MA 7007：Numerical Solution of Differential Equations I Finite Difference Approximations

> Suh-Yuh Yang (楊肅暟)

Department of Mathematics，National Central University
Jhongli District，Taoyuan City 32001，Taiwan

E－mail：syyang＠math．ncu．edu．tw
Website：http：／／www．math．ncu．eud．tw／～syyang／

Introduction

Assumption：function $u(x)$ is sufficiently smooth，i．e．，we can differentiate $u(x)$ several times and each derivative is well－defined bounded function over an interval containing a particular point of interest \bar{x} ．
Suppose we want to approximate $u^{\prime}(\bar{x})$ by a finite difference approximation． Let h be a small value（ $h>0$ ）．
（1）$u^{\prime}(\bar{x}) \approx D_{+} u(\bar{x}):=\frac{u(\bar{x}+h)-u(\bar{x})}{h} \quad$（first order accurate approximation）
（2）$u^{\prime}(\bar{x}) \approx D_{-} u(\bar{x}):=\frac{u(\bar{x})-u(\bar{x}-h)}{h}$
（first order accurate approximation）
（8）$u^{\prime}(\bar{x}) \approx D_{0} u(\bar{x}):=\frac{u(\bar{x}+h)-u(\bar{x}-h)}{2 h}=\frac{1}{2}\left\{D_{+} u(\bar{x})+D_{-} u(\bar{x})\right\}$
（second order accurate approximation）
（4）$u^{\prime}(\bar{x}) \approx D_{3} u(\bar{x}):=\frac{1}{6 h}\{2 u(\bar{x}+h)+3 u(\bar{x})-6 u(\bar{x}-h)+u(\bar{x}-2 h)\}$
（third order accurate approximation）

Various finite difference approximations to $u^{\prime}(\bar{x})$

Figure 1．1．Various approximations to $u^{\prime}(\bar{x})$ interpreted as the slope of secant lines．

Example

$$
u(x)=\sin (x), \bar{x}=1, u^{\prime}(1)=\cos (1)=0.5403023
$$

Table 1．1．Errors in various finite difference approximations to $u^{\prime}(\bar{x})$ ．

h	$D_{+} u(\bar{x})$	$D_{-} u(\bar{x})$	$D_{0} u(\bar{x})$	$D_{3} u(\bar{x})$
$1.0 \mathrm{e}-01$	$-4.2939 \mathrm{e}-02$	$4.1138 \mathrm{e}-02$	$-9.0005 \mathrm{e}-04$	$6.8207 \mathrm{e}-05$
$5.0 \mathrm{e}-02$	$-2.1257 \mathrm{e}-02$	$2.0807 \mathrm{e}-02$	$-2.2510 \mathrm{e}-04$	$8.6491 \mathrm{e}-06$
$1.0 \mathrm{e}-02$	$-4.2163 \mathrm{e}-03$	$4.1983 \mathrm{e}-03$	$-9.0050 \mathrm{e}-06$	$6.9941 \mathrm{e}-08$
$5.0 \mathrm{e}-03$	$-2.1059 \mathrm{e}-03$	$2.1014 \mathrm{e}-03$	$-2.2513 \mathrm{e}-06$	$8.7540 \mathrm{e}-09$
$1.0 \mathrm{e}-03$	$-4.2083 \mathrm{e}-04$	$4.2065 \mathrm{e}-04$	$-9.0050 \mathrm{e}-08$	$6.9979 \mathrm{e}-11$

We see that

$$
\begin{aligned}
D_{+} u(\bar{x})-u^{\prime}(\bar{x}) & \approx-0.42 h \\
D_{0} u(\bar{x})-u^{\prime}(\bar{x}) & \approx-0.09 h^{2} \\
D_{3} u(\bar{x})-u^{\prime}(\bar{x}) & \approx 0.007 h^{3}
\end{aligned}
$$

Example（continued）

If the error $E(h)$ behaves like $E(h) \approx C h^{p}$ ，then $\log |E(h)| \approx \log |C|+p \log h$.

Figure 1．2．The errors in $D u(\bar{x})$ from Table 1.1 plotted against h on a log－log scale．
For $0<h_{2}<h_{1}$ sufficiently small，we expect $E\left(h_{1}\right) \approx C h_{1}^{p}$ and $E\left(h_{2}\right) \approx C h_{2}^{p}$ ．Then

$$
\log \frac{\left|E\left(h_{1}\right)\right|}{\left|E\left(h_{2}\right)\right|} \approx \log \frac{|C| h_{1}^{p}}{|C| h_{2}^{p}}=\log \left(\frac{h_{1}}{h_{2}}\right)^{p}=p \log \frac{h_{1}}{h_{2}} .
$$

Therefore，the order of convergence can be estimated by

$$
p \approx \frac{\log \left(\left|E\left(h_{1}\right)\right| /\left|E\left(h_{2}\right)\right|\right)}{\log \left(h_{1} / h_{2}\right)} .
$$

