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The heat equation

The heat equation is derived from Fourier’s law and conservation of energy. The basic
equation of one-dimensional case is given by
(https://en.wikipedia.org/wiki/Heat equation)

ut(x, t) =
(
κ(x)ux(x, t)

)
x + ψ(x, t), a < x < b, t > 0.

1 u(x, t) is the temperature at point x and time t.
2 κ(x) > 0 is the coefficient of heat conduction. If the material is homogeneous,

then κ(x) ≡ κ > 0 is independent of x.
3 ψ(x, t) is the heat source.

Initial condition: u(x, 0) = u0(x).

Boundary condition:
1 Dirichlet boundary condition (prescribed temperature):

u(a, t) = α(t) and u(b, t) = β(t), t ≥ 0.

2 Neumann boundary condition (prescribed heat flux):

ux(a, t) = 0 and ux(b, t) = 0 (insulated).

Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Steady States and Boundary Value Problems – 2/70



The steady-state problem

1 Let κ(x) ≡ κ > 0. If ψ(x, t), α(t), β(t) are all time independent, then u(x, t) will
converge towards steady state distribution satisfying

−κu′′(x) = ψ(x), a < x < b =⇒ u′′(x) = f (x), a < x < b,

where f (x) := −ψ(x)/κ. This is now a second order ODE for u(x).
2 In what follows, we will consider a = 0, b = 1 and the Dirichlet boundary

condition: u(0) = α and u(1) = β. (2-point boundary value problem)

Remark: The above steady-state problem can be solved exactly if we integrate f twice
and then use the boundary conditions to fix the constants involved.

Example: u(0) = 20, u(1) = 60, f (x) = −100ex

Solution: u(x) = −100ex + (100e− 60)x + 120
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A simple finite difference method

Consider the 2-point BVP:

u′′(x) = f (x), 0 < x < 1, u(0) = α and u(1) = β.

1 Define the grid points xj = jh, 0 ≤ j ≤ m + 1, of the interval [0, 1], where
h = 1/(m + 1) is the mesh width (mesh size).

2 Let Uj ≈ u(xj) denote the approximation to u(xj). From the boundary condition,
we know U0 = α and Um+1 = β, and so we have m unknown values
U1,U2, · · · ,Um to compute.
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A simple finite difference method (continued)

1 We can approximate the second derivative of u at xj by

u′′(xj) ≈ D2u(xj) :=
1
h2

(
u(xj−1)− 2u(xj) + u(xj+1)

)
.

2 We then obtain an algebraic system of m linear equations in Uj:

1
h2

(
Uj−1 − 2Uj + Uj+1

)
= f (xj), for j = 1, 2, · · · ,m,

where U0 = α and Um+1 = β.

Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Steady States and Boundary Value Problems – 5/70



Tridiagonal linear system

1
h2

(α− 2U1 + U2) = f (x1) (i = 1)

1
h2

(U1 − 2U2 + U3) = f (x2) (i = 2)

· · ·
1
h2

(Um−2 − 2Um−1 + Um) = f (xm−1) (i = m− 1)

1
h2

(Um−1 − 2Um + β) = f (xm) (i = m)

This linear system can be written in the matrix from as

1
h2



−2 1
1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1
1 −2





U1
U2
U3
...

Um−1
Um


=



f (x1)− α/h2

f (x2)
f (x3)

...
f (xm−1)

f (xm)− β/h2


,

or more compactly AU = F, where A is weakly diagonally dominant and nonsingular
(see Atkinson’s book: An Introduction to Numerical Analysis, Theorem 8.2).
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Measuring error

Let Û = [u(x1), u(x2), · · · , u(xm)]> be the vector of true values, then the error vector E
defined by

E = U − Û

contains the errors at each grid point.

We define some norms for the grid function E:
1 max-norm (∞-norm): ‖E‖∞ := max

1≤j≤m
|Ej| = max

1≤j≤m
|Uj − u(xj)|.

2 1-norm (discrete L1-norm): ‖E‖1 := h
m∑

j=1

|Ej|.

3 2-norm (discrete L2-norm): ‖E‖2 :=
(

h
m∑

j=1

|Ej|2
)1/2

.

