODEs $(*)$ is given by

$$
\left\{\begin{aligned}
X^{\prime}(t) & =F(t, X(t)), \\
X\left(t_{0}\right) & =X_{0} \in \mathbb{R}^{n} .
\end{aligned}\right.
$$

（2）A higher－order ODE can be converted to a first－order system． Consider $y^{(n)}(t)=f\left(t, y, y^{\prime}, \cdots, y^{(n-1)}\right)$ and introduce $x_{1}=y, x_{2}=y^{\prime}, \cdots, x_{n}=y^{(n-1)}$ ．Then we have

$$
\left\{\begin{aligned}
x_{1}^{\prime}(t) & =x_{2} \\
x_{2}^{\prime}(t) & =x_{3} \\
\vdots & \\
x_{n-1}^{\prime}(t) & =x_{n}, \\
x_{n}^{\prime}(t) & =f\left(t, x_{1}, x_{2}, \cdots, x_{n}\right)
\end{aligned}\right.
$$

Example 1

Convert the higher－order IVP

$$
(\sin t) y^{\prime \prime \prime}+\cos (t y)+\sin \left(y^{\prime \prime}+t^{2}\right)+\left(y^{\prime}\right)^{3}=\log t
$$

with $y(2)=7, y^{\prime}(2)=3, y^{\prime \prime}(2)=-4$ to a system of 1st－order equations with initial values．
Solution：Let $x_{1}(t)=y(t), x_{2}(t)=y^{\prime}(t), x_{3}(t)=y^{\prime \prime}(t)$ ．Then，

$$
\left\{\begin{array}{l}
x_{1}^{\prime}(t)=x_{2} \\
x_{2}^{\prime}(t)=x_{3}, \\
x_{3}^{\prime}(t)=\left\{\log t-x_{2}^{3}-\sin \left(t^{2}+x_{3}\right)-\cos \left(t x_{1}\right)\right\} / \sin t
\end{array}\right.
$$

with $x_{1}(2)=7, x_{2}(2)=3, x_{3}(2)=-4$ ．

Example 2

Convert the system

$$
\left\{\begin{aligned}
\left(x^{\prime \prime}\right)^{2}+t e^{y}+y^{\prime} & =x^{\prime}-x \\
y^{\prime} y^{\prime \prime}-\cos (x y)+\sin \left(t x^{\prime} y\right) & =x
\end{aligned}\right.
$$

to a system of 1st－order equations．

Taylor－series method for systems

For each variable，use the Taylor－series method

$$
x_{i}(t+h) \approx x_{i}(t)+h x_{i}^{\prime}(t)+\frac{h^{2}}{2!} x_{i}^{\prime \prime}(t)+\frac{h^{3}}{3!} x_{i}^{\prime \prime \prime}(t)+\cdots+\frac{h^{n}}{n!} x_{i}^{(n)}(t)
$$

or in the vector form

$$
X(t+h) \approx X(t)+h X^{\prime}(t)+\frac{h^{2}}{2!} X^{\prime \prime}(t)+\frac{h^{3}}{3!} X^{\prime \prime \prime}(t)+\cdots+\frac{h^{n}}{n!} X^{(n)}(t) .
$$

Autonomous systems

（1）From the theoretical standpoint，there is no loss of generality in assuming that the equations in system $(*)$ do not contain t explicitly．We can take $x_{0}(t)=t, x_{0}^{\prime}(t)=1$ ．Then $x_{i}^{\prime}=f_{i}\left(x_{0}, x_{1}, \cdots, x_{n}\right), i=0,1, \cdots, n$ ，or $X^{\prime}(t)=F(X)$ ，where $X(t)=\left(x_{0}(t), x_{1}(t), \cdots, x_{n}(t)\right)^{\top}$.
（2）Example：convert the following IVP to an autonomous system

$$
(\sin t) y^{\prime \prime \prime}+\cos (t y)+\sin \left(y^{\prime \prime}+t^{2}\right)+\left(y^{\prime}\right)^{3}=\log t
$$

with $y(2)=7, y^{\prime}(2)=3, y^{\prime \prime}(2)=-4$ ．
Solution：Let $x_{0}(t)=t$ ．Then $x_{0}^{\prime}(t)=1$ ．Let $x_{1}^{\prime}(t)=x_{2}$ and $x_{2}^{\prime}(t)=x_{3}$ ．Then we have