Taylor＇s Theorem and＂ O ＂notation

（1）If $f \in C^{n}[a, b]$ and $f^{(n+1)}$ exists on (a, b) ，then for any points c and x in $[a, b]$ we have

$$
f(x)=P_{n}(x)+E_{n}(x),
$$

where the n－th Taylor polynomial $P_{n}(x)$ is given by

$$
P_{n}(x)=\sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(c)(x-c)^{k}
$$

and the remainder（error）term $E_{n}(x)$ is given by

$$
E_{n}(x)=\frac{1}{(n+1)!} f^{(n+1)}(\xi)(x-c)^{n+1}
$$

for some point ξ between c and x（means that either $c<\xi<x$ or $x<\xi<c$ ）．
（2）If $f(h)$ and $g(h)$ are two functions of h ，then we say that $f(h)=O(g(h))$ as $h \rightarrow 0$ if $|f(h)| \leq C|g(h)|$ fo all h sufficiently small．

Truncation errors of $D_{+} u(\bar{x})$ and $D_{-} u(\bar{x})$
（1）Assume that $u \in C^{2}[a, b], \bar{x} \in(a, b)$ ，and $0<h \ll 1$ ．By Taylor＇s Theorem，

$$
u(\bar{x}+h)=u(\bar{x})+h u^{\prime}(\bar{x})+\frac{1}{2} h^{2} u^{\prime \prime}(\xi),
$$

for some $\xi \in(\bar{x}, \bar{x}+h)$ ．Therefore，we have

$$
\begin{aligned}
& u^{\prime}(\bar{x})=\underbrace{\frac{u(\bar{x}+h)-u(\bar{x})}{h}}_{D_{+} u(\bar{x})}-\frac{1}{2} h u^{\prime \prime}(\xi)=D_{+} u(\bar{x})-\frac{1}{2} h u^{\prime \prime}(\tilde{\xi}) . \\
& \because|\underbrace{u^{\prime}(\bar{x})-D_{+} u(\bar{x})}_{f(h)}|=\left|-\frac{1}{2} h u^{\prime \prime}(\bar{\xi})\right| \leq C|\underbrace{h}_{g(h)}|=C h \\
& \therefore u^{\prime}(\bar{x})-D_{+} u(\bar{x})=O(h) \Longrightarrow u^{\prime}(\bar{x})=D_{+} u(\bar{x})+O(h)
\end{aligned}
$$

（2）Assume that $u \in C^{2}[a, b], \bar{x} \in(a, b)$ ，and $0<h \ll 1$ ．By Taylor＇s Theorem，

$$
u(\bar{x}-h)=u(\bar{x})-h u^{\prime}(\bar{x})+\frac{1}{2} h^{2} u^{\prime \prime}(\xi),
$$

for some $\xi \in(\bar{x}-h, \bar{x})$ ．Therefore，we have

$$
u^{\prime}(\bar{x})=\underbrace{\frac{u(\bar{x})-u(\bar{x}-h)}{h}}_{D_{-} u(\bar{x})}+\frac{1}{2} h u^{\prime \prime}(\xi)=D_{-} u(\bar{x})+\frac{1}{2} h u^{\prime \prime}(\xi)=D_{-} u(\bar{x})+O(h)
$$

Truncation error of $D_{0} u(\bar{x})$

Assume that $u \in C^{3}[a, b], \bar{x} \in(a, b)$ ，and $0<h \ll 1$ ．By Taylor expansion，

$$
\begin{aligned}
& u(\bar{x}+h)=u(\bar{x})+h u^{\prime}(\bar{x})+\frac{1}{2} h^{2} u^{\prime \prime}(\bar{x})+\frac{1}{6} h^{3} u^{\prime \prime \prime}\left(\xi_{1}\right) \\
& u(\bar{x}-h)=u(\bar{x})-h u^{\prime}(\bar{x})+\frac{1}{2} h^{2} u^{\prime \prime}(\bar{x})-\frac{1}{6} h^{3} u^{\prime \prime \prime}\left(\xi_{2}\right)
\end{aligned}
$$

for some $\xi_{1} \in(\bar{x}, \bar{x}+h)$ and $\xi_{2} \in(\bar{x}-h, \bar{x})$ ．Therefore，we have

$$
\begin{aligned}
u^{\prime}(\bar{x}) & =\frac{\overbrace{\frac{u(\bar{x}+h)-u(\bar{x}-h)}{2 h}}^{D_{0} u(\bar{x})}-\frac{1}{2 h} \frac{h^{3}}{6}\left(u^{\prime \prime \prime}\left(\xi_{1}\right)+u^{\prime \prime \prime}\left(\xi_{2}\right)\right)}{} \\
& =D_{0} u(\bar{x})-\frac{h^{2}}{6} \frac{u^{\prime \prime \prime}\left(\xi_{1}\right)+u^{\prime \prime \prime}\left(\xi_{2}\right)}{2} .
\end{aligned}
$$

