MA 7007：Numerical Solution of Differential Equations I Advection Equations and Hyperbolic Systems

> Suh-Yuh Yang (楊肅暗)

Department of Mathematics，National Central University
Jhongli District，Taoyuan City 32001，Taiwan

E－mail：syyang＠math．ncu．edu．tw
Website：http：／／www．math．ncu．eud．tw／～syyang／

Advection equation（平流方程）

We consider the scalar advection equation

$$
u_{t}+a u_{x}=0, \quad \text { for }-\infty<x<\infty, t>0,
$$

where a is a constant．For the Cauchy problem we also need initial data

$$
u(x, 0)=\eta(x) .
$$

－This is the simplest example of a hyperbolic equation．
－The exact solution is given by $u(x, t)=\eta(x-a t)$ and a is the velocity of the wave profile．Note that let $x-a t=c$ then $t=(x-c) / a$ ．

Forward difference method and Lax－Friedrichs method

One natural discretization of $u_{t}+a u_{x}=0$ would be the forward difference method：

$$
\frac{U_{j}^{n+1}-U_{j}^{n}}{k}=-\frac{a}{2 h}\left(U_{j+1}^{n}-U_{j-1}^{n}\right),
$$

where we use the standard centered difference in space and a forward difference in time．This is an explicit method since we can compute each U_{j}^{n+1} explicitly in terms of the previous data：

$$
U_{j}^{n+1}=U_{j}^{n}-\frac{a k}{2 h}\left(U_{j+1}^{n}-U_{j-1}^{n}\right)
$$

In practice this method is not useful because of stability considerations，as we will see later．A minor modification gives a more useful method：

$$
U_{j}^{n+1}=\frac{1}{2}\left(U_{j-1}^{n}+U_{j+1}^{n}\right)-\frac{a k}{2 h}\left(U_{j+1}^{n}-U_{j-1}^{n}\right)
$$

which we call the Lax－Friedrichs method．

Some remarks on the Lax－Friedrichs method

－Because of the low accuracy，this method is not commonly used in practice！
－We will show later that the Lax－Friedrichs method is Lax－Richtmyer stable， provided $\left|\frac{a k}{h}\right| \leq 1$ ．This stability restriction allows us to use a time step $k=O(h)$ ．
－Note that

$$
\begin{aligned}
& u_{x}(x, t)=\eta^{\prime}(x-a t), \\
& u_{t}(x, t)=-a u_{x}(x, t)=-a \eta^{\prime}(x-a t) .
\end{aligned}
$$

The time derivative u_{t} is larger in magnitude than u_{x} by a factor of a ，and so we would expect the time step required to achieve temporal resolution consistent with the spatial resolution h to be smaller by a factor of a ．This suggests that the relation $k \approx h / a$ would be reasonable in practice．

Initial boundary value problem（IBVP）

－Cauchy problem：advection equation on infinite 1D domain

$$
u_{t}+a u_{x}=0, \quad-\infty<x<\infty, \quad t>0
$$

with initial data $u(x, 0)=\eta(x)$ for $-\infty<x<\infty$ ．
－Initial boundary value problem：advection equation on finite 1D domain

$$
u_{t}+a u_{x}=0, \quad 0<x<1, \quad t>0
$$

with initial data $u(x, 0)=\eta(x), 0 \leq x \leq 1$ and boundary condition at the inflow boundary：
－If $a>0$ ，need a boundary condition at $x=0: u(0, t)=g_{0}(t)$ for $t \geq 0$ ．In this case，$x=0$ is called the inflow boundary and $x=1$ is called the outflow boundary．
－If $a<0$ ，need a boundary condition at $x=1: u(1, t)=g_{0}(t)$ for $t \geq 0$ ．In this case，$x=1$ is called the inflow boundary and $x=0$ is called the outflow boundary．

Periodic boundary conditions and MOL discretization

－For analysis purposes we can obtain a nice MOL discretization if we consider the periodic boundary conditions：

$$
u(0, t)=u(1, t), \quad t \geq 0,
$$

and in this case，the value $U_{0}(t)=U_{m+1}(t)$ along the boundaries is another unknown and we must introduce one of these into the vector $U(t)$ ．
－If we introduce $U_{m+1}(t)$ ，then we have the vector of grid values $U(t)=\left[U_{1}(t), U_{2}(t), \cdots, U_{m+1}(t)\right]^{\top}$ ．For $2 \leq j \leq m$ we have the ODE

$$
U_{j}^{\prime}(t)=-\frac{a}{2 h}\left(U_{j+1}(t)-U_{j-1}(t)\right)
$$

while the first and last equations are modified using the periodicity：

$$
\begin{aligned}
U_{1}^{\prime}(t) & =-\frac{a}{2 h}\left(U_{2}(t)-U_{m+1}(t)\right) \\
U_{m+1}^{\prime}(t) & =-\frac{a}{2 h}\left(U_{1}(t)-U_{m}(t)\right)
\end{aligned}
$$