Note: Let A be an m× m real matrix. Then the matrix norm of A associated with a
usual vector norm (∞, 1-norm, 2-norm) is equal to the matrix norm of A associated
with the corresponding grid function norm (∞, 1-norm, 2-norm).
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Local truncation error (LTE)

The LTE is defined by replacing Uj with the true solution u(xj) in the finite difference
formula:

τj =
1
h2

(
u(xj−1)− 2u(xj) + u(xj+1)

)
− f (xj), j = 1, 2, · · · ,m.

By the Taylor series expansions and u′′(xj) = f (xj), we know that

τj =
(

u′′(xj) +
1
12

h2u(4)(xj) + O(h4)
)
− f (xj)

=
1
12

h2u(4)(xj) + O(h4)

= O(h2) for 0 < h� 1.

In other words, the local truncation error is of O(h2).
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Global error

1 Define τ := [τ1, τ2, · · · , τm]>, then we have τ = AÛ − F and

AE = A(U − Û) = F− (F + τ) = −τ.

2 Rewrite as the system of equations

1
h2

(
Ej−1 − 2Ej + Ej+1

)
= −τ(xj) for j = 1, 2, · · · ,m

with the boundary conditions E0 = Em+1 = 0.
3 This can be interpreted as the centered difference discretization of the ODE

e′′(x) = −τ(x) for 0 < x < 1

with boundary conditions e(0) = 0 and e(1) = 0.

4 Roughly speaking, since τ(x) ≈ 1
12 h2u(4)(x), integrating twice shows that

e(x) ≈ −
1
12

h2u′′(x) +
1
12

h2
(

u′′(0) +
(
u′′(1)− u′′(0)

)
x
)

and hence the global error should be O(h2) in∞-norm, discrete L1-norm and
discrete L2-norm.
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Stability

We rewrite the linear system AE = −τ as AhEh = −τ h. Then Eh = −(Ah)−1τ h and

‖Eh‖ = ‖(Ah)−1τ h‖ ≤ ‖(Ah)−1‖‖τ h‖,

where we use a grid function norm (∞, discrete L1 or discrete L2). We know that
‖τ h‖ = O(h2) and we are hoping the same will be true of ‖Eh‖. So we need

‖(Ah)−1‖ ≤ C for all 0 < h� 1.

Definition: Suppose a finite difference method for a linear BVP gives a sequence of
matrix equations of the form AhUh = Fh, where h is the mesh width. We say that the
method is stable if (Ah)−1 exists for all h sufficiently small (say, for 0 < h < h0) and if
there is a constant C, independent of h, such that

‖(Ah)−1‖ ≤ C for all 0 < h < h0.
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Consistency and convergence

1 We say that a finite difference method is consistent with the differential equation
and boundary conditions if

‖τ h‖ → 0 as h→ 0.

Typically the method has ‖τ h‖ = O(hp) for some integer p > 0, and then the
method is certainly consistent.

2 A finite difference method is said to be convergent if ‖Eh‖ → 0 as h→ 0.

Note that here ‖ · ‖ is a grid function norm.
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Fundamental theorem of finite difference methods

For a stable method, we have

‖Eh‖ ≤ ‖(Ah)−1‖‖τ h‖ ≤ C‖τ h‖,

and if the method is consistent, then

‖Eh‖ ≤ C‖τ h‖ → 0 as h→ 0.

Fundamental theorem of finite difference methods:
For a linear finite difference scheme approximating a linear PDE

consistency + stability =⇒ convergence
In particular,

O(hp) local truncation error + stability =⇒ O(hp) convergence
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2-norm and eigenvalues

1 Since the matrix A is symmetric, the 2-norm of A is equal to its spectral radius,

‖A‖2 = ρ(A) = max
1≤p≤m

|λp|.

2 The matrix A−1 is also symmetric, so

‖A−1‖2 = ρ(A−1) = max
1≤p≤m

|λ−1
p | =

(
min

1≤p≤m
|λp|
)−1

.

3 The m eigenvalues of A are given by

λp =
2
h2

(
cos(pπh)− 1

)
for p = 1, 2, · · · ,m.

The eigenvector up corresponding to λp has components up
j given by

up
j = sin(pπjh) for j = 1, 2, · · · ,m.
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Stability in the 2-norm

We see that the smallest eigenvalue of A (in magnitude) is

λ1 =
2
h2

(
cos(πh)− 1

)
=

2
h2

(
−

1
2
π2h2 +

1
24
π4h4 + O(h6)

)
= −π2 + O(h2),

where we use cos(x) = 1− x2/2! + x4/4!− · · · . Hence,

‖(Ah)−1‖2 ≈
1
π2
,

and the method is stable in the 2-norm. Moreover, we have

‖Eh‖2 ≤ ‖(Ah)−1‖2‖τ h‖2 ≈
1
π2
‖τ h‖2 = O(h2)→ 0 as h→ 0.