$$
\left\{\begin{array}{l}
x_{0}^{\prime}(t)=1 \\
x_{1}^{\prime}(t)=x_{2} \\
x_{2}^{\prime}(t)=x_{3} \\
x_{3}^{\prime}(t)=\left\{\log x_{0}-x_{2}^{3}-\sin \left(x_{0}^{2}+x_{3}\right)-\cos \left(x_{0} x_{1}\right)\right\} / \sin x_{0}
\end{array}\right.
$$

with the initial condition $X(2)=(2,7,3,-4)^{\top}$ ．

RK4 method for $X^{\prime}(t)=F(X)$
（1）For an autonomous system of equations，$X^{\prime}(t)=F(X)$ ，we have 4th－order Runge－Kutta method：

$$
X(t+h) \approx X(t)+\frac{1}{6}\left(F_{1}+2 F_{2}+2 F_{3}+F_{4}\right)
$$

where

$$
\begin{aligned}
F_{1} & =h F(X) \\
F_{2} & =h F\left(X+\frac{1}{2} F_{1}\right) \\
F_{3} & =h F\left(X+\frac{1}{2} F_{2}\right) \\
F_{4} & =h F\left(X+F_{3}\right) .
\end{aligned}
$$

（2）Other methods，they are all similar to the single equation case．

Collocation method

Suppose that we have a linear differential operator L and we wish to solve the equation：

$$
L u(t)=f(t), \quad a<t<b
$$

where f is given and u is sought．
（1）Let $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ be a set of functions that are linearly independent．Suppose that $u(t) \approx c_{1} v_{1}(t)+c_{2} v_{2}(t)+\cdots+c_{n} v_{n}(t)$ ，where $c_{i} \in \mathbb{R}$ ．
（2）Then solve $L\left(\sum_{j=1} c_{j} v_{j}(t)\right)=f(t)$ ．How to determine c_{j} ，

$$
j=1,2, \cdots, n ?
$$

（3）Let $t_{i}, i=1,2, \cdots, n$ ，be n prescribed points（collocation points） in the domain of u and f ．Then we require the following equations to determine $c_{j}, j=1,2, \cdots, n$ ：

$$
\sum_{j=1}^{n} c_{j}\left(L v_{j}\right)\left(t_{i}\right)=f\left(t_{i}\right), \quad i=1,2, \cdots, n
$$

Collocation method for Sturm－Liouville BVPs

（1）Consider a Sturm－Liouville two－point BVP：

$$
\left\{\begin{align*}
u^{\prime \prime}(t)+p(t) u^{\prime}(t)+q(t) u(t) & =f(t), \quad 0<t<1 \tag{*}\\
u(0) & =0 \\
u(1) & =0
\end{align*}\right.
$$

where p, q, f are given continuous functions on $[0,1]$
（2）Let $L u:=u^{\prime \prime}+p u^{\prime}+q u$ ．Define the vector space

$$
V=\left\{u \in C^{2}(0,1) \cap C[0,1]: u(0)=u(1)=0\right\} .
$$

If u is an exact solution of $(*)$ ，then $u \in V$ ．
（3）One set of functions is given by

$$
v_{j k}(t)=t^{j}(1-t)^{k} \in C^{2}[0,1], \quad 1 \leq j \leq m, 1 \leq k \leq n .
$$

Variational formulation of a 1－dim model problem

Consider the following two－point boundary value problem（BVP）：

$$
\left\{\begin{array}{l}
-u^{\prime \prime}(x)=f(x), \quad 0<x<1 \tag{D}\\
u(0)=u(1)=0
\end{array}\right.
$$

where f is a given function in $C[0,1]$ ．
Remark：（D）has a unique classical solution $u \in C^{2}(0,1) \cap C[0,1]$ ．