Since $\frac{u^{\prime \prime \prime}\left(\xi_{1}\right)+u^{\prime \prime \prime}\left(\xi_{2}\right)}{2}$ is between $u^{\prime \prime \prime}\left(\xi_{1}\right)$ and $u^{\prime \prime \prime}\left(\xi_{2}\right)$ and $u \in C^{3}[a, b]$ ，by the Intermediate Value Theorem，there exists a ξ between ξ_{1} and ξ_{2} ，hence $\xi \in(\bar{x}-h, \bar{x}+h)$ ，such that

$$
u^{\prime \prime \prime}(\xi)=\frac{u^{\prime \prime \prime}\left(\xi_{1}\right)+u^{\prime \prime \prime}\left(\xi_{2}\right)}{2}
$$

Therefore，we have

$$
u^{\prime}(\bar{x})=D_{0} u(\bar{x})-\frac{h^{2}}{6} u^{\prime \prime \prime}(\xi)=D_{0} u(\bar{x})+O\left(h^{2}\right)
$$

Truncation error of $D_{3} u(\bar{x})$

Assume that $u \in C^{4}[a, b], \bar{x} \in(a, b)$ ，and $0<h \ll 1$ ．By Taylor expansion，

$$
\begin{aligned}
u(\bar{x}+h) & =u(\bar{x})+h u^{\prime}(\bar{x})+\frac{1}{2} h^{2} u^{\prime \prime}(\bar{x})+\frac{1}{6} h^{3} u^{\prime \prime \prime}(\bar{x})+\frac{1}{4!} h^{4} u^{(4)}\left(\xi_{1}\right) \\
u(\bar{x}-h) & =u(\bar{x})-h u^{\prime}(\bar{x})+\frac{1}{2} h^{2} u^{\prime \prime}(\bar{x})-\frac{1}{6} h^{3} u^{\prime \prime \prime}(\bar{x})+\frac{1}{4!} h^{4} u^{(4)}\left(\xi_{2}\right) \\
u(\bar{x}-2 h) & =u(\bar{x})-2 h u^{\prime}(\bar{x})+\frac{1}{2}(2 h)^{2} u^{\prime \prime}(\bar{x})-\frac{1}{6}(2 h)^{3} u^{\prime \prime \prime}(\bar{x})+\frac{1}{4!}(2 h)^{4} u^{(4)}\left(\xi_{3}\right)
\end{aligned}
$$

for some $\xi_{1} \in(\bar{x}, \bar{x}+h), \xi_{2} \in(\bar{x}-h, \bar{x})$ and $\xi_{3} \in(\bar{x}-2 h, \bar{x})$ ．With these identities，we can verify that

$$
\begin{aligned}
u^{\prime}(\bar{x})= & \overbrace{\frac{1}{6 h}\{2 u(\bar{x}+h)+3 u(\bar{x})-6 u(\bar{x}-h)+u(\bar{x}-2 h)\}}^{D_{3} u(\bar{x})} \\
& -\frac{1}{6 h}\left\{\frac{2}{4!} h^{4} u^{(4)}\left(\xi_{1}\right)-\frac{6}{4!} h^{4} u^{(4)}\left(\xi_{2}\right)+\frac{16}{4!} h^{4} u^{(4)}\left(\xi_{3}\right)\right\} \\
= & D_{3} u(\bar{x})+O\left(h^{3}\right) .
\end{aligned}
$$

Method of undetermined coefficients

Suppose we want to derive a finite difference approximation to $u^{\prime}(\bar{x})$ ，

$$
u^{\prime}(\bar{x}) \approx D_{2} u(\bar{x}):=a u(\bar{x})+b u(\bar{x}-h)+c u(\bar{x}-2 h),
$$

where the coefficients a, b, c need to be determined．Using the Taylor expansion，

$$
D_{2} u(\bar{x})=(a+b+c) u(\bar{x})-(b+2 c) h u^{\prime}(\bar{x})+\frac{1}{2}(b+4 c) h^{2} u^{\prime \prime}(\bar{x})-\frac{1}{6}(b+8 c) h^{3} u^{\prime \prime \prime}(\bar{x})+O\left(h^{4}\right) .
$$

Since $u^{\prime}(\bar{x}) \approx D_{2} u(\bar{x})$ ，we need

$$
a+b+c=0, \quad b+2 c=-1 / h, \quad b+4 c=0 .
$$

Therefore $a=3 /(2 h), b=-2 / h, c=1 /(2 h)$ ，and we have

$$
D_{2} u(\bar{x})=\frac{1}{2 h}\{3 u(\bar{x})-4 u(\bar{x}-h)+u(\bar{x}-2 h)\}
$$

and

$$
D_{2} u(\bar{x})-u^{\prime}(\bar{x})=-\frac{1}{6}(b+8 c) h^{3} u^{\prime \prime \prime}(\bar{x})+O\left(h^{4}\right)=-\frac{1}{3} h^{2} u^{\prime \prime \prime}(\bar{x})+O\left(h^{3}\right)=O\left(h^{2}\right) .
$$