Thus, the method is convergent with the order of accuracy O(h2) in the discrete
L2-norm.
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Eigenvalue and eigenfunction

The jth component of the vector Aup is

(Aup)j =
1
h2

(
up

j−1 − 2up
j + up

j+1

)
=

1
h2

(
sin(pπ(j− 1)h)− 2 sin(pπjh) + sin(pπ(j + 1)h)

)
=

1
h2

(
sin(pπjh) cos(pπh)− 2 sin(pπjh) + sin(pπjh) cos(pπh)

)
= λpup

j for j = 1, 2, · · · ,m,

where we define up
0 := 0, up

m+1 := 0. This is consistent with the fact Aup = λpup.

Note that the eigenvector up = [up
1, u

p
2, · · · , u

p
m]> with up

j = sin(pπjh) is closely related

to the eigenfunction of the differential operator ∂2

∂x2 :=′′.
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Eigenvalue and eigenfunction (continued)

The functions up(x) = sin(pπx), p = 1, 2, · · · , satisfy

∂2

∂x2
up(x) = (−p2π2)up(x) := µpup(x) and up(0) = up(1) = 0.

Therefore, up(x) = sin(pπx), p = 1, 2, · · · , are eigenfunctions of the differential

operator ∂2

∂x2 on [0, 1] with homogeneous boundary conditions.

Note that the m eigenvalues of A are given by

λp =
2
h2

(
cos(pπh)− 1

)
=

2
h2

(
−

1
2

p2π2h2 +
1
24

p4π4h4 + · · ·
)

= −p2π2 + O(h2) as h→ 0+ for p fixed.

Eigenfunctions are used to analyze the differential operator ∂2

∂x2 .
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Norm equivalence

1 Consider the usual vector norms ‖ · ‖1, ‖ · ‖2 and ‖ · ‖∞ on RN . Show that for all
x ∈ RN , we have

‖x‖∞ ≤ ‖x‖1 ≤ N‖x‖∞,

‖x‖∞ ≤ ‖x‖2 ≤
√

N‖x‖∞,

‖x‖2 ≤ ‖x‖1 ≤
√

N‖x‖2.

2 The exact error vector E := U − Û ∈ Rm can be viewed as a grid function. Show
that

h‖E‖∞ ≤ ‖E‖1 ≤ ‖E‖∞,√
h‖E‖∞ ≤ ‖E‖2 ≤ ‖E‖∞,√
h‖E‖2 ≤ ‖E‖1 ≤ ‖E‖2,

where ‖ · ‖1, ‖ · ‖2 and ‖ · ‖∞ are 1-D grid function norms.

(Note that 2LM ≤ L2 + M2 for all L,M ∈ R)

Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Steady States and Boundary Value Problems – 17/70



Max-norm stability

1 We have demonstrated that A is stable in the 2-norm and ‖Eh‖2 = O(h2), which
implies ‖Eh‖1 ≤ ‖Eh‖2 = O(h2). Suppose that we want a bound on
‖Eh‖∞ := max

1≤j≤m
|Eh

j |. We can obtain one such bound directly from the bound for

the 2-norm in the following way:

‖Eh‖∞ ≤
1
√

h
‖Eh‖2 = O(h3/2) for h→ 0.

However, this does not show the second order accuracy that we hope to have.
2 In order to show that ‖A−1‖∞ is uniformly bounded in h, i.e., ‖A−1‖∞ = O(1)

(=⇒ ‖Eh‖∞ ≤ ‖A−1‖∞‖τ h‖∞ = O(h2) as h→ 0),
in what follows, we will introduce the Green’s function solution to the BVP:

u′′(x) = f (x) 0 < x < 1, u(0) = α, u(1) = β.
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Green’s function solution and Dirac delta function

1 We consider the Green’s function solution to the following BVP:

u′′(x) = f (x) 0 < x < 1, u(0) = α, u(1) = β.

For any fixed point x̄ ∈ (0, 1), the Green’s function G(x; x̄) is the function of x
that solves the above BVP with the particular source term f (x) := δ(x− x̄) and
α = β = 0, where δ(x− x̄) is the “Dirac delta function (δ-function)” centered at x̄.

