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Introduction

Assumption: function u(x) is sufficiently smooth, i.e., we can differentiate u(x) several
times and each derivative is well-defined bounded function over an interval
containing a particular point of interest x̄.

Suppose we want to approximate u′(x̄) by a finite difference approximation.
Let h be a small value (h > 0).

1 u′(x̄) ≈ D+u(x̄) :=
u(x̄ + h)− u(x̄)

h
(first order accurate approximation)

2 u′(x̄) ≈ D−u(x̄) :=
u(x̄)− u(x̄− h)

h
(first order accurate approximation)

3 u′(x̄) ≈ D0u(x̄) :=
u(x̄ + h)− u(x̄− h)

2h
=

1
2

{
D+u(x̄) + D−u(x̄)

}
(second order accurate approximation)

4 u′(x̄) ≈ D3u(x̄) :=
1
6h

{
2u(x̄ + h) + 3u(x̄)− 6u(x̄− h) + u(x̄− 2h)

}
(third order accurate approximation)
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Various finite difference approximations to u′(x̄)
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4 Chapter 1. Finite Difference Approximations

Nx � h Nx Nx C h
u.x/

slope u0. Nx/

slope DCu. Nx/

slope D�u. Nx/

slope D0u. Nx/

Figure 1.1. Various approximations to u0. Nx/ interpreted as the slope of secant lines.

Each of these formulas gives a first order accurate approximation to u0. Nx/, meaning that
the size of the error is roughly proportional to h itself.

Another possibility is to use the centered approximation

D0u. Nx/ �
u. Nx C h/ � u. Nx � h/

2h
D

1

2
.DCu. Nx/C D�u. Nx//: (1.3)

This is the slope of the line interpolating u at Nx � h and Nx C h and is simply the average
of the two one-sided approximations defined above. From Figure 1.1 it should be clear
that we would expect D0u. Nx/ to give a better approximation than either of the one-sided
approximations. In fact this gives a second order accurate approximation—the error is
proportional to h2 and hence is much smaller than the error in a first order approximation
when h is small.

Other approximations are also possible, for example,

D3u. Nx/ �
1

6h
Œ2u. Nx C h/C 3u. Nx/ � 6u. Nx � h/C u. Nx � 2h/�: (1.4)

It may not be clear where this came from or why it should approximate u0 at all, but in fact
it turns out to be a third order accurate approximation—the error is proportional to h3 when
h is small.

Our first goal is to develop systematic ways to derive such formulas and to analyze
their accuracy and relative worth. First we will look at a typical example of how the errors
in these formulas compare.

Example 1.1. Let u.x/ D sin.x/ and Nx D 1; thus we are trying to approximate
u0.1/ D cos.1/ D 0:5403023. Table 1.1 shows the error Du. Nx/ � u0. Nx/ for various values
of h for each of the formulas above.

We see that DCu and D�u behave similarly although one exhibits an error that is
roughly the negative of the other. This is reasonable from Figure 1.1 and explains why
D0u, the average of the two, has an error that is much smaller than both.
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Example

u(x) = sin(x), x̄ = 1, u′(1) = cos(1) = 0.5403023
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1.1. Truncation errors 5

Table 1.1. Errors in various finite difference approximations to u0. Nx/.

h DCu. Nx/ D�u. Nx/ D0u. Nx/ D3u. Nx/
1.0e�01 �4.2939e�02 4.1138e�02 �9.0005e�04 6.8207e�05
5.0e�02 �2.1257e�02 2.0807e�02 �2.2510e�04 8.6491e�06
1.0e�02 �4.2163e�03 4.1983e�03 �9.0050e�06 6.9941e�08
5.0e�03 �2.1059e�03 2.1014e�03 �2.2513e�06 8.7540e�09
1.0e�03 �4.2083e�04 4.2065e�04 �9.0050e�08 6.9979e�11

We see that

DCu. Nx/ � u0. Nx/ � �0:42h;

D0u. Nx/ � u0. Nx/ � �0:09h2;

D3u. Nx/ � u0. Nx/ � 0:007h3;

confirming that these methods are first order, second order, and third order accurate,
respectively.

Figure 1.2 shows these errors plotted against h on a log-log scale. This is a good way
to plot errors when we expect them to behave like some power of h, since if the error E.h/

behaves like
E.h/ � C hp;

then
log jE.h/j � log jC j C p log h:

So on a log-log scale the error behaves linearly with a slope that is equal to p, the order of
accuracy.

