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Advection equation (‘F-Ii 7 12)

We consider the scalar advection equation
ur+au, =0, for —oo <x<oo,t>0,
where a is a constant. For the Cauchy problem we also need initial data

u(x,0) = n(x).
@ This is the simplest example of a hyperbolic equation.

@ The exact solution is given by u(x,t) = #(x — at) and a is the velocity of the wave
profile. Note that let x —at = c thent = (x —¢)/a.
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Forward difference method and Lax-Friedrichs method

One natural discretization of u; + auy = 0 would be the forward difference method:

n+l _ ym
- e (w—ur)
k 2h j+1 j=1)
where we use the standard centered difference in space and a forward difference in

time. This is an explicit method since we can compute each u]ml explicitly in terms of
the previous data:

Un+1 u]n _ %( - ;171).

In practice this method is not useful because of stability considerations, as we will see
later. A minor modification gives a more useful method:

it = ;< -1+ 1+1>*%< = UL,

which we call the Lax-Friedrichs method.
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Some remarks on the Lax-Friedrichs method

@ Because of the low accuracy, this method is not commonly used in practice!
@ We will show later that the Lax-Friedrichs method is Lax-Richtmyer stable,

ak . - :
provided 7 < 1. This stability restriction allows us to use a time step

k= 0O(h).
@ Note that
uy(x,t) = 1’ (x —at),
up(x, t) = —auy(x,t) = —ay’(x — at).
The time derivative u; is larger in magnitude than u, by a factor of 4, and so we
would expect the time step required to achieve temporal resolution consistent

with the spatial resolution /1 to be smaller by a factor of a. This suggests that the
relation k ~ h/a would be reasonable in practice.

Suh-Yuh Y 5 4E), Math. Dept., N i Hyperbolic Equations —4/26



Initial boundary value problem (IBVP)

@ Cauchy problem: advection equation on infinite 1D domain
urt+au, =0, —oco<x<oo, t>0

with initial data u(x,0) = #(x) for —oco < x < co.
@ Initial boundary value problem: advection equation on finite 1D domain

uptau, =0, 0<x<1, t>0

with initial data u(x,0) = #(x), 0 < x < 1 and boundary condition at the inflow

boundary:

@ Ifa > 0, need a boundary condition at x = 0: u(0,t) = go(t) fort > 0. In
this case, x = 0 is called the inflow boundary and x = 1is called the
outflow boundary.

@ Ifa < 0, need a boundary condition at x = 1: u(1,t) = go(¢) fort > 0. In
this case, x = 1 is called the inflow boundary and x = 0 is called the
outflow boundary.
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Periodic boundary conditions and MOL discretization

@ For analysis purposes we can obtain a nice MOL discretization if we consider the
periodic boundary conditions:

u(0,8) = u(1,8), >0,

and in this case, the value U (t) = Uy,41(t) along the boundaries is another
unknown and we must introduce one of these into the vector U(t).

@ If we introduce Uy, 1(t), then we have the vector of grid values
U(t) = [Uy(t), Ua(t), -+, Upy1(H)] 7. For 2 < j < m we have the ODE

uj(t) = —;—h (UjH(t) - Ujfl(f)>'

while the first and last equations are modified using the periodicity:

U = =5 (L)~ U (®),

a

— (Ul(t) - Um(t)>4

:n+1 (t)
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Stability analysis

The IVP of the system of ODEs can be written as:

u'(t) = AU(t) and Ui(0) = n(x;) for1 <j<m+1,

where
0 1 -1
-1 0 1
a -0 ! (m+1)x (m+1)
A= —— RO x(m )
2h S <
-1 0 1
1 -1 0
Note that this matrix is skew-symmetric (AT = —A) and so its eigenvalues must be

pure imaginary. In face, the eigenvalues are

Ap = *%Sin(Zﬂ.’ph), p=12--,m+1

The corresponding eigenvector #” has components
W =& =12, m+ 1.

The eigenvalues lie on the imaginary axis between —ia/h and ia/h.
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Recall stability region of some methods for IVP
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The forward difference method

Applying the forward Euler time discretization to the IVP, U’ (t) = AU(t) and

U;(0) = 5(xj) for 1 <j < m+ 1, we have the forward difference method:

ak
ut = - 2 (U - ).

