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What are PDEs?

@ Most physical phenomena in fluid dynamics, heat transfer,
electricity, magnetism, or mechanics can be described in general
by partial differential equations (PDEs).

© APDE is an equation that contains partial derivatives and can
be written in the form of
F(x1,2x0, -+, Xp, Uy, Uy, ** + Uy, Uy s Uy, o) = 0.
e u(xq,Xp, -+ ,X,) is a function of n variables
x = (x1,xp,- - ,x;) | € R", where u is called the dependent
variable and x; is called the independent variable.

u . . o . N
° Uy = P is the partial derivative of u in the x; direction.
i
© In general, a PDE may have one solution, many solutions, or no
solution at all.

@ Some constrains are often added to the PDE so that the solution
is unique. These are often called boundary conditions or initial
conditions.
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Kinds of PDEs

@ Linearity:
o F(--+) = tiyy + xuy, 1islinear.
o F(-++) =ty +xuyy, + 1> isnonlinear.
© Order of the PDEs: The order of the highest derivative that
occurs in F is called the order of the PDE. For example,

@ Uy = Uy, second order.
@ U = Ullyxx +sinx, third order.
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Second-order linear equations in two variables

Second-order linear equation in two variables takes a general form of

Aty + Buyy + Cuyy + Duy + Euy + Fu = G.

@ Parabolic: parabolic equations describe heat flow and diffusion
processes and satisfy B> — 4AC = 0. For example,

heat equation: 1y = uyy.

@ Hyperbolic: hyperbolic equations describe vibrating system and
wave motion and satisfy BZ —4AC > 0. For example,
wave equation: Uy = Uyy.

@ Elliptic: elliptic equations describe steady-state phenomena and
satisfy B2 — 4AC < 0. For example,
Poisson’s equation:  — (i + tyy) = f(x, ).

Suh-Yuh Yan, ), Math. Dept., NCU, Taiwan Numerical PDEs —4/30



Application of Poisson’s equation in heat transfer

Let () be an open and bounded domain. Consider
—Au = *(uxx+uyy) :f(x,y) on )

is used for describing steady state temperature distribution of some
material. Three types of boundary conditions:

@ Dirichlet condition: 1 = g(s) on d(), temperature specified on
the boundary.

d
@ Neumann condition: a—u = h(s) on 0Q), heat flow across the

boundary (flux) specified, where 7 is an outward unit normal

Ju
vector. Note that El Viu-n.
n

@ Mixed condition: g—u + Au = g(s) on dQ), temperature of the

surrounding medium is specified.
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1-D heat equation

© Initial-boundary value problem (IBVP): find u(x, t) such that
= Uyx t>0,0<x<1,

u(x,()) gx) 0<x<1,
u(0,t) = a(t) t>0,
u(l,t) = b(t) t>0

@ Notations
u(x,t): unknown temperature in the rod
x is spatial coordinates and ¢ is time

82
Uxx = axg
o
Ur = afl;
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Finite difference method

@ Let

xp = th 0<i<n+1.
Note that k # h in general.

@ Recall some finite difference approximations:

F) o~ 3 (frn) —f()
F) ~ g () —fa—n)

£~ () =2 + £~ 1)

{tj = jk j>0,

1%
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Finite difference method - explicit method

@ Letv =~ u. Then

h%(v(x—kh,t) —20(x, t) + v(x — h,t)) = %(v(x,t—i—k) — v(x,t)).

@ By defining vjj = v(x;, tj), we have

1 1

© Rewrite the above equation to obtain

k
Vij+1 = i3 (Ui+l,j — 20;; + Uz’fl,j) + vij

or
Vijiy1 = (svi_llj +(1- 25)vi,]- + svi+1,j>,

with s = k/h?.
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Algorithm

inputn, k, M
h< iands « %
w; =g(th) (0<i<n+1)
t<+0
output 0, f, (wg,wq, -+, Wy11)
forj=1toMdo
vy < a(jk) and v, 11 + b(jk)
fori=1tondo
v; = (swi—1 + (1 —25)w; + swiy1)
end do
t <+ jk
outputj,t, (vo,v1, - ,Vps1)
(wOrwlr to /wn+1) — (UO, 01, /vl’l-‘rl)
end do