2 The Dirac delta function δ(x) can be loosely thought of as a function on the real
line which is zero everywhere except at the origin, where it is infinite,

δ(x) =

{
+∞ x = 0,
0 x 6= 0,

and which is also constrained to satisfy the identity
∫ ∞
−∞

δ(x)dx = 1. The Dirac

delta is not a function in the traditional sense as no function defined on the real
numbers has these properties. The Dirac delta function can be rigorously
defined either as a distribution or as a measure.
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An approximation to the delta function

Let ε > 0. We consider a sharply peaked function ϕε(x) that is nonzero only on an
interval (−ε, ε) near the origin and has the property that∫ ∞

−∞
ϕε(x)dx =

∫ ε

−ε
ϕε(x)dx = 1.

For example, we might take

ϕε(x) =

 (ε+ x)/ε2 if − ε ≤ x ≤ 0,
(ε− x)/ε2 if 0 ≤ x ≤ ε,
0 otherweise.

This piecewise linear function is the “hat function” with width ε and height 1/ε. Then
we can think the δ-function as the limiting case of such functions as ε→ 0+.
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δ-function arising from differentiating disconti. function

Consider the Heaviside function

H(x) =

{
0 x < 0,
1 x ≥ 0.

1 For x 6= 0, H(x) is constant and so H′(x) = 0.
2 At x = 0 the derivative is not defined in the classical sense.
3 But it we smooth out the function a little bit, making it continuous and

differentiable by changing H(x) only on the interval (−ε, ε), then the resulting
function Hε(x) is differentiable everywhere and has a derivative H′ε(x) that
looks something like ϕε(x).

4 The exact shape of H′ε(x) depends on how we choose Hε(x), but note that
regardless of its shape, its integral must be 1, since∫ ∞

−∞
H′ε(x)dx =

∫ ε

−ε
H′ε(x)dx = Hε(ε)− Hε(−ε) = 1− 0 = 1.

By letting ε→ 0, we are led to define H′(x) = δ(x).
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Green’s function G(x; x̄)

Now let us go back to the BVP:

u′′(x) = f (x) 0 < x < 1, u(0) = α, u(1) = β.

If we interpret the problem as a steady-state heat conduction with source
ψ(x) = −κf (x) ($ κ = 1), then setting f (x) = δ(x− x̄) in the BVP is the mathematical
idealization of a heat sink that has a unit magnitude but that is concentrated near a
single point x̄.

With f (x) = δ(x− x̄), a heat sink at x̄, we have the minimum temperature at x̄, rising
linearly (∵ u′′(x) = 0 away from x̄) to each side, as shown in below figure: (α = 0 = β)

“rjlfdm”
2007/6/1
page 24i

i
i

i

i
i

i
i
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derivative H 0
�.x/ that looks something like ��.x/. The exact shape of H 0

�.x/ depends on
how we choose H�.x/, but note that regardless of its shape, its integral must be 1, since

Z 1

�1
H 0

�.x/ dx D
Z �

��

H 0
�.x/ dx

D H�.�/ � H�.��/
D 1 � 0 D 1:

This explains the normalization (2.27). By letting � ! 0, we are led to define

H 0.x/ D ı.x/:

This expression makes no sense in terms of the classical definition of derivatives, but it can
be made rigorous mathematically through the use of “distribution theory”; see, for example,
[31]. For our purposes it suffices to think of the delta function as being a very sharply
peaked function that is nonzero only on a very narrow interval but with total integral 1.

If we interpret the problem (2.25) as a steady-state heat conduction problem with
source  .x/ D �f .x/, then setting f .x/ D ı.x � Nx/ in the BVP is the mathematical
idealization of a heat sink that has unit magnitude but that is concentrated near a single
point. It might be easier to first consider the case f .x/ D �ı.x � Nx/, which corresponds to
a heat source localized at Nx, the idealization of a blow torch pumping heat into the rod at a
single point. With the boundary conditions u.0/ D u.1/ D 0, holding the temperature fixed
at each end, we would expect the temperature to be highest at the point Nx and to fall linearly
to zero to each side (linearly because u00.x/ D 0 away from Nx). With f .x/ D ı.x � Nx/,
a heat sink at Nx, we instead have the minimum temperature at Nx, rising linearly to each
side, as shown in Figure 2.1. This figure shows a typical Green’s function G.xI Nx/ for one
particular choice of Nx. To complete the definition of this function we need to know the
value G. NxI Nx/ that it takes at the minimum. This value is determined by the fact that the
jump in slope at this point must be 1, since

u0. Nx C �/ � u0. Nx � �/ D
Z NxC�

Nx��

u00.x/ dx

D
Z NxC�

Nx��

ı.x � Nx/ dx

D 1:

(2.30)

0 1Nx

Figure 2.1. The Green’s function G.xI Nx/ from (2.31).
This figure shows a typical Green’s function G(x; x̄) for one particular choice of x̄.
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Green’s function G(x; x̄)

To complete the definition of G(x; x̄), we need to know the minimum value G(x̄; x̄).
This value is determined by the fact that the jump in slope at this point must be 1, since

u′(x̄ + ε)− u′(x̄− ε) =

∫ x̄+ε

x̄−ε
u′′(x)dx =

∫ x̄+ε

x̄−ε
δ(x− x̄)dx = 1.

Therefore, one can check that the piecewise linear function G(x; x̄) is given by

G(x; x̄) =

{
(x̄− 1)x for 0 ≤ x ≤ x̄,
x̄(x− 1) for x̄ ≤ x ≤ 1.

1 If we replaced f (x) with cδ(x− x̄) for any constant c, the solution to the BVP
would be cG(x; x̄).

2 Any linear combination of Green’s functions at different points x̄ is a solution to
the BVP with the corresponding linear combination of delta functions on the
right-hand side.
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An example

If we want to solve
u′′(x) = 3δ(x− 0.3)− 5δ(x− 0.7)

with u(0) = u(1) = 0, the solutions is simply

u(x) = 3G(x; 0.3)− 5G(x; 0.7).

This is a piecewise linear function with jumps in slope of magnitude 3 at x = 0.3 and
−5 at x = 0.7.

If the right-hand side is a sum of weighted delta functions at any number of points,

f (x) =
n∑

k=1

ckδ(x− xk),

then the solution to the BVP is

u(x) =
n∑

k=1

ckG(x; xk).
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General f (x)

Suppose f (x) is not a discrete sum of delta functions. We can view this as a continuous
distribution of point sources, with f (x̄) being a density function for the weight
assigned to the delta function at x̄, i.e.,

f (x) =

∫ 1

0
f (x̄)δ(x− x̄)dx̄. (treated as a Riemann sum)

This suggests that the solution to u′′(x) = f (x), still with u(0) = u(1) = 0, is

u(x) =

∫ 1

0
f (x̄)G(x; x̄)dx̄,

and indeed it is.

Note: The delta function has the fundamental property that∫ ∞
−∞

f (x)δ(x− a)dx = f (a),

and, in fact, ∫ a+ε

a−ε
f (x)δ(x− a)dx = f (a), for all ε > 0.
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The full solution of the BVP

We now introduce two new function G0(x) and G1(x) defined by the BVPs:

G′′0 (x) = 0, G0(0) = 1, G0(1) = 0

and
G′′1 (x) = 0, G1(0) = 0, G1(1) = 1.

Then the solutions are
G0(x) = 1− x and G1(x) = x.

The full solution to

u′′(x) = f (x) 0 < x < 1, u(0) = α, u(1) = β

is thus

u(x) = αG0(x) + βG1(x) +

∫ 1

0
f (x̄)G(x; x̄)dx̄ (∗)

or equivalently

u(x) =

(
α−

∫ x

0
x̄f (x̄)dx̄

)
(1− x) +

(
β +

∫ 1

x
(x̄− 1)f (x̄)dx̄

)
x.
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The enlarged linear system AU = F

Let us return to the study of the max-norm stability of the finite difference method,
which will be based on explicitly determining the inverse matrix for the matrix arising
in this discretization.

Using the fact U0 = α and Um+1 = β, we then consider the enlarged linear system
AU = F, where now

A =
1
h2



h2 0
1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1
0 h2


, U =



U0
U1
U2
...

Um
Um+1


, F =



α
f (x1)
f (x2)

...
f (xm)
β


.
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The inverse of matrix A: B = A−1

Let B denote the (m + 2)× (m + 2) inverse of A, B = A−1. We will index the elements
of B by B00 through Bm+1,m+1 in the obvious manner. Let Bj denote the jth column of B
for j = 0, 1, . . . ,m + 1. Then

ABj = ej,

where ej is the jth column of the identity matrix. We can view this as a linear system to
be solved for Bj.