Stability analysis

The IVP of the system of ODEs can be written as：

$$
U^{\prime}(t)=A U(t) \quad \text { and } \quad U_{j}(0)=\eta\left(x_{j}\right) \text { for } 1 \leq j \leq m+1,
$$

where

$$
A=-\frac{a}{2 h}\left[\begin{array}{cccccc}
0 & 1 & & & & -1 \\
-1 & 0 & 1 & & & \\
& -1 & 0 & 1 & & \\
& & \ddots & \ddots & \ddots & \\
& & & -1 & 0 & 1 \\
1 & & & & -1 & 0
\end{array}\right] \in \mathbb{R}^{(m+1) \times(m+1)} .
$$

Note that this matrix is skew－symmetric $\left(A^{\top}=-A\right)$ and so its eigenvalues must be pure imaginary．In face，the eigenvalues are

$$
\lambda_{p}=-\frac{i a}{h} \sin (2 \pi p h), \quad p=1,2, \cdots, m+1 .
$$

The corresponding eigenvector u^{p} has components

$$
u_{j}^{p}=e^{2 \pi i p j h}, \quad j=1,2, \cdots, m+1 .
$$

The eigenvalues lie on the imaginary axis between $-i a / h$ and $i a / h$ ．

Recall stability region of some methods for IVP

The forward difference method

Applying the forward Euler time discretization to the IVP，$U^{\prime}(t)=A U(t)$ and $U_{j}(0)=\eta\left(x_{j}\right)$ for $1 \leq j \leq m+1$ ，we have the forward difference method：

$$
U_{j}^{n+1}=U_{j}^{n}-\frac{a k}{2 h}\left(U_{j+1}^{n}-U_{j-1}^{n}\right)
$$

－Stability：We must require $|1+k \lambda| \leq 1$ for each eigenvalue and the stability region \mathcal{S} is the unit circle centered at -1 ．However，this mehtod is unstable for any fixed mesh ratio k / h since the eigenvalues λ_{p} are imaginary，the values $k \lambda_{p}$ will not lie in \mathcal{S} ．
－Convergence：This method will be convergent if we let $k \rightarrow 0$ faster than h ． Suppose we take $k=h^{2}, B=I+k A$ ．Then

$$
\|1+k A\|_{2}^{2}=\rho((I-k A)(I+k A))=\rho\left(I-k^{2} A^{2}\right) \leq 1+k^{2} \frac{a^{2}}{h^{2}}=1+a^{2} k
$$

Thus，if $n k \leq T$ ，then we have

$$
\left\|(I+k A)^{n}\right\|_{2} \leq\left(1+a^{2} k\right)^{n / 2} \leq e^{a^{2} T / 2}
$$

It is Lax－Richtmyer stable and hence the method is convergent if $k=h^{2}$ ．

The leapfrog method

If we apply the midpoint method to the $\operatorname{IVP}, U^{\prime}(t)=A U(t)$ and $U_{j}(0)=\eta\left(x_{j}\right)$ for $1 \leq j \leq m+1$ ，i．e．，

$$
U^{n+1}=U^{n-1}+2 k A U^{n}
$$

then we obtain the so－called leapfrog method for the advection equation，

$$
U_{j}^{n+1}=U_{j}^{n-1}-\frac{a k}{h}\left(U_{j+1}^{n}-U_{j-1}^{n}\right)
$$

This is a 3－level explicit method and is second order accurate in both space and time．
Stability：Rcall from Section 7.3 （see also page 8）that the stability region of the midpoint method is the interval ia for $-1<\alpha<1$ of the imaginary axis．Hence，the leapfrog method is stable for the advection equation，provided $|a k / h|<1$ is satisfied $\left(\Longrightarrow k \lambda_{p} \in \mathcal{S}_{\text {midpoint }}\right)$ ．