Some notation and definitions

（1）$(v, w):=\int_{0}^{1} v(x) w(x) d x$ for real－valued piecewise continuous and bounded functions v and w defined on $[0,1]$ ．
（2）$V:=\left\{v \mid v \in C[0,1], v(0)=v(1)=0, v^{\prime}\right.$ is piecewise continuous and bounded on $[0,1]\}$ ．
（3）$F: V \rightarrow \mathbb{R}$ ，
$F(v):=\frac{1}{2}\left(v^{\prime}, v^{\prime}\right)-(f, v)=\frac{1}{2} \int_{0}^{1}\left(v^{\prime}(x)\right)^{2} d x-\int_{0}^{1} f(x) v(x) d x$.
（represents the total potential energy）
（4）Define the following minimization and variational problems：
Find $u \in V$ such that $F(u) \leq F(v), \quad \forall v \in V$ ．
Find $u \in V$ such that $\left(u^{\prime}, v^{\prime}\right)=(f, v), \quad \forall v \in V$ ．
（D）\Rightarrow（V）

The solution of problem（D）is also a solution of problem（V）：
$\because-u^{\prime \prime}(x)=f(x), \quad 0<x<1$ ．
$\therefore \int_{0}^{1}-u^{\prime \prime}(x) v(x) d x=\int_{0}^{1} f(x) v(x) d x, \quad \forall v \in V$ ．
$\therefore\left(-u^{\prime \prime}, v\right)=(f, v), \quad \forall v \in V$ ．
$\therefore\left(u^{\prime}, v^{\prime}\right)-\left.u^{\prime}(x) v(x)\right|_{0} ^{1}=(f, v), \quad \forall v \in V . \quad$（integration by parts）
$\therefore\left(u^{\prime}, v^{\prime}\right)=(f, v), \quad \forall v \in V$ ．

Problems（V）and（M）have the same solutions：
（1）$(\mathrm{V}) \Rightarrow(\mathrm{M})$ ：Let u be a solution of problem（V）．Let $v \in V$ and $w=v-u \in V$ ．Then $v=u+w$ and

$$
\begin{aligned}
F(v) & =F(u+w)=\frac{1}{2}\left((u+w)^{\prime},(u+w)^{\prime}\right)-(f, u+w) \\
& =\frac{1}{2}\left(u^{\prime}, u^{\prime}\right)+\left(u^{\prime}, w^{\prime}\right)+\frac{1}{2}\left(w^{\prime}, w^{\prime}\right)-(f, u)-(f, w) \\
& =\frac{1}{2}\left(u^{\prime}, u^{\prime}\right)+\frac{1}{2}\left(w^{\prime}, w^{\prime}\right)-(f, u) \geq \frac{1}{2}\left(u^{\prime}, u^{\prime}\right)-(f, u)=F(u) .
\end{aligned}
$$

（2）$(\mathrm{M}) \Rightarrow(\mathrm{V})$ ：Let u be a solution of problem（M）．Then for any $v \in V, \varepsilon \in \mathbb{R}$ ，we have $F(u) \leq F(u+\varepsilon v)$ ，since $u+\varepsilon v \in V$ ．Define

$$
\begin{aligned}
& g(\varepsilon):=F(u+\varepsilon v)=\frac{1}{2}\left((u+\varepsilon v)^{\prime},(u+\varepsilon v)^{\prime}\right)-(f, u+\varepsilon v) \\
&=\frac{1}{2}\left(u^{\prime}, u^{\prime}\right)+\frac{1}{2} \varepsilon^{2}\left(v^{\prime}, v^{\prime}\right)+\varepsilon\left(u^{\prime}, v^{\prime}\right)-(f, u)-\varepsilon(f, v) . \\
& \because g^{\prime}(\varepsilon)=\left(u^{\prime}, v^{\prime}\right)+\varepsilon\left(v^{\prime}, v^{\prime}\right)-(f, v) \text { and } g^{\prime}(0)=0 . \\
& \therefore 0=g^{\prime}(0)=\left(u^{\prime}, v^{\prime}\right)-(f, v) .
\end{aligned}
$$

Both problems（V）\＆（M）have at most one solution

It suffices to prove that problem（V）has at most one solution． Suppose that u_{1} and u_{2} are solutions of problem（V）．Then

$$
\begin{aligned}
& \left(u_{1}^{\prime}, v^{\prime}\right)=(f, v) \quad \forall v \in V \\
& \left(u_{2}^{\prime}, v^{\prime}\right)=(f, v) \quad \forall v \in V .
\end{aligned}
$$