1.1 Truncation errors
The standard approach to analyzing the error in a finite difference approximation is to
expand each of the function values of u in a Taylor series about the point Nx, e.g.,

u. Nx C h/ D u. Nx/C hu0. Nx/C
1

2
h2u00. Nx/C

1

6
h3u000. Nx/C O.h4/; (1.5a)

u. Nx � h/ D u. Nx/ � hu0. Nx/C
1

2
h2u00. Nx/ �

1

6
h3u000. Nx/C O.h4/: (1.5b)

These expansions are valid provided that u is sufficiently smooth. Readers unfamiliar with
the “big-oh” notation O.h4/ are advised to read Section A.2 of Appendix A at this point
since this notation will be heavily used and a proper understanding of its use is critical.

Using (1.5a) allows us to compute that

DCu. Nx/ D
u. Nx C h/ � u. Nx/

h
D u0. Nx/C

1

2
hu00. Nx/C

1

6
h2u000. Nx/C O.h3/:
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Example (continued)

If the error E(h) behaves like E(h) ≈ Chp, then log |E(h)| ≈ log |C|+ p log h.
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6 Chapter 1. Finite Difference Approximations
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Figure 1.2. The errors in Du. Nx/ from Table 1.1 plotted against h on a log-log scale.

Recall that Nx is a fixed point so that u00. Nx/; u000. Nx/, etc., are fixed constants independent of
h. They depend on u of course, but the function is also fixed as we vary h.

For h sufficiently small, the error will be dominated by the first term 1
2
hu00. Nx/ and all

the other terms will be negligible compared to this term, so we expect the error to behave
roughly like a constant times h, where the constant has the value 1

2
u00. Nx/.

Note that in Example 1.1, where u.x/ D sin x, we have 1
2
u00.1/ D �0:4207355,

which agrees with the behavior seen in Table 1.1.
Similarly, from (1.5b) we can compute that the error in D�u. Nx/ is

D�u. Nx/ � u0. Nx/ D �
1

2
hu00. Nx/C

1

6
h2u000. Nx/C O.h3/;

which also agrees with our expectations.
Combining (1.5a) and (1.5b) shows that

u. Nx C h/ � u. Nx � h/ D 2hu0. Nx/C
1

3
h3u000. Nx/C O.h5/

so that

D0u. Nx/ � u0. Nx/ D
1

6
h2u000. Nx/C O.h4/: (1.6)

This confirms the second order accuracy of this approximation and again agrees with what
is seen in Table 1.1, since in the context of Example 1.1 we have

1

6
u000. Nx/ D �

1

6
cos.1/ D �0:09005038:

Note that all the odd order terms drop out of the Taylor series expansion (1.6) for D0u. Nx/.
This is typical with centered approximations and typically leads to a higher order approxi-
mation.

For 0 < h2 < h1 sufficiently small, we expect E(h1) ≈ Chp
1 and E(h2) ≈ Chp

2. Then

log
|E(h1)|
|E(h2)|

≈ log
|C|hp

1

|C|hp
2
= log

( h1

h2

)p
= p log

h1

h2
.

Therefore, the order of convergence can be estimated by

p ≈ log(|E(h1)|/|E(h2)|)
log(h1/h2)

.
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Taylor’s Theorem and “O” notation

1 If f ∈ Cn[a, b] and f (n+1) exists on (a, b), then for any points c and x in [a, b] we
have

f (x) = Pn(x) + En(x),

where the n-th Taylor polynomial Pn(x) is given by

Pn(x) =
n

∑
k=0

1
k!

f (k)(c)(x− c)k

and the remainder (error) term En(x) is given by

En(x) =
1

(n + 1)!
f (n+1)(ξ)(x− c)n+1

for some point ξ between c and x (means that either c < ξ < x or x < ξ < c).
2 If f (h) and g(h) are two functions of h, then we say that f (h) = O(g(h)) as h→ 0

if |f (h)| ≤ C|g(h)| fo all h sufficiently small.
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Truncation errors of D+u(x̄) and D−u(x̄)

1 Assume that u ∈ C2[a, b], x̄ ∈ (a, b), and 0 < h� 1. By Taylor’s Theorem,

u(x̄ + h) = u(x̄) + hu′(x̄) +
1
2

h2u′′(ξ),

for some ξ ∈ (x̄, x̄ + h). Therefore, we have

u′(x̄) =
u(x̄ + h)− u(x̄)

h︸ ︷︷ ︸
D+u(x̄)

− 1
2

hu′′(ξ) = D+u(x̄)− 1
2

hu′′(ξ).