The Lax－Friedrichs method

－Recall the Lax－Friedrichs method

$$
U_{j}^{n+1}=\frac{1}{2}\left(U_{j-1}^{n}+U_{j+1}^{n}\right)-\frac{a k}{2 h}\left(U_{j+1}^{n}-U_{j-1}^{n}\right)
$$

We can rewrite the method as（by＂$+U_{j}^{n}-U_{j}^{n \prime \prime}$ ）

$$
U_{j}^{n+1}=U_{j}^{n}-\frac{a k}{2 h}\left(U_{j+1}^{n}-U_{j-1}^{n}\right)+\frac{1}{2}\left(U_{j-1}^{n}-2 U_{j}^{n}+U_{j+1}^{n}\right)
$$

This can be rearranged to give

$$
\frac{U_{j}^{n+1}-U_{j}^{n}}{k}+a\left(\frac{U_{j+1}^{n}-U_{j-1}^{n}}{2 h}\right)=\frac{h^{2}}{2 k}\left(\frac{U_{j-1}^{n}-2 U_{j}^{n}+U_{j+1}^{n}}{h^{2}}\right)
$$

－The right－hand side vanishes as $k, h \rightarrow 0$（assuming k / h is fixed） \Longrightarrow consistent with $u_{t}+a u_{x}=0$ ．
－It looks more like a discretization of the advection－diffusion equation，

$$
u_{t}+a u_{x}=\varepsilon u_{x x}, \quad \text { where } \varepsilon=h^{2} /(2 k) .
$$

Stability analysis of the Lax－Friedrichs method

－The Lax－Friedrichs method can be viewed as a froward Euler discretization of the system of ODEs $U^{\prime}(t)=A_{\varepsilon} U(t)$ with $\varepsilon=h^{2} /(2 k)$ and

$$
A_{\varepsilon}=-\frac{a}{2 h}\left[\begin{array}{rrrrrr}
0 & 1 & & & & -1 \\
-1 & 0 & 1 & & & \\
& -1 & 0 & 1 & & \\
& & \ddots & \ddots & \ddots & \\
& & & -1 & 0 & 1 \\
1 & & & & -1 & 0
\end{array}\right]+\frac{\varepsilon}{h^{2}}\left[\begin{array}{rrrrrr}
-2 & 1 & & & & 1 \\
1 & -2 & 1 & & & \\
& 1 & -2 & 1 & & \\
& & \ddots & \ddots & \ddots & \\
& & & 1 & -2 & 1 \\
1 & & & & 1 & -2
\end{array}\right]
$$

－The eigenvalues of A_{ε} are

$$
\mu_{p}=-\frac{i a}{h} \sin (2 \pi p h)-\frac{2 \varepsilon}{h^{2}}(1-\cos (2 \pi p h)), \quad p=1,2, \cdots, m+1 .
$$

－The values $k \mu_{p}$ lie on an ellipse centered at

$$
-2 k \varepsilon / h^{2}=-2 k\left(h^{2} / 2 k\right) / h^{2}=-1
$$

with semi－axes of length $2 k \varepsilon / h^{2}=1$ in the x－direction and $a k / h$ in the y－direction． Thus，the Lax－Friedrichs method is stable if $|a k / h| \leq 1\left(\Longrightarrow k \mu_{p} \in \mathcal{S}_{\text {forward Euler }}\right)$ ．
$k \mu_{p}$ for various values $\varepsilon: h=1 / 50, k=0.8 h$ and $a=1$

The Lax－Wendroff method

Applying the Taylor series expansion directly to $u_{t}+a u_{x}=0$ ，we have

$$
u(x, t+k)=u(x, t)+k u_{t}(x, t)+\frac{1}{2} k^{2} u_{t t}(x, t)+\cdots
$$

Replacing u_{t} by $-a u_{x}$ and $u_{t t}=\left(-a u_{x}\right)_{t}=-a\left(u_{t}\right)_{x}=-a\left(-a u_{x}\right)_{x}=a^{2} u_{x x}$ gives

$$
u(x, t+k)=u(x, t)-k a u_{x}(x, t)+\frac{1}{2} k^{2} a^{2} u_{x x}(x, t)+\cdots
$$

If we now use the standard centered approximation to u_{x} and $u_{x x}$ and drop the higher order terms，we obtain the Lax－Wendroff method

$$
U_{j}^{n+1}=U_{j}^{n}-\frac{a k}{2 h}\left(U_{j+1}^{n}-U_{j-1}^{n}\right)+\frac{a^{2} k^{2}}{2 h^{2}}\left(U_{j-1}^{n}-2 U_{j}^{n}+U_{j+1}^{n}\right)
$$