$\therefore\left(u_{1}^{\prime}-u_{2}^{\prime}, v^{\prime}\right)=0 \quad \forall v \in V$ ．
Taking $v=u_{1}-u_{2}$ ，we have $\left(u_{1}^{\prime}-u_{2}^{\prime}, u_{1}^{\prime}-u_{2}^{\prime}\right)=0$ ．
$\therefore \int_{0}^{1}\left(u_{1}^{\prime}(x)-u_{2}^{\prime}(x)\right)^{2} d x=0$ ．
$\therefore u_{1}^{\prime}(x)-u_{2}^{\prime}(x)=0, x \in[0,1]$ a．e．
$\therefore u_{1}-u_{2}$ is a step function on $[0,1]$ ．
$\because u_{1}-u_{2}$ is continuous on $[0,1]$ ．
$\therefore u_{1}-u_{2}$ is a constant function on $[0,1]$ ．
$\because u_{1}(0)=u_{1}(1)=0$ and $u_{2}(0)=u_{2}(1)=0$ ．
$\therefore u_{1}-u_{2} \equiv 0$ on $[0,1]$ ．
That is，$u_{1}(x)=u_{2}(x), \forall x \in[0,1]$ ．

Let u be a solution of problem（V）．Then $\left(u^{\prime}, v^{\prime}\right)=(f, v), \forall v \in V$ ．
$\therefore \int_{0}^{1} u^{\prime}(x) v^{\prime}(x) d x-\int_{0}^{1} f(x) v(x) d x=0, \quad \forall v \in V$ ．
Suppose that $u^{\prime \prime}$ exists and continuous on $[0,1]$ ，i．e．，$u \in C^{2}[0,1]$ ．
Then $-\int_{0}^{1} u^{\prime \prime}(x) v(x) d x-\int_{0}^{1} f(x) v(x) d x=0, \quad \forall v \in V$.
$\therefore-\int_{0}^{1}\left(u^{\prime \prime}(x)+f(x)\right) v(x) d x=0, \quad \forall v \in V$ ．
By the sign－preserving property for continuous functions，we can conclude that
$u^{\prime \prime}(x)+f(x)=0, \forall x \in[0,1]$ ．
$\therefore u$ is a solution of problem（D）．

FEM for the model problem with piecewise linear functions

Construct a finite－dimensional space V_{h}（finite element space） Let $0=x_{0}<x_{2}<\cdots<x_{M}<x_{M+1}=1$ be a partition of $[0,1]$ ． ［Insert partition figure here！］

Define
－$I_{j}:=\left[x_{j-1}, x_{j}\right], \quad j=1,2, \cdots, M+1$ ．
－$h_{j}:=x_{j}-x_{j-1}, \quad j=1,2, \cdots, M+1$ ．
－$h:=\max _{j=1,2, \cdots, M+1} h_{j}$ ，a measure of how fine the partition is．
Define
$V_{h}:=\left\{v_{h} \in V \mid v_{h}\right.$ is linear on each subinterval $\left.I_{j}, v_{h}(0)=v_{h}(1)=0\right\}$ ．
Notice that $V_{h} \subseteq V$ ．

Construct a basis of V_{h}

Here is a typical $v_{h} \in V_{h}$ ：
［Insert v_{h} figure here！］

For $j=1,2, \cdots, M$ ，we define $\varphi_{j} \in V_{h}$ such that
$\varphi_{j}\left(x_{i}\right)= \begin{cases}1 & \text { if } i=j, \\ 0 & \text { if } i \neq j .\end{cases}$
［Insert φ_{j} figure here！］

Then we have
（1）$\left\{\varphi_{j}\right\}_{j=1}^{M}$ is a basis of the finite－dimensional vector space V_{h} ．
（2）For each $v_{h} \in V_{h}, v_{h}$ can be written as a unique linear
combination of φ_{j}^{\prime} s：$v_{h}(x)=\sum_{j=1}^{M} \eta_{j} \varphi_{j}(x)$ ，where $\eta_{j}=v_{h}\left(x_{j}\right)$ ．

Numerical methods for solution of problem（D）

We now define the following two numerical methods for approximating the solution of problem（D）：
（1）Ritz method：

$$
\begin{equation*}
\text { Find } u_{h} \in V_{h} \text { such that } F\left(u_{h}\right) \leq F\left(v_{h}\right), \quad \forall v_{h} \in V_{h} \text {. } \tag{h}
\end{equation*}
$$