The first column B0 corresponds to the problem with α = 1, f (x) = 0, and β = 0, and
so we expect B0 to be a discrete approximation of the function G0(x). In fact, the first
column of B has elements obtained by evaluating G0 at the grid points,

Bi0 = G0(xi) = 1− xi.

Similarly, the last (j = m + 1) column of B has elements

Bi,m+1 = G1(xi) = xi.
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The inverse of matrix A: B = A−1 (continued)

The interior columns (1 ≤ j ≤ m) correspond to the Green’s function for zero boundary
conditions and the source concentrated at a single point, since Fj = 1 and Fi = 0 for
i 6= j. Note that this is a discrete version of hδ(x− xj), namely, hϕh(x− xj) (see page 20).
We expect that the column Bj will be discrete approximation to the function hG(x; xj).

In fact, it is easy to check that

Bij = hG(xi; xj) =

{
h(xj − 1)xi, i = 1, 2, · · · , j,
h(xi − 1)xj, i = j, j + 1, · · · ,m.

An arbitrary right-hand side F for the linear system can be written as

F = αe0 + βem+1 +
m∑

j=1

fjej,

and the solution U = BF is

U = αB0 + βBm+1 +
m∑

j=1

fjBj,

with elements

Ui = α(1− xi) + βxi + h
m∑

j=1

fjG(xi; xj),

which is the discrete analogue of (*), see page 26.
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A modified BVP

Suppose we define a function v(x) by

v(x) = α(1− x) + βx + h
m∑

j=1

fjG(x; xj).

Then Ui = v(xi) and v(x) is the piecewise linear function that interpolates the
numerical solution. This function v(x) is the exact solution to the BVP

v′′(x) = h
m∑

j=1

f (xj)δ(x− xj), v(0) = α, v(1) = β.

Thus we can interpret ths discrete solution as the exact solution to a modified problem
in which the right-hand side f (x) has been replaced by a finite sum of delta functions at
the grid points xj, with weights hf (xj) ≈

∫ xj+1/2
xj−1/2

f (x)dx.
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The max-norm stability

To verify max-norm stability of the numerical method, we must show that ‖B‖∞ is
uniformly bounded as h→ 0. The infinity norm of the matrix is given by

‖B‖∞ = max
0≤i≤m+1

m+1∑
j=0

|Bij|,

the maximum row sum of elements in the matrix. The intermediate rows are dense and
the first and last elements are bounded by 1. The other m elements of each of these
rows are all bounded by h, and hence

m+1∑
j=0

|Bij| ≤ 1 + 1 + mh < 3

Every row sum is bounded by 3 at most, and so ‖A−1‖∞ < 3 for all h, and stability is
proved.
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The max-norm stability (continued)

Note that we have also worked out the inverse of the original matrix A,

A =
1
h2



−2 1
1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1
1 −2


.

Because the first row of B consists of zeros beyond the first element, and the last row
consists of zeros, except for the last element, it is easy to check that the inverse of the
m× m matrix is the m× m central block of B consisting of B11 through Bmm. The
max-norm of this matrix is bounded by 1 for all h, so our original formulation is stable
as well.
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Neumann boundary conditions

Let us consider the second-order differential equation

u′′(x) = f (x) for 0 < x < 1,

with the Neumann BC at left-endpoint, u′(0) = σ, and the Dirichlet BC at
right-endpoint, u(1) = β. Therefore, the approximation U0 is one of the unknowns.
Then the first row of matrix A in the enlarged linear system at page 27 must be
modified to model u′(0) = σ, u(1) = β.
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First approach: first order accuracy

1 Using the one-sided expression, u′(0) ≈ D+u(x0) :=
u(x1)− u(x0)

h
, we have

(U1 − U0)/h = σ.

This is only first order accurate, since the local truncation error is

τ0 =
1
h

(
u(x1)− u(x0)

)
− σ

=
1
h

(
u(x0) + hu′(x0) +

1
2

h2u′′(x0) + O(h3)− u(x0)
)
− σ

= u′(x0) +
1
2

hu′′(x0) + O(h2)− σ =
1
2

hu′′(x0) + O(h2) = O(h).