This is a 2－level，3－point，explicit method and is second order accurate in both space and time．

Stability analysis of the Lax－Wendroff method

－The Lax－Wendroff method can be viewed as forward Euler time discretization applied to $U^{\prime}(t)=A_{\varepsilon} U(t)$ with $\varepsilon=a^{2} k / 2$（instead of the value $\varepsilon=h^{2} /(2 k)$ used in Lax－Friedrichs）．Then we have

$$
k \mu_{p}=-i\left(\frac{a k}{h}\right) \sin (p \pi h)-\left(\frac{a k}{h}\right)^{2}(1-\cos (p \pi h)) .
$$

－These values all lie on an ellipse centered at $-(a k / h)^{2}$ with semi－axes of length $(a k / h)^{2}$ and $|a k / h|$ ．
－The method is stable if $|a k / h| \leq 1\left(\Longrightarrow k \mu_{p} \in \mathcal{S}_{\text {forward Euler }}\right)$ ，with exactly the same time step restriction as required for Lax－Friedrichs．
－The Lax－Wendroff method has the minimal amount of numerical damping needed to bring the values $k \mu_{p}$ within the stability region，see the figure on page 13.

Upwind methods

－Consider one－sided approximation to u_{x} in the advection equation，e．g．，

$$
u_{x}\left(x_{j}, t\right) \approx \frac{1}{h}\left(U_{j}-U_{j-1}\right) \quad \text { or } \quad u_{x}\left(x_{j}, t\right) \approx \frac{1}{h}\left(U_{j+1}-U_{j}\right)
$$

－For $a>0$ ：

$$
U_{j}^{n+1}=U_{j}^{n}-\frac{a k}{h}\left(U_{j}^{n}-U_{j-1}^{n}\right), \quad \text { stable if } 0<\frac{a k}{h} \leq 1
$$

For $a<0$ ：

$$
U_{j}^{n+1}=U_{j}^{n}-\frac{a k}{h}\left(U_{j+1}^{n}-U_{j}^{n}\right), \quad \text { stable if }-1 \leq \frac{a k}{h}<0 .
$$

First order accurate in both space and time．
－It is natural to use nonsymmetric approximation to u_{x} in the advection equation， since the equation models translation at speed a ．

Stability analysis of upwind methods

－The upwind method for $a>0$ can be rewritten as

$$
U_{j}^{n+1}=U_{j}^{n}-\frac{a k}{2 h}\left(U_{j+1}^{n}-U_{j-1}^{n}\right)+\frac{a k}{2 h}\left(U_{j+1}^{n}-2 U_{j}^{n}+U_{j-1}^{n}\right)
$$

which is the froward Euler discretization of $U^{\prime}(t)=A_{\varepsilon} U(t)$ with $\varepsilon=a h / 2$ ．Then

$$
k \mu_{p}=-\frac{i a k}{h} \sin (2 \pi p h)-\frac{2 \varepsilon k}{h^{2}}(1-\cos (2 \pi p h)), \quad p=1,2, \cdots, m+1 .
$$

These values all lie on a circle centered at $-a k / h$ with radius $a k / h$ ．The method is stable，provided $0<a k / h \leq 1$ ．（stable if $-1 \leq a k / h<0$ for $a<0$ ）
－The three methods Lax－Wendroff，upwind，and Lax－Friedrichs，can all be written as approximations to the advection－diffusion equation $u_{t}+a u_{x}=\varepsilon u_{x x}$ with different ε ，

$$
\varepsilon_{\mathrm{LW}}=\frac{a^{2} k}{2}=\frac{a h v}{2}, \quad \varepsilon_{\mathrm{UP}}=\frac{a h}{2}, \quad \varepsilon_{\mathrm{LF}}=\frac{h^{2}}{2 k}=\frac{a h}{2 v} .
$$

where $v=\frac{a k}{h}$ ．Note that $\varepsilon_{\mathrm{LW}}=v \varepsilon_{\mathrm{UP}}$ and $\varepsilon_{\mathrm{UP}}=v \varepsilon_{\mathrm{LF}}$ ．If $0<v<1$ then $\varepsilon_{\mathrm{LW}}<\varepsilon_{\mathrm{UP}}<\varepsilon_{\mathrm{LF}}$ and the method is stable for any value of ε between $\varepsilon_{\mathrm{LW}}$ and $\varepsilon_{\mathrm{LF}}$ ．