（2）Galerkin method（finite element method）：

$$
\begin{equation*}
\text { Find } u_{h} \in V_{h} \text { such that }\left(u_{h}^{\prime}, v_{h}^{\prime}\right)=\left(f, v_{h}\right), \quad \forall v_{h} \in V_{h} \text {. } \tag{h}
\end{equation*}
$$

One can claim that $\left(M_{h}\right) \Leftrightarrow\left(V_{h}\right)$ ．
$\left(V_{h}\right) \Leftrightarrow$ Find $u_{h} \in V_{h}$ s.t. $\left(u_{h}^{\prime}, \varphi_{i}^{\prime}\right)=\left(f, \varphi_{i}\right), 1 \leq i \leq M \Leftrightarrow A \xi=b$
(1) $\left(V_{h}\right) \Longleftrightarrow$ Find $u_{h} \in V_{h}$ such that $\left(u_{h}^{\prime}, \varphi_{i}^{\prime}\right)=\left(f, \varphi_{i}\right), 1 \leq i \leq M$.

Proof. (\Rightarrow) : trivial!
$(\Leftarrow):$ For any $v_{h} \in V_{h}$, we have $v_{h}=\sum_{i=1}^{M} \eta_{i} \varphi$, for some $\eta_{i} \in \mathbb{R}$, $1 \leq i \leq M$.
$\therefore\left(u_{h}^{\prime}, v_{h}^{\prime}\right)=\left(u_{h}^{\prime}, \sum_{i=1}^{M} \eta_{i} \varphi_{i}^{\prime}\right)=\sum_{i=1}^{M} \eta_{i}\left(u_{h}^{\prime}, \varphi_{i}^{\prime}\right)$
$=\sum_{i=1}^{M} \eta_{i}\left(f, \varphi_{i}\right)=\left(f, \sum_{i=1}^{M} \eta_{i} \varphi_{i}\right)=\left(f, v_{h}\right)$.
(2) Find $u_{h} \in V_{h}$ such that $\left(u_{h}^{\prime}, \varphi_{i}^{\prime}\right)=\left(f, \varphi_{i}\right), 1 \leq i \leq M \Longleftrightarrow A \xi=b$. Proof. Let $u_{h}(x)=\sum_{j=1}^{M} \xi_{j} \varphi_{j}(x)$, where $\xi_{j}=u_{h}\left(x_{j}\right), 1 \leq j \leq M$, are unknown. Then

$$
\begin{aligned}
& \left(u_{h}^{\prime}, \varphi_{i}^{\prime}\right)=\left(f, \varphi_{i}\right), 1 \leq i \leq M \Leftrightarrow\left(\sum_{j=1}^{M} \xi_{j} \varphi_{j}^{\prime}, \varphi_{i}^{\prime}\right)=\left(f, \varphi_{i}\right), 1 \leq i \leq M \\
& \Leftrightarrow \sum_{j=1}^{M} \xi_{j}\left(\varphi_{j}^{\prime}, \varphi_{i}^{\prime}\right)=\left(f, \varphi_{i}\right), 1 \leq i \leq M \Leftrightarrow A \xi=b
\end{aligned}
$$

$A \xi=b$
$A=\left(a_{i j}\right)_{M \times M}$ ：stiffness matrix
$b=\left(b_{i}\right)_{M \times 1}$ ：load vector
$\xi=\left(\xi_{i}\right)_{M \times 1}:$ unknown vector

$$
\left[\begin{array}{cccc}
\left(\varphi_{1}^{\prime}, \varphi_{1}^{\prime}\right) & \left(\varphi_{2}^{\prime}, \varphi_{1}^{\prime}\right) & \cdots & \left(\varphi_{M}^{\prime}, \varphi_{1}^{\prime}\right) \\
\left(\varphi_{1}^{\prime}, \varphi_{2}^{\prime}\right) & \left(\varphi_{2}^{\prime}, \varphi_{2}^{\prime}\right) & \cdots & \left(\varphi_{M}^{\prime}, \varphi_{2}^{\prime}\right) \\
\vdots & \vdots & \vdots & \vdots \\
\left(\varphi_{1}^{\prime}, \varphi_{M}^{\prime}\right) & \left(\varphi_{2}^{\prime}, \varphi_{M}^{\prime}\right) & \cdots & \left(\varphi_{M^{\prime}}^{\prime} \varphi_{M}^{\prime}\right)
\end{array}\right]\left[\begin{array}{c}
\xi_{1} \\
\xi_{2} \\
\vdots \\
\xi_{M}
\end{array}\right]=\left[\begin{array}{c}
\left(f, \varphi_{1}\right) \\
\left(f, \varphi_{2}\right) \\
\vdots \\
\left(f, \varphi_{M}\right)
\end{array}\right] .
$$