2 We obtain the system of linear equations for the unknowns U0, · · · ,Um+1:

1
h2



−h h
1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1
0 h2





U0
U1
U2
...

Um
Um+1


=



σ
f (x1)
f (x2)

...
f (xm)
β


.

3 The global error is only O(h). In this case, it is mainly due to τ0 = O(h).
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Second approach: second order accuracy

1 Using a centered approximation to u′(0) = σ (second order accuracy), we
introduce another unknown U−1 and use the following two equations:

1
h2

(U−1 − 2U0 + U1) = f (x0),

1
2h

(U1 − U−1) = σ.

This results in a linear system of m + 3 equations in m + 3 unknowns.
2 Eliminating U−1 from above equations, we have:

1
h

(−U0 + U1) = σ +
h
2

f (x0),

which reduces the linear system to one with only m + 2 equations for m + 2
unknowns U0,U1, · · · ,Um+1.
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Second approach: second order accuracy (continued)

1 The resulting linear system can be written in the matrix form:

1
h2



−h h
1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1
0 h2





U0
U1
U2
...

Um
Um+1


=



σ + h
2 f (x0)

f (x1)
f (x2)

...
f (xm)
β


.

Note that the matrix is exactly the same as the previous matrix in the first
approach, but with different right-hand side, the first component is changed
from σ to σ + h

2 f (x0).
2 Alternative idea: By the Taylor series expansion, we have

u(x1)− u(x0)

h
≈ u′(x0 +

h
2

) = u′(x0) +
h
2

u′′(x0) + O(h2) = σ +
h
2

f (x0) + O(h2).
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Neumann boundary condition
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Figure 2.2. (a) Sample solution to the steady-state heat equation with a Neumann
boundary condition at the left boundary and Dirichlet at the right. The solid line is the true
solution. The plus sign shows a solution on a grid with 20 points using (2.53). The circle
shows the solution on the same grid using (2.55). (b) A log-log plot of the max-norm error
as the grid is refined is also shown for each case.

1

h2

2
666666666664

�h h

1 �2 1

1 �2 1

1 �2 1

: : :
: : :

: : :

1 �2 1

1 �2 1

0 h2

3
777777777775

2
666666666664

U0

U1

U2

U3
:::

Um�1

Um

UmC1

3
777777777775

D

2
666666666664

�

f .x1/

f .x2/

f .x3/
:::

f .xm�1/

f .xm/

ˇ

3
777777777775

: (2.54)

Solving this system of equations does give an approximation to the true solution (see Fig-
ure 2.2), but checking the errors shows that this is only first order accurate. Figure 2.2 also
shows a log-log plot of the max-norm errors as we refine the grid. The problem is that the
local truncation error of the approximation (2.53) is O.h/, since

�0 D
1

h2
.hu.x1/ � hu.x0// � �

D u0.x0/C
1

2
hu00.x0/C O.h2/ � �

D
1

2
hu00.x0/C O.h2/:

This translates into a global error that is only O.h/ as well.
Remark: It is sometimes possible to achieve second order accuracy even if the local

truncation error is O.h/ at a single point, as long as it is O.h2/ everywhere else. This is
true here if we made an O.h/ truncation error at a single interior point, since the effect on
the global error would be this �j Bj , where Bj is the j th column of the appropriate inverse
matrix. As in the Dirichlet case, this column is given by the corresponding Green’s function
scaled by h, and so the O.h/ local error would make an O.h2/ contribution to the global
error at each point. However, introducing an O.h/ error in �0 gives a contribution of �0B0

(a) Exact and finite difference solutions to the steady-state heat equation u′′(x) = ex,
u′(0) = 0 and u(1) = 3. The solid line is the true solution u(x) = ex − x + 4− e.
The plus sign shows a solution on a grid with 20 points using first approach. The
circle shows the solution on the same grid using second approach.

(b) A log-log plot of the max-norm error as the grid is refined is also shown for each
case.
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Third approach: second order accuracy

1 We could use a second order accurate one-sided approximation based on the
three unknowns U0, U1, and U2: (cf. Chapter 1)

1
2h

(−3U0 + 4U1 − U2) = σ.

That is,
1
h2

(
−

3h
2

U0 + 2hU1 −
h
2

U2

)
= σ.

2 The resulting linear system is given by

1
h2



− 3h
2 2h − h

2
1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1
0 h2





U0
U1
U2
...