The Beam－Warming method

A second order accurate method with the same one－sided character can be derived by following the derivation of the Lax－Wendroff method，but using one－sided approximations to u_{x} and $u_{x x}$ at x_{j} ．This results in the Beam－Warming method：
－For $a>0$ ，

$$
U_{j}^{n+1}=U_{j}^{n}-\frac{a k}{2 h}\left(3 U_{j}^{n}-4 U_{j-1}^{n}+U_{j-2}^{n}\right)+\frac{a^{2} k^{2}}{2 h^{2}}\left(U_{j}^{n}-2 U_{j-1}^{n}+U_{j-2}^{n}\right)
$$

\Longrightarrow stable if $0<v \leq 2$ ．
－For $a<0$ ，

$$
U_{j}^{n+1}=U_{j}^{n}-\frac{a k}{2 h}\left(-3 U_{j}^{n}+4 U_{j+1}^{n}-U_{j+2}^{n}\right)+\frac{a^{2} k^{2}}{2 h^{2}}\left(U_{j}^{n}-2 U_{j+1}^{n}+U_{j+2}^{n}\right)
$$

\Longrightarrow stable if $-2 \leq v<0$ ．

Von Neumann analysis

Let $v=a k / h, U_{j}^{n}:=e^{i j h} \xi$ and $U_{j}^{n+1}=g(\xi) U_{j}^{n}$ ．
－Upwind method：For $a>0$ ，we have

$$
g(\xi)=(1-v)+v e^{-i \xi h}
$$

and

$$
|g(\xi)| \leq 1 \Longleftrightarrow 0<v \leq 1
$$

－Lax－Friedrichs：

$$
\begin{aligned}
g(\xi) & =\frac{1}{2}\left(e^{-i \xi h}+e^{i \xi h}\right)-\frac{1}{2} v\left(e^{i \xi h}-e^{-i \xi h}\right) \\
& =\cos (\xi h)-v i \sin (\xi h)
\end{aligned}
$$

We have

$$
|g(\xi)|^{2}=\cos ^{2}(\xi h)+v^{2} \sin ^{2}(\xi h) \leq 1 \Longleftrightarrow|v| \leq 1
$$

Von Neumann analysis（cont．）

－Lax－Wendroff：

$$
\begin{aligned}
& g(\xi)=1-\frac{1}{2} v\left(e^{i \xi h}-e^{-i \xi h}\right)+\frac{1}{2} v^{2}\left(e^{i \xi h}-2+e^{-i \xi h}\right) \\
&=1-i v \sin (\xi h)+v^{2}(\cos (\xi h)-1) \\
&=1-i v\{2 \sin (\xi h / 2) \cos (\xi h / 2)\}-v^{2}\left\{2 \sin ^{2}(\xi h / 2)\right\} . \\
& \Longrightarrow|g(\xi)|^{2}=1-4 v^{2}\left(1-v^{2}\right) \sin ^{4}(\xi h / 2) \\
& \because 0 \leq \sin ^{4}(\xi h / 2) \leq 1 \text { for all } \xi \Longrightarrow \text { stable if }|v| \leq 1 .
\end{aligned}
$$

－Leapfrog：

$$
g(\xi)^{2}=1-2 v i \sin (\xi h) g(\xi),
$$

\Longrightarrow stable if $|v|<1$（cf．Example 7．7）．

Characteristic tracing and interpolation

Consider the case $0<a k / h \leq 1$ and the value $u\left(x_{j}, t_{n+1}\right)$ ．Tracing the characteristic back over time step k from the grid point x_{j} results in the picture shown in figure（a） below．

$$
u\left(x_{j}, t_{n+1}\right)=u\left(x_{j}-a k, t_{n}\right),
$$

where $x_{j-1}<x_{j}-a k<x_{j}$ ．
－Find U_{j}^{n+1} by linear interpolation between U_{j-1}^{n} and U_{j}^{n} ：

$$
\begin{aligned}
U_{j}^{n+1} & :=p\left(x_{j}-a k\right)=U_{j}^{n}+\left(\left(x_{j}-a k\right)-x_{j}\right)\left(\frac{U_{j}^{n}-U_{j-1}^{n}}{h}\right) \\
& =U_{j}^{n}-\frac{a k}{h}\left(U_{j}^{n}-U_{j-1}^{n}\right) \Longrightarrow \text { first order upwind. }
\end{aligned}
$$