∵ | u′(x̄)−D+u(x̄)︸ ︷︷ ︸
f (h)

| = | − 1
2 hu′′(ξ)| ≤ C| h︸︷︷︸

g(h)

| = Ch

∴ u′(x̄)−D+u(x̄) = O(h) =⇒ u′(x̄) = D+u(x̄) + O(h)

2 Assume that u ∈ C2[a, b], x̄ ∈ (a, b), and 0 < h� 1. By Taylor’s Theorem,

u(x̄− h) = u(x̄)− hu′(x̄) +
1
2

h2u′′(ξ),

for some ξ ∈ (x̄− h, x̄). Therefore, we have

u′(x̄) =
u(x̄)− u(x̄− h)

h︸ ︷︷ ︸
D−u(x̄)

+
1
2

hu′′(ξ) = D−u(x̄) +
1
2

hu′′(ξ) = D−u(x̄) + O(h).
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Truncation error of D0u(x̄)

Assume that u ∈ C3[a, b], x̄ ∈ (a, b), and 0 < h� 1. By Taylor expansion,

u(x̄ + h) = u(x̄) + hu′(x̄) +
1
2

h2u′′(x̄) +
1
6

h3u′′′(ξ1),

u(x̄− h) = u(x̄)− hu′(x̄) +
1
2

h2u′′(x̄)− 1
6

h3u′′′(ξ2),

for some ξ1 ∈ (x̄, x̄ + h) and ξ2 ∈ (x̄− h, x̄). Therefore, we have

u′(x̄) =

D0u(x̄)︷ ︸︸ ︷
u(x̄ + h)− u(x̄− h)

2h
− 1

2h
h3

6

(
u′′′(ξ1) + u′′′(ξ2)

)
= D0u(x̄)− h2

6
u′′′(ξ1) + u′′′(ξ2)

2
.

Since u′′′(ξ1)+u′′′(ξ2)
2 is between u′′′(ξ1) and u′′′(ξ2) and u ∈ C3[a, b], by the Intermediate

Value Theorem, there exists a ξ between ξ1 and ξ2, hence ξ ∈ (x̄− h, x̄ + h), such that

u′′′(ξ) =
u′′′(ξ1) + u′′′(ξ2)

2
.

Therefore, we have

u′(x̄) = D0u(x̄)− h2

6
u′′′(ξ) = D0u(x̄) + O(h2).
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Truncation error of D3u(x̄)

Assume that u ∈ C4[a, b], x̄ ∈ (a, b), and 0 < h� 1. By Taylor expansion,

u(x̄ + h) = u(x̄) + hu′(x̄) +
1
2

h2u′′(x̄) +
1
6

h3u′′′(x̄) +
1
4!

h4u(4)(ξ1),

u(x̄− h) = u(x̄)− hu′(x̄) +
1
2

h2u′′(x̄)− 1
6

h3u′′′(x̄) +
1
4!

h4u(4)(ξ2),

u(x̄− 2h) = u(x̄)− 2hu′(x̄) +
1
2
(2h)2u′′(x̄)− 1

6
(2h)3u′′′(x̄) +

1
4!
(2h)4u(4)(ξ3),

for some ξ1 ∈ (x̄, x̄ + h), ξ2 ∈ (x̄− h, x̄) and ξ3 ∈ (x̄− 2h, x̄). With these identities, we
can verify that

u′(x̄) =

D3u(x̄)︷ ︸︸ ︷
1

6h

{
2u(x̄ + h) + 3u(x̄)− 6u(x̄− h) + u(x̄− 2h)

}
− 1

6h

{ 2
4!

h4u(4)(ξ1)−
6
4!

h4u(4)(ξ2) +
16
4!

h4u(4)(ξ3)
}

= D3u(x̄) + O(h3).
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Method of undetermined coefficients

Suppose we want to derive a finite difference approximation to u′(x̄),

u′(x̄) ≈ D2u(x̄) := au(x̄) + bu(x̄− h) + cu(x̄− 2h),

where the coefficients a, b, c need to be determined. Using the Taylor expansion,

D2u(x̄) = (a+ b+ c)u(x̄)− (b+ 2c)hu′(x̄)+
1
2
(b+ 4c)h2u′′(x̄)− 1

6
(b+ 8c)h3u′′′(x̄)+O(h4).

Since u′(x̄) ≈ D2u(x̄), we need

a + b + c = 0, b + 2c = −1/h, b + 4c = 0.

Therefore a = 3/(2h), b = −2/h, c = 1/(2h), and we have

D2u(x̄) =
1
2h

{
3u(x̄)− 4u(x̄− h) + u(x̄− 2h)

}
and

D2u(x̄)− u′(x̄) = − 1
6
(b + 8c)h3u′′′(x̄) + O(h4) = − 1

3
h2u′′′(x̄) + O(h3) = O(h2).
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