@ Stability: We must require |1 + kA| < 1 for each eigenvalue and the stability
region S is the unit circle centered at —1. However, this mehtod is unstable for
any fixed mesh ratio k/} since the eigenvalues A, are imaginary, the values kA,
will not lie in S.

@ Convergence: This method will be convergent if we let k — O faster than h.
Suppose we take k = h?, B = I + kA. Then

2
11 + kA2 :p((z—kA)(1+kA)) = p(I—szz) < 1+kZZ—2 =1+
Thus, if nk < T, then we have
(1 +KAY"[l2 < (1+ak)"/2 < &°T/2,

It is Lax-Richtmyer stable and hence the method is convergent if k = /2.

Suh-Yuh Y Math. Dept., NC Hyperbolic Equations - 9/26



The leapfrog method

If we apply the midpoint method to the IVP, U’ (t) = AU(t) and U;(0) = #(x;) for
1<j<m+1,ie,

un+1 u"- 1 + 2kAU",
then we obtain the so-called leapfrog method for the advection equation,

k
Un+1 un 1 _ %(u;l+1 U}‘/’,l)-

This is a 3-level explicit method and is second order accurate in both space and time.

Stability: Rcall from Section 7.3 (see also page 8) that the stability region of the
midpoint method is the interval ix for —1 < & < 1 of the imaginary axis. Hence, the
leapfrog method is stable for the advection equation, provided |ak/h| < 1 is satisfied
(= k/\p € Smidpoint)'

Suh-Yuh Yan, Math. Dept., NC Hyperbolic Equations — 10/26



The Lax-Friedrichs method

@ Recall the Lax-Friedrichs method

o) - ().

We can rewrite the method as (by ”+U}’ — U}’ )

w = - %( - U) + %(u;',l —2Up Uy ).

This can be rearranged to give

T2k

1
W W, u\ g (U, 2
KTl o 2% 2 :

@ The right-hand side vanishes as k, 1 — 0 (assuming k/h is fixed)
— consistent with u; + au, = 0.

@ It looks more like a discretization of the advection-diffusion equation,

Uy + auy = €y, wheree = hz/(Zk).

Suh-Yuh Yang (15 ), Math. Dept., NCU, a Hyperbolic Equations - 11/26



Stability analysis of the Lax-Friedrichs method

@ The Lax-Friedrichs method can be viewed as a froward Euler discretization of
the system of ODEs U’ (t) = A.U(t) with e = h?/(2k) and

0 1 -1 -2 1 1
-1 0 1 1 -2 1
-1 0 1 1 -2 1
A= L&
¢ 2n n2
-1 0 1 1 -2 1
1 -1 0 1 1 -2

@ The eigenvalues of A, are

2¢e

ia .
fp = — = sin(27tph) — 2

3 (1—cos(27rph)>, p=12-- ,m+1

@ The values ky, lie on an ellipse centered at
—2ke/h? = —2k(h?/2k) /W = —1

with semi-axes of length 2ke/h? = 1 in the x-direction and ak/h in the y-direction.
Thus, the Lax-Friedrichs method is stable if |ak/h| <1 (= ktip € Storward Euler)-
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kyp for various values e: h = 1/50,k = 0.8handa =1

(a) € = 0.0 (Forward Euler) (b) € = 0.001
(c) € =0.005 (d) € = 0.008 (Lax-Wendroff)
(e) € = 0.0125 (Lax-Friedrichs) (f) e =0.014
o ° °oy o o 00%
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The Lax-Wendroff method

Applying the Taylor series expansion directly to u; 4 au, = 0, we have
u(x, t+k) =u(x,t) +kue(x, t) + %kzu”(x, )+
Replacing u; by —auy and uy = (—auy)r = —a(us)y = —a(—auy)x = APy gives
u(x, t +k) =u(x,t) —kaue(x, t) + %kzazuxx(x, £+

If we now use the standard centered approximation to uy and uy, and drop the higher
order terms, we obtain the Lax-Wendroff method

wr! = u]"f%( -y )+“2:2 (upy —2ur +uy,).