Some remarks

（1）$\because\left(\varphi_{j}^{\prime}, \varphi_{i}^{\prime}\right)=0$ if $|i-j|>1 \quad \therefore A$ is a tri－diagonal matrix．
（2）$\because a_{i j}=\left(\varphi_{j}^{\prime}, \varphi_{i}^{\prime}\right)=\left(\varphi_{i}^{\prime}, \varphi_{j}^{\prime}\right)=a_{j i} \quad \therefore A$ is symmetric！
（3）Claim：A is positive definite．
For any given $\eta=\left(\eta_{1}, \eta_{2}, \cdots, \eta_{M}\right)^{\top} \in \mathbb{R}^{M}$ ，define
$v_{h}(x):=\sum_{i=1}^{M} \eta_{i} \varphi_{i}(x)$ ．Then

$$
0 \leq\left(v_{h}^{\prime}, v_{h}^{\prime}\right)=\left(\sum_{i=1}^{M} \eta_{i} \varphi_{i}^{\prime}, \sum_{j=1}^{M} \eta_{j} \varphi_{j}^{\prime}\right)=\sum_{i, j=1}^{M} \eta_{i}\left(\varphi_{i}^{\prime}, \varphi_{j}^{\prime}\right) \eta_{j}=\eta \cdot A \eta .
$$

If $\left(v_{h}^{\prime}, v_{h}^{\prime}\right)=0$ ，then $\int_{0}^{1}\left(v_{h}^{\prime}(x)\right)^{2} d x=0 \Longrightarrow v_{h}^{\prime}(x)=0$ a．e．
$\because v_{h} \in V_{h}, v_{h}$ is continuous on $[0,1]$ and $v_{h}(0)=v_{h}(1)=0$ ．
$\therefore v_{h} \equiv 0$ on $[0,1]$ ，i．e．，$\eta=\mathbf{0}$ ．
$\therefore \eta \cdot A \eta>0, \forall \eta \in \mathbb{R}^{M}, \eta \neq \mathbf{0}$ ．
（9）$\because A$ is SPD $\therefore A$ is nonsingular $\therefore A \xi=b$ has a unique solution！

Evaluate $a_{j j}$ and $a_{j-1, j}$
［Insert a figure of φ_{j-1} and φ_{j} here！］
For $j=1,2, \cdots, M$ ，we have

$$
\begin{aligned}
\left(\varphi_{j}^{\prime}, \varphi_{j}^{\prime}\right) & =\int_{x_{j-1}}^{x_{j}}\left(\varphi_{j}^{\prime}\right)^{2} d x+\int_{x_{j}}^{x_{j+1}}\left(\varphi_{j}^{\prime}\right)^{2} d x \\
& =\int_{x_{j-1}}^{x_{j}} \frac{1}{h_{j}^{2}} d x+\int_{x_{j}}^{x_{j+1}} \frac{1}{h_{j+1}^{2}} d x=\frac{1}{h_{j}}+\frac{1}{h_{j+1}}, \\
\left(\varphi_{j}^{\prime}, \varphi_{j-1}^{\prime}\right) & =\left(\varphi_{j-1}^{\prime}, \varphi_{j}^{\prime}\right)=-\int_{x_{j-1}}^{x_{j}} \frac{1}{h_{j}^{2}} d x=-\frac{1}{h_{j}} .
\end{aligned}
$$

For uniform partition：$h_{j}=h=\frac{1-0}{M+1}$ ．Then $A \xi=b$ becomes

$$
\frac{1}{h}\left[\begin{array}{ccccc}
2 & -1 & 0 & \cdots & 0 \\
-1 & 2 & -1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \cdots & 0 & -1 & 2
\end{array}\right]\left[\begin{array}{c}
\xi_{1} \\
\xi_{2} \\
\vdots \\
\xi_{M}
\end{array}\right]=\left[\begin{array}{c}
\left(f, \varphi_{1}\right) \\
\left(f, \varphi_{2}\right) \\
\vdots \\
\left(f, \varphi_{M}\right)
\end{array}\right] .
$$