Suh-Yuh Yan, [&), Math. Dept., NCU, Taiwan Numerical PDEs —9/30



Stability analysis

© Assume thata(t) = b(t) = 0. At t; = jk, define
Vi= (Ul,j/ Vs, vn,j)T. Then the explicit difference equations
becomes V]‘+1 = AVj, where

[ 1—2s s
S 1—2s S
S 1—2s s

s 1—2s S
S 1-2s |

@ Note that v = Uy+1,; = 0. We know that exact solution
approaches 0 as t — co and therefore the temperature will
reduce to zero as t — oo.
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Stability analysis (continued)

@ For the numerical approximation,
Vign = AV = A(AVj_q) = --- = ATV,

© Recall the following two statements are equivalent
o lim; ;0 AV = 0 for all vectors V € R".
e p(A) <1, where p(A) is the spectral radius of matrix A.

@ Sos = k/h? should be chosen such that p(A) < 1.

The eigenvalues of Aare: \j = 1—2s(1 — cos0;), where

Gj:n+1,1<]<n

For p(A) < 1 we require —1 < 1 —2s(1 —cos¥;) < 1

This is true if and only if s < (1 — cos 9]-)71
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Stability analysis (continued)

@ The worse case cos; = —1, which does not happen since the

largestﬂj‘:n:n+1 Wehave0<s<20r 2< :k<

@ For example, h = 0.01 =k <5x107° = For0 <t < 10,the
number of time step: 0.5 x 10°.

@ Find eigenvalue of A: Note A = I — 5B, where

2 -1
-1 2 -1

-1 2 -1
-1 2
If x; is an eigenvector of B with eigenvalue y; then
(I —sB)x; = x; —spuix; = (1 —sp;)x; = Ax;.

Hence A; = 1 — sy; is an eigenvalue of A.
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Eigenvalues and eigenvectors of the tridiagonal matrix B

Let x = (sin®,sin20,--- ,sinnf) . If6 = nj%, then x is an eigenvector of

B corresponding to the eigenvalue 2 — 2 cos 6.
Proof: Please see page 621 in the textbook:

David Kincaid and Ward Cheney, Numerical Analysis: Mathematics of
Scientific Computing, Third Edition, 2002, Brooks/Cole.
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Finite difference method - implicit method

@ We continue to study the initial-boundary value problem: find
u(x, t) such that

U = Uy t>00<x<1,
u(x,0) = gx) 0<x<1,
u(0,6) = 0 t>0,

u(l,t) = 0 t>0.

@ The finite-difference equation :

hlz ( (x +h,t) —20(x,h) +o(x —h, t)) = %(v(x, t) — v(x,t—k)).

1 1
= 2 (Ui+1,j — 20;; + Uze1,j) ~x (Uz',j - Ui,j71)~

Q Lets = h% and rearrange to obtain

=501+ (1+25)v;; —sv;_1; = v;j_q, for 1 <i <.
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Stability analysis

Q Let V= (Ul,j, (S TRER vn,j)T then the method can be written as
AV; =V, 1, where A is given by

1+2s -5
—s 1+2s —s
A =
—s 1+2s
@ Solve V] = A_1Vj_1 = A_lA_lvj‘_z cee = A_jVO.

© V) is known (u(ih,0) initial condition). Here we need
p(A~1) < 1 for stability.
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Stability analysis (continued)

@ Since A = I + sB, where
2 -1
-1 2 -1

=1
-1 2
and therefore the eigenvalues of A are given by

Ai =1+ 2sp; =14 25(1 — cos ;) with §; = ;74,1 <i <n.

@ Clearly, A; > 1, since A; = 1+ 2s(1 — cos ;)
A >1=p(A ) <1
= The method is stable for all & and k.

© Note that we need to solve a tridiagonal system of linear
equation to advance each time step.
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Algorithm

inputn, k, M
h< iands « %
v =g(ih) (1<i<n)
t<0
output0, £, (v1,vz,- -+ ,0y)
fori=1ton—1do
¢i=—sandg; = —s
end do
forj=1toMdo
fori=1tondo
di=142s
end do
call tri(n,a,d, c,v;v)
t < jk
outputj, £, (v1,vy,- -+ ,vy)
end do
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The Crank-Nicolson method

We can combine the previous two methods into a 6-method

0 1-6
2 (0i+1,j — 20 + Uifl,j) T (0i+1,j—1 —20;j1+ 77141,]'71)

= Yoy—uya).