This is a 2-level, 3-point, explicit method and is second order accurate in both space
and time.
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Stability analysis of the Lax-Wendroff method

@ The Lax-Wendroff method can be viewed as forward Euler time discretization
applied to U’ (t) = A U(t) with e = a%k/2 (instead of the value & = h?/(2k) used
in Lax-Friedrichs). Then we have

ak

kuy = fi(ah—k) sin(prth) — (W)z(l — cos(pnh)).

@ These values all lie on an ellipse centered at —(ak/h)? with semi-axes of length
(ak/h)? and |ak/h|.

@ The method is stable if [ak/h| < 1 (= kip € Sforward Euler), With exactly the
same time step restriction as required for Lax-Friedrichs.

@ The Lax-Wendroff method has the minimal amount of numerical damping
needed to bring the values ky, within the stability region, see the figure on page
13.
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Upwind methods

@ Consider one-sided approximation to uy in the advection equation, e.g.,

(X, t) ~ %(LI] — Uj,l) or uy(xj,t) =~ %(UJH — Uj).

@ Fora > 0:
u”“—uﬂf%(u"fu") stable if0 < %X <1
i T T p\7i j=1) =
Fora < 0:
=g - g e bleif —1< % <0
i *j_ﬁ(jﬂ_j)' stable if — <5 <0

First order accurate in both space and time.

@ It is natural to use nonsymmetric approximation to uy in the advection equation,
since the equation models translation at speed a.
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Stability analysis of upwind methods

@ The upwind method for a > 0 can be rewritten as

)+ - )

which is the froward Euler discretization of U’ (t) = A U(t) with e = ah/2. Then
kpy = — 1k 0y — 2k h =
Py =" sin(27tph) — = (1fcos(2np )), p=12---,m+1

These values all lie on a circle centered at —ak/h with radius ak/h. The method is
stable, provided 0 < ak/h < 1. (stable if —1 < ak/h < 0 fora < 0)

@ The three methods Lax-Wendroff, upwind, and Lax-Friedrichs, can all be written
as approximations to the advection-diffusion equation u; + auy = euy, with
different ¢,

a2k ahv ah h? ah

W= = = —, E€UP= =, ELF= = = —.
W= 27 UPT gy Tk T o

where v = % Note that ejyy = veyp and eyp = vepg. If 0 < v < 1 then

erw < eup < erp and the method is stable for any value of € between g1y and

ELE.
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The Beam-Warming method

A second order accurate method with the same one-sided character can be derived by
following the derivation of the Lax-Wendroff method, but using one-sided
approximations to uy and uyy at x;. This results in the Beam-Warming method:

@ Fora >0,

urtt = w— (s —aur  ur +ﬁ ur —2ur, + U
i 2h J j—1 j=2 212 J j—1 =2 )"

— stableif 0 < v < 2.
@ Fora <0,

un+1 ur — ak Un 4 n a2k2 U ur
i = o | 73U AU — U | S | U - 2Uf U, )

— stableif -2 < v < 0.
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Von Neumann analysis

Letv = ak/h, U} := ¢/ and u;‘“ =g@ur.
@ Upwind method: Fora > 0, we have
() =1 —v)+ve

and
Ig(@)| <1+<=0<v<1

@ Lax-Friedrichs:

Yo Zien e\ 1 (ien  —ien
2 () = v (e - e )
cos(¢h) — visin(¢h).

8(¢)

We have
8()* = cos®(§h) + v?sin*(¢h) <1 += |v| < 1.

Suh-Yuh Yan, Math. Dept., NC Va Hyperbolic Equations - 19/26



Von Neumann analysis (cont.)

@ Lax-Wendroff:

8(¢)

1— %V<ei§h _ e—i;‘h) " %Vz (eigh oy e—igh)

= 1—ivsin(¢h) +12 (cos(gh) - 1)

= 1—iv{2sin(¢h/2)cos(¢h/2)} — v*{2sin®(¢h/2)}.
= [g(&)? =1 - 4*(1—v?)sin*(¢h/2)
-0 < sin*(&h/2) < 1 for all § = stable if |v| < 1.