Taylor＇s Theorem with Lagrange remainder

If $f \in C^{n}[a, b]$ and $f^{(n+1)}$ exists on (a, b) ，then for any points c and x in ［ a, b ］we have

$$
f(x)=P_{n}(x)+E_{n}(x),
$$

where the n－th Taylor polynomial $P_{n}(x)$ is given by

$$
P_{n}(x)=\sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(c)(x-c)^{k}
$$

and the remainder（error）term $E_{n}(x)$ is given by

$$
E_{n}(x)=\frac{1}{(n+1)!} f^{(n+1)}(\xi)(x-c)^{n+1}
$$

for some point ξ between c and x（means that either $c<\xi<x$ or $x<\xi<c$ ）．

Numerical differentiation

Assume that $u \in C^{4}[0,1]$ and $0=x_{0}<x_{2}<\cdots<x_{M}<x_{M+1}=1$ is a uniform partition of $[0,1]$ ．Then $h_{j}=h=\frac{1-0}{M+1}$ for $j=1,2, \cdots, M+1$ ．
For $i=1,2, \cdots, M$ ，we have
$u\left(x_{i}+h\right)=u\left(x_{i}\right)+u^{\prime}\left(x_{i}\right) h+\frac{1}{2} u^{\prime \prime}\left(x_{i}\right) h^{2}+\frac{1}{6} u^{(3)}\left(x_{i}\right) h^{3}+\frac{1}{24} u^{(4)}\left(\xi_{i 1}\right) h^{4}$, $u\left(x_{i}-h\right)=u\left(x_{i}\right)-u^{\prime}\left(x_{i}\right) h+\frac{1}{2} u^{\prime \prime}\left(x_{i}\right) h^{2}-\frac{1}{6} u^{(3)}\left(x_{i}\right) h^{3}+\frac{1}{24} u^{(4)}\left(\xi_{i 2}\right) h^{4}$, for some $\xi_{i 1} \in\left(x_{i}, x_{i}+h\right)$ and $\xi_{i 2} \in\left(x_{i}-h, x_{i}\right)$ ．Then $u\left(x_{i}+h\right)+u\left(x_{i}-h\right)=2 u\left(x_{i}\right)+u^{\prime \prime}\left(x_{i}\right) h^{2}+\frac{1}{24}\left\{u^{(4)}\left(\xi_{i 1}\right)+u^{(4)}\left(\xi_{i 2}\right)\right\} h^{4}$. $u^{\prime \prime}\left(x_{i}\right)=\frac{1}{h^{2}}\left\{u\left(x_{i}+h\right)-2 u\left(x_{i}\right)+u\left(x_{i}-h\right)\right\}-\frac{h^{2}}{24}\left\{u^{(4)}\left(\xi_{i 1}\right)+u^{(4)}\left(\xi_{i 2}\right)\right\}$ ． $\because u \in C^{4}[0,1]$ and $\frac{1}{2}\left\{u^{(4)}\left(\xi_{i 1}\right)+u^{(4)}\left(\xi_{i 2}\right)\right\}$ between $u^{(4)}\left(\xi_{i 1}\right)$ and $u^{(4)}\left(\mathfrak{\xi}_{i 2}\right)$ ．
\therefore By IVT，$\exists \xi_{i}$ between $\xi_{i 1}$ and $\xi_{i 2}\left(\Rightarrow \xi_{i} \in\left(x_{i}-h, x_{i}+h\right)\right)$ such that

$$
u^{(4)}\left(\xi_{i}\right)=\frac{1}{2}\left\{u^{(4)}\left(\xi_{i 1}\right)+u^{(4)}\left(\xi_{i 2}\right)\right\} .
$$

$\therefore u^{\prime \prime}\left(x_{i}\right)=\frac{1}{h^{2}}\left\{u\left(x_{i}+h\right)-2 u\left(x_{i}\right)+u\left(x_{i}-h\right)\right\}-\frac{1}{12} h^{2} u^{(4)}\left(\xi_{i}\right)$ ，
for some $\xi_{i} \in\left(x_{i}-h, x_{i}+h\right)$ ．

