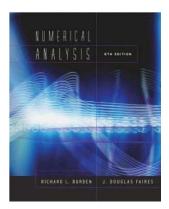
MA 3021: Numerical Analysis I Syllabus and Introduction

Suh-Yuh Yang (楊肅煜)

Department of Mathematics, National Central University Jhongli District, Taoyuan City 32001, Taiwan


syyang@math.ncu.edu.tw http://www.math.ncu.edu.tw/~syyang/

Syllabus

- Instructor: Prof. Suh-Yuh Yang (楊肅煜)
 - Office: M315, Hong-Jing Hall
 - Phone: 03-4227151 ext. 65130
- Office hours: Tuesday 10:00 ~ 11:50 am or by appointment.
- Teaching assistant: 梁長雯 / 研究室: M115 / Tel: 65109 / E-mail: treewithout@gmail.com
- **Prerequisites**: Calculus, Linear Algebra and some knowledge of a high level programming language Fortran/C/C++, or MATLAB: http://matlab.math.ncu.edu.tw/
- Assignments: Approximately every two weeks, will consist of theoretical problems or computer projects. The students are encouraged to discuss homework with other classmates. Direct copying is absolutely not allowed.
- Examinations: there will be a midterm and a final.
- Grading policy: assignments 40%, midterm 30% and final 30%.

Textbook

Richard L. Burden and J. Douglas Faires, Numerical Analysis, 8th Edition, Thomson Brooks/Cole, 2005. (歐亞書局有限公司代理)

Important dates

- The period for adding and dropping a course: 02/07-03/01, 2018
- The period for withdrawing a course: 04/02-05/18, 2018
- Midterm: 04/17 (Tue), 2018
- Final exam: 02:00-03:50 pm, 06/12 (Tue), 2018

Problem modelling

- physical phenomena: too expensive to perform all tests with prototypes.
- mathematical model (differential or integral equations): too complex or very difficult for paper/pencil solution.
- computational model (numerical methods): approximation of mathematical model.
- Scientific computing: solving mathematical problems numerically on the computer (methods/constructive proofs → algorithms → codes → display).
- Numerical analysis mathematics of scientific computing: it involves the study, development and analysis of algorithms (procedures) for obtaining numerical solutions to various mathematical problems.
- Scientific computing: interdisciplinary (跨學科) science/engineering; numerical analysis; computer science; software engineering.

This course will cover the following topics

- Mathematical preliminaries
- Solutions of nonlinear equations
- Interpolation and polynomial approximation
- Numerical differentiation and integration
- Direct and iterative methods for solving linear systems
- Numerical ordinary differential equations*
- Numerical partial differential equations*

Topic 1: Mathematical preliminaries

- Review of calculus.
- Taylor's Theorem: for functions in single or several variables.
- Rate of convergence: big *O* notation.

Topic 2: Solutions of nonlinear equations

• **Question:** given a function $f : \mathbb{R} \to \mathbb{R}$. Find a point $x^* \in \mathbb{R}$ such that

$$f(x^*)=0.$$

- If f(x) is simple, such as f(x) = 3x + 1 or $f(x) = 3x^2 4x + 1$, then one can use the root formulas. In general, one has to find the root(s) numerically.
- We will study
 - iterative methods for finding the root (bisection method, secant method, Newton type methods);
 - convergence of the methods;
 - extension to systems of nonlinear equations.

Topic 3: Interpolation and polynomial approximation

• Polynomial interpolation (多項式插值)

We are given n + 1 data points (x_i, y_i) , $i = 0, 1, \dots, n$, and we seek a polynomial p such that $p(x_i) = y_i$, $0 \le i \le n$, where $y_i = f(x_i)$ for some function f.

- Hermite interpolation: the interpolation of a function and some of its derivatives at a set of nodes. e.g., find a polynomial p such that $p(x_i) = f(x_i)$ and $p'(x_i) = f'(x_i)$, i = 0, 1.
- Spline (樣條) interpolation

A spline function of degree k is a piecewise polynomial of degree at most k having continuous derivatives of all orders up to k - 1.

Topic 4: Numerical differentiation and integration

Numerical differentiation

• Based on Taylor's theorem:

 $f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(\xi).$

- Based on polynomial interpolation: let *p* be the Lagrange interpolation of *f*. Then $f'(x) \approx p'(x)$.
- Numerical integration based on interpolation: let *p* be the Lagrange interpolation of *f*. Then $\int_a^b f(x)dx \approx \int_a^b p(x)dx$.
- Gaussian quadrature (高斯積分法): find A_i and x_i,

 $i = 0, 1, \cdots, n$, such that $\int_{a}^{b} f(x) dx \approx \sum_{i=0}^{n} A_{i} f(x_{i})$ and it will be exact for polynomials of degree $\leq 2n + 1$.

Topic 5: Direct and iterative methods for solving Ax = b

Linear system: find the vector $(x_1, x_2)^{\top}$ such that

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}_{2 \times 2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 5 \\ 6 \end{bmatrix}.$$

The size of the problem is n = 2. For small n, the system can be solved by hand, but for large n (could be as large as $n = 10^6$), one has to use computers. We will study

- vector, matrix, norm
- Gaussian elimination and matrix factorizations
- iterative methods
- error analysis

Topic 6: Numerical ordinary differential equations*

• Existence and uniqueness theory of the initial value problem:

$$\begin{cases} x'(t) = f(t,x), \\ x(t_0) = x_0. \end{cases}$$

Taylor-series method:

$$x(t+h) = x(t) + hx'(t) + \frac{h^2}{2!}x''(t) + \frac{h^3}{3!}x'''(t) + \cdots$$

- **Runge-Kutta methods:** in Taylor-series method, we have to determine *x*^{*''*}, *x*^{*'''*}, The Runge-Kutta methods avoid this difficulty.
- Multistep methods: e.g., Adams-Bashforth-formula of order 5:

$$x_{n+1} = x_n + \frac{h}{720} \{ 1901f_n - 2774f_{n-1} + 2616f_{n-2} - 1274f_{n-3} + 251f_{n-4} \}.$$

- **Convergence, stability and consistency:** for multistep method, *convergent* \iff *stable* + *consistent*.
- **Boundary value problems:** finite difference methods.

Topic 7: Numerical partial differential equations*

- Parabolic problems: finite difference method (explicit, implicit)
- Elliptic problems: finite difference & finite element methods
- Hyperbolic problems: characteristics