@ Leapfrog:
8(8)* =1 - 2visin(Zh)3(3),
= stable if |v| < 1 (cf. Example 7.7).
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Characteristic tracing and interpolation

Consider the case 0 < ak/h < 1 and the value u(xj, ty41). Tracing the characteristic
back over time step k from the grid point x; results in the picture shown in figure (a)
below.
u(xj, tyy1) = u(xj —ak, ),
where x;_1 < x; —ak < x;.
@ Find U;’“ by linear interpolation between U]’»[l and U]’.T:

ur—ur
U]’Hl = plyj—ak) = U + ((xj — ak) — x;) (jh])
= U]” — Hh—k (u]” — ]'11) — first order upwind.

@ Quadratic interpolation U]’Ll, LI]”, and LI]-’Lrl = Lax-Wendroff
@ Quadratic interpolation U}Lz, U/’-ﬂl, and LI;’ (0 < ak/h < 2) = Beam-Warming

h h

ny1—e * hd

Xj-1 Xi Xj Xj+1

(a) ak (b) T —ak
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Domain of dependence

@ As an example, we consider the advection equation u; 4 1y = 0. The solution
u(X, T) depends on the initial data 77(x) at only a single point x = X — aT. We say
the domain of dependence of the point (X, T) is D(X,T) = {X — aT}. For the
hyperbolic system (Section 10.10), u; + Auy = 0, then we can show that
D(X,T):={X—-ApT: p=1,---,s}, where we assume that Ay, 1 < p <5, are
distinct real eigenvalues of A.

@ For a finite difference method, we define the domain of dependence of a grid
point (x;j, t,) to be the set of grid points x; at the initial time t = 0 with the
property that the initial value U? at x; has an effect on the solution Us. e.g,, for
Lax—Wendroff, D(x]‘, tz) = {x]'_z,x]'_l,x]‘,xj'+1,x]'+2} and
D(xj,ty) = {xj-a,%j 3, ,Xj, ", Xj13,Xj 14}

Io. Io.
(a) Xj-2 Xj Xj+2 (b) Xj-4 Xj Xj+4

Numerical domain of dependence of a grid point when using a 3-point explicit
method (e.g., Lax-Wendroff). (a) t, = tp; (b) ty, = ta.
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The Courant-Friedrichs-Lewy (CFL) condition

If k/h = r fixed, then the numerical domain of dependence of the point (X, T)
will fill in the interval [X — T/r, X + T/r]. This region must contain the true
domain of dependence D for the PDE. e.g., for the advection equation

us + uy = 0, we have

ak

T T
X—7§X—aT§X+? <~ |a| <1/ror 7

<1

Courant-Friendrichs-Lewy (CFL) condition:

A numerical method can be convergent only if its numerical domain of
dependence contains the true domain of dependence of the PDE, at least in the
limit as k, 1 — 0. (Courant, Friedrichs and Lewy, Math. Ann.,1928).

For the Lax-Friedrichs, leapfrog, and Lax-Wendroff methods the condition on k
and / required by the CFL condition is exactly the stability restriction we derived
earlier.

It is important to note that in general the CFL condition is only a necessary
condition. If it is violated, then the method cannot be convergent. If it is satisfied,
then the method might be convergent.
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Some remarks

@ The forward difference method
n+1 __ _ % n - qn
= Uy - g (U — )

is always unstable even the CFL condition |ak/h| < 1 is satisfied.

@ The Beam-Warming method (a2 > 0),

wrtt — - T (g g +ur +ﬁ ur—out  +ur
i ] -1 j—2 212 ] j—1 j=2

has a 3-point one-sided stencil. The CFL condition is satisfied if 0 < ak/h < 2.
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Numerical example

@ Consider the advection equation u; + 1, = 0 with the periodic boundary
condition and the initial data at time t = 0 given by

u(x,0) = 7(x) = exp{—20(x — 2)2} + exp{—(x —5)%}.

@ Computational domain: 0 < x < 25, T = 17, so the exact solution is simply the
initial data shifted by 17 units.
@ h =0.05,k = 0.8h, i.e., the Courant number is ak/h = 0.8.
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Some numerical results

Upwind scheme at T=17

initial data
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