Finite difference method for problem（D）

$$
\left\{\begin{array}{l}
-u^{\prime \prime}(x)=f(x), \quad 0<x<1 \tag{D}\\
u(0)=u(1)=0
\end{array}\right.
$$

For $i=1,2, \cdots, M$ ，we have

$$
\begin{aligned}
& -\frac{1}{h^{2}}\left\{u\left(x_{i}+h\right)-2 u\left(x_{i}\right)+u\left(x_{i}-h\right)\right\}+\frac{1}{12} h^{2} u^{(4)}\left(\xi_{i}\right)=f\left(x_{i}\right) . \\
\Rightarrow & -\frac{1}{h^{2}}\left\{u\left(x_{i+1}\right)-2 u\left(x_{i}\right)+u\left(x_{i-1}\right)\right\}+\frac{1}{12} h^{2} u^{(4)}\left(\xi_{i}\right)=f\left(x_{i}\right) .
\end{aligned}
$$

We wish to find $U_{i} \simeq u\left(x_{i}\right)$ for $i=1,2, \cdots, M$ and $U_{0}=U_{M+1}:=0$ such that

$$
\begin{array}{rlr}
\left.-\frac{1}{h^{2}}\left\{U_{0}-2 U_{1}+U_{2}\right)\right\} & =f\left(x_{1}\right) . & (i=1) \\
\left.-\frac{1}{h^{2}}\left\{U_{1}-2 U_{2}+U_{3}\right)\right\} & =f\left(x_{2}\right) . & (i=2) \\
& \vdots \\
\left.-\frac{1}{h^{2}}\left\{U_{M-1}-2 U_{M}+U_{M+1}\right)\right\} & =f\left(x_{M}\right) . & (i=M)
\end{array}
$$

Finite difference method for problem（D）（cont＇d）

Finally，we reach at the following linear system：

$$
\frac{1}{h^{2}}\left[\begin{array}{ccccc}
2 & -1 & 0 & \cdots & 0 \\
-1 & 2 & -1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \cdots & 0 & -1 & 2
\end{array}\right]\left[\begin{array}{c}
U_{1} \\
U_{2} \\
\vdots \\
U_{M}
\end{array}\right]=\left[\begin{array}{c}
f\left(x_{1}\right) \\
f\left(x_{2}\right) \\
\vdots \\
f\left(x_{M}\right)
\end{array}\right]
$$

A comparison：what is the difference between FEM with piecewise linear basis functions and FDM for problem（D）？Answer：They are essentially the same！
Consider the first component in the right hand side：
（1）Finite difference method：$h f\left(x_{1}\right)$ ．
（2）Finite element method：

$$
\left(f, \varphi_{1}\right)=\int_{x_{0}}^{x_{2}} f(x) \varphi_{1}(x) d x \simeq f\left(x_{1}\right) \int_{x_{0}}^{x_{2}} \varphi_{1}(x) d x=h f\left(x_{1}\right) .
$$

Computer project

Consider the following one－dimensional convection－diffusion problem：

$$
\left\{\begin{array}{l}
-\varepsilon u^{\prime \prime}(x)+u^{\prime}(x)=0 \quad \text { for } x \in(0,1) \tag{*}\\
u(0)=1, u(1)=0
\end{array}\right.
$$

Write the computer codes for numerical solution of problem（＊）by using the finite difference methods on the uniform mesh of $[0,1]$ with mesh size h ：
（1）Replace $u^{\prime \prime}\left(x_{i}\right) \approx \frac{U_{i+1}-2 U_{i}+U_{i-1}}{h^{2}}$ and $u^{\prime}\left(x_{i}\right) \approx \frac{U_{i+1}-U_{i-1}}{2 h}$ and consider $(\varepsilon, h)=(0.01,0.1),(\varepsilon, h)=(0.01,0.01)$ ．Plot u_{h} ．
（2）Replace $u^{\prime \prime}\left(x_{i}\right) \approx \frac{U_{i+1}-2 U_{i}+U_{i-1}}{h^{2}}$ and $u^{\prime}\left(x_{i}\right) \approx \frac{U_{i}-U_{i-1}}{h}$（upwinding）and consider $(\varepsilon, h)=(0.01,0.1),(\varepsilon, h)=(0.01,0.01)$ ．Plot u_{h} ．