@ 0 = 0 = explicit method
@ § =1 = implicit method
@ 0 =1/2 = Crank-Nicolson (CN)
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The Crank-Nicolson method (continued)

Q@ Takings = h% and rewriting the CN method, we obtain

—80; 1+ (2+25)v;j — 50141 = 50; 11+ (2+25)v;j 1 +80i11,j-1-

©Q Again, let V= (01,]', (227N /vn,j>T and

2 -1
-1 2 -1

-1 2
The method can be written in the matrix form
(21 + sB)Vj = (2I - sB)Vj,l.
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Stability analysis

@ For stability, we need p((2I + sB) "' (2] —sB)) < 1.

Q Set A = (21+5sB) (2] —sB) with V; = AV,_;. If x; is an
eigenvector of B then

(2 —sB)x; = 2x; —sBx;
= 2X; — SHiX;
= (2 —su;)x;.
= x; is also an eigenvector of A with eigenvalues Zzﬁz

@ Tohave p((2+3sB)"'(2—3sB)) < 1, we get it if
[(2+sp) 12 —sp)| < 1.

© Because p; = 2(1 — cos8;), we see that 0 < y; < 4.

2—su:
Thus |57t | < 1,Vs = .

So, the CN method is an unconditionally stable method.
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Error analysis

@ Recall the explic:it method Vijy1 = S(vi—l,j — 22)1',]' + vi+1,j) + Uijj
Let u;; be the exact solution at (x;, t;). Then the error is given by
ei,j = ui,j — Z)l',]'.

© We replace v by u — e to obtain

Wijr1 —eijr1 = S(uiij— 2uij+ Uiy ) + Ui
—s(ej—ij — 2e;j +ejr1,) — €ij
= ejjt1 = (sel-_L]- + (1 — 25)61‘,]' + sei+1,j)

—s(ui—1j — 2uij +uip1j) + (Uije1 — wij)-
© Using these formulas
2
f"(x) & (f(x+h) —2f(x) +f(x —h)) = B (5),
gt = glt+k) —g(t) —58"(v),
we obtain (sh? = k and txy = uy)

eijr1 = (Sﬁ‘i—l,j + (1 —2s)e;; + sei+1,j) — s(Hux(x;, )
h4 2
+ﬁuxxxx(§ir tj)) + (k”t(xir tj) + %5

k2 Mtt(xi,Tj))-
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Error analysis (continued)

= Cij+1 = (SL’,'_L]‘ + (1 — 28)61"/' + SeH—Lj)
—kh? (%uxxxx(gir tj) - %uft(xi/ Ti))

@ Let us confine (x,f) totheset S = {(x,#) : 0 <x <1,0<t<T}.

1
Q PutM = 5 max [ty (%, )| + %max lug (x,1)],

Ej = (61,]‘,62,]', s /en,j)T: ||Ej||oo = 1]21%1 |6’ij|-

@ Weassumel —2s > 0:
< slei_1jl + (1 —25)|e;| + slejra,| +ki*M

|€i,j+1\
< slEjlles + (1 = 25)[IEjlloo + [ Ejlloo + K2M
< |Ejlleo + kWM.
@ Hence,
IBitlee < IEjlleo +K2M < ||Ej_s] o + 2K2M
< o <lEolleo + (i + DkH*M

= ||Ejlleo < jkH*M = ||Ejl|cc < TH*M = O(H?).
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Numerical differentiation

Assume that u € C*[a,b] anda =xg < x; < --- < xpy < Xp41 = bisa

uniform partition of [a,b]. Then h; = h = 1611&1 -, M+1.

Fori=1,2,--- ,M, we have

u(x; +h) = u(x;) +u'(x;))h + 1u”(xl)h2 % ) (x;)h® + u<4)(§ 1),
) 1

u(x; —h) = u(x;) — o (x;)h + Ju” (x;)h? — Lu® ()13 + ] ul® (&p)nt,
for some &; € (x;,x; +h) and sz € (x; — h x,)
ux; +h) +u(xg —h) = 2u(x;) + u’ (x)h* + ﬂ{“(4) (&) +u(Z)}.