－Quadratic interpolation U_{j-1}^{n}, U_{j}^{n} ，and $U_{j+1}^{n} \Rightarrow$ Lax－Wendroff
－Quadratic interpolation U_{j-2}^{n}, U_{j-1}^{n} ，and $U_{j}^{n}(0<a k / h \leq 2) \Rightarrow$ Beam－Warming

Domain of dependence

－As an example，we consider the advection equation $u_{t}+u_{x}=0$ ．The solution $u(X, T)$ depends on the initial data $\eta(x)$ at only a single point $x=X-a T$ ．We say the domain of dependence of the point (X, T) is $\mathcal{D}(X, T)=\{X-a T\}$ ．For the hyperbolic system（Section 10．10），$u_{t}+A u_{x}=0$ ，then we can show that $\mathcal{D}(X, T):=\left\{X-\lambda_{p} T: p=1, \cdots, s\right\}$ ，where we assume that $\lambda_{p}, 1 \leq p \leq s$ ，are distinct real eigenvalues of A ．
－For a finite difference method，we define the domain of dependence of a grid point $\left(x_{j}, t_{n}\right)$ to be the set of grid points x_{i} at the initial time $t=0$ with the property that the initial value U_{i}^{0} at x_{i} has an effect on the solution U_{j}^{n} ．e．g．，for Lax－Wendroff，$D\left(x_{j}, t_{2}\right)=\left\{x_{j-2}, x_{j-1}, x_{j}, x_{j+1}, x_{j+2}\right\}$ and $D\left(x_{j}, t_{4}\right)=\left\{x_{j-4}, x_{j-3}, \cdots, x_{j}, \cdots, x_{j+3}, x_{j+4}\right\}$ ．

Numerical domain of dependence of a grid point when using a 3－point explicit method（e．g．，Lax－Wendroff）．（a）$t_{n}=t_{2}$ ；（b）$t_{n}=t_{4}$ ．

The Courant－Friedrichs－Lewy（CFL）condition

－If $k / h \equiv r$ fixed，then the numerical domain of dependence of the point (X, T) will fill in the interval $[X-T / r, X+T / r]$ ．This region must contain the true domain of dependence \mathcal{D} for the PDE．e．g．，for the advection equation $u_{t}+u_{x}=0$ ，we have

$$
X-\frac{T}{r} \leq X-a T \leq X+\frac{T}{r} \quad \Longleftrightarrow \quad|a| \leq 1 / r \text { or }\left|\frac{a k}{h}\right| \leq 1
$$

－Courant－Friendrichs－Lewy（CFL）condition：
A numerical method can be convergent only if its numerical domain of dependence contains the true domain of dependence of the PDE，at least in the limit as $k, h \rightarrow 0^{+}$．（Courant，Friedrichs and Lewy，Math．Ann．，1928）．
－For the Lax－Friedrichs，leapfrog，and Lax－Wendroff methods the condition on k and h required by the CFL condition is exactly the stability restriction we derived earlier．
－It is important to note that in general the CFL condition is only a necessary condition．If it is violated，then the method cannot be convergent．If it is satisfied， then the method might be convergent．

Some remarks

－The forward difference method

$$
U_{j}^{n+1}=U_{j}^{n}-\frac{a k}{2 h}\left(U_{j+1}^{n}-U_{j-1}^{n}\right)
$$

is always unstable even the CFL condition $|a k / h| \leq 1$ is satisfied．
－The Beam－Warming method $(a>0)$ ，

$$
U_{j}^{n+1}=U_{j}^{n}-\frac{a k}{2 h}\left(3 U_{j}^{n}-4 U_{j-1}^{n}+U_{j-2}^{n}\right)+\frac{a^{2} k^{2}}{2 h^{2}}\left(U_{j}^{n}-2 U_{j-1}^{n}+U_{j-2}^{n}\right)
$$

has a 3－point one－sided stencil．The CFL condition is satisfied if $0<a k / h \leq 2$ ．

Numerical example

－Consider the advection equation $u_{t}+u_{x}=0$ with the periodic boundary condition and the initial data at time $t=0$ given by

$$
u(x, 0)=\eta(x)=\exp \left\{-20(x-2)^{2}\right\}+\exp \left\{-(x-5)^{2}\right\}
$$

－Computational domain： $0 \leq x \leq 25, T=17$ ，so the exact solution is simply the initial data shifted by 17 units．
－$h=0.05, k=0.8 h$ ，i．e．，the Courant number is $a k / h=0.8$ ．

Some numerical results