'u' (x) = 2 {uCxi+ 1) —2u(x;) +u(xi =)} — o {u® (&) +u® (&) ).

“ou € CHa,b), 3{u® (&) + u® (&)} between u® (&;1) and u) ().

. By IVT, 3 ¢; between ¢;; and {p (= &; € (x; — h,x; + h)) such that
ul® (&) = Hu® (&) +u® ()}

s (x) = H{ulx +h) = 2u(x) + ulx; — )} — HRu® (),

for some &; € (x; — h,x; + h). (2nd-order approx1mat10n)
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Numerical differentiation (continued)

© Forward difference: Assume that u € C?[a,b]. Then
u(x; +h) = u(x;) + hu'(x;) + h ”(c:,‘l) for some &; € (x;,x; +h).
1
sul(x) = 7 (u(xi +h) —u(x;)) — iu '(&;). (1st-order approx.)
@ Backward difference: Assume that u € C?[a,b]. Then
(s — ) = u(x;) — e () + (&), for some & € (x; — h,x,).
1 h
sul(x) = - (u(x;) —u(x; —h)) + iu//(éi)' (1st-order approx.)
@ Centered difference: Assume that u € C3[a,b]. Then
u(xi +h) = ulx) + ' (x0) + B () + ) (Ea),
u(xi = h) = u(n) = ' (6) + 5 (6) = Gul (),

for some ;1 € (x;,x;+h) and &p € (x; — h, x;).
2
sl (xg) = Zh( u(x;+h) —u(x; —h)) + %u”(éi). (2nd-order

approximation)
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FDM for a two-point boundary value problem

@ Consider the 1-D two-point BVP:

{—u”(x) = f(x) x€(0,1),
u(0) = u(l)=0.

@ The interval [0, 1] is discretized uniformly by taking the n + 2
points, x; = ih, fori =0,1,--- ,n+1, whereh =1/(n+1).

Q Letv; ~u(x;),i=1,2,---,n,and vy := u(xg) =0,
Uyt := u(x,41) = 0 are known due to the Dirichlet BC.

© If the centered difference approximation is used for u”, the
above equation can be expressed as

(vi12vi+v,-+1) =f, i=12,-,n
— J1r - 7“7 7'ty

2
where f; := f(x;).
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The resulting linear system

The linear system obtained is of the form

AV =T,
where
2 -1
-1 2 -1
A=
-1 2 -1

V= (01102/ e /v‘rl)T and F = (hz l/h2f2/ :
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Eigen properties of A

@ The matrix A has n eigenvalues, and since A is symmetric, all
eigenvalues must be real.

© Note that the eigenvalues of A are given by
Aj=2 —2cos(jf) >0,j=1,2,--- ,n,
and the eigenvector associated with each A; is given by

V; = (sin(jo), sin(20), - -+ ,sin(nj6)) ",

where 6 = %
O Amax =2 —2cos(;75) and Amin = 2 — 2cos(;77 )-
@ What is the condition number of A?
2 nm

sin

2(n+1) 1 2 1
K(A) = — R —— ~O(n %O()
sin® oy ()’ (%)=l
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FDM for a 2-D boundary value problem

@ Consider Poisson’s problem,

?u  d%u
o425 = f inQ:=(0,1)x(0,1),
ox2  ox3
u = 0 onoQ.
@ Define the mesh size h = nlﬁ, the collection of mesh points

(x1j, %7) = (ih, jh), the approximate solution at the mesh points
v = u(xlj,xzj), i,j =0,1,--- ,n+1.
There are n? interior points ~ hiz (in3D, = h% number of points).
© The FD equations
Vi1 — 205 + Viy1j | Vi1 — 205 + 0
h2 + 3 o flJ’
00j = Un+1j = Vi = Vin+1 = 0.
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For example n = 3: natural ordering

@ We order the unknown quantities in the natural ordering

.
V = (v11, 021,031, V12, V22, Un2, V13, V23, V33) -

@ Then the corresponding linear system can be written as (see

Text, page 631)
B I 4 -1 0
AV=| -1 B —1 |V=F with B=| -1 4 -1
-1 B 0 -1 4

@ block-tridiag matrix; symmetric a;; = aj;; sparse, number of
nonzeros per row ~ 5 (independent of the mesh size 1) number
of nonzeros ~ 5n (linear in n).
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