Um
Um+1


=



σ
f (x1)
f (x2)

...
f (xm)
β


.

The use of this equation slightly disturbs the tridiagonal structure but adds little
to the cost of solving the system of equations.
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Well-posedness (適適適定定定性性性) of BVPs

Well-posed problem (defined by Jacques Hadamard): mathematical models of
physical phenomena should have the properties that

(1) A solution exists;
(2) The solution is unique;
(3) The solution’s behavior changes continuously with the data.

But, we will show that even seemingly simple BVPs may fail to be well posed.

Jacques Salomon Hadamard (French mathematician, 1865-1963)

Example: Consider the following BVP with Neumann BCs at both ends,{
u′′(x) = f (x) for 0 < x < 1,
u′(0) = σ0 and u′(1) = σ1.
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Not well posed

Using the centered difference to discretize the differential equation and the second
approach to deal with the Neumann BCs, we obtain the discrete linear system:

1
h2



−h h
1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1
h −h





U0
U1
U2
...

Um
Um+1


=



σ0 + h
2 f (x0)

f (x1)
f (x2)

...
f (xm)

−σ1 + h
2 f (xm+1)


.

The matrix is singular, and in general the system has no solution or it has infinitely
many solutions. This isn’t a failure in our numerical model. It reflects that the problem
is not well posed, and the differential equation will also have either no solution or
infinitely many solutions. Note that A[1, 1, · · · , 1]> = 0

Fredholm alternative: Let Ax = b describe p equations in p unknowns. Then either (1)
or (2) holds, but not both:

1 There is exactly one solution for each arbitrary b. (A is nonsingular)
2 There is a nonzero solution z 6= 0 to Az = 0. (A is singular)
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σ0 = σ1 = 0 and f (x) ≡ 0

We consider the case of σ0 = σ1 = 0 and f (x) ≡ 0. In other words, both ends of the rod
are insulated, there is no heat flux through the ends, and there is no heat source within
the rod.

Recall the BVP is a simplified equation for finding the steady-state solution of
ut(x, t) = κuxx(x, t) + ψ(x, t) with some initial data u0(x). How does u(x, t) behave
with time?

1 Total heat energy must be conserved in t:
∫ 1

0 u(x, t)dx =
∫ 1

0 u0(x)dx, t ≥ 0.
2 Diffusion of the heat tends to redistribute it until it is uniformly distributed

throughout the rod, so we expect the steady state solution u(x) = c. By
conservation of energy, c =

∫ 1
0 u0(x)dx.

But any u(x) = c is a solution of the steady-state BVP. It has infinitely many solutions.
The physical problem has only one solution, but in attempting to simplify it by solving
for the steady state alone, we have thrown away a crucial piece of data, which is the
heat content of the initial data for the heat equation.
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σ0 = σ1 = 0

1 Suppose we have a source term f (x) and f (x) < 0 everywhere, then we are
constantly adding heat to the rod. (Note that f (x) = −ψ(x)/κ⇒ ψ(x) > 0).
Since no heat can escape through the insulated ends, we expect the temperature
to keep rising without bound.

In this case we never reach a steady state, and the BVP has no solution.
2 If f is positive over part of the interval and negative elsewhere, and the net effect

of the heat sources and sinks exactly cancels out, then we expect that a steady
state might exist.

In fact, solving the BVP exactly by integrating twice and trying to determine the
constants of integration from the boundary conditions show that a solution
exists only if

∫ 1
0 f (x)dx = 0, in which case there are infinitely many solutions.

∫ t

0
u′′(s)ds =

∫ t

0
f (s)ds⇒ u′(t)− u′(0) =

∫ t

0
f (s)ds

=⇒


0 = σ1 − σ0 = u′(1)− u′(0) =

∫ 1

0
f (s)ds.∫ x

0
u′(t)dt =

∫ x

0

∫ t

0
f (s)dsdt⇒ u(x) = u(0) +

∫ x

0

∫ t

0
f (s)dsdt,

where u(0) can be arbitrary.
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σ0 6= 0 and/or σ1 6= 0

If σ0 and/or σ1 are nonzero, then there is heat flow at the boundaries and the net heat
source must cancel the boundary fluxes. Since

u′(1)− u′(0) =

∫ 1

0
u′′(x)dx =

∫ 1

0
f (x)dx,

this requires ∫ 1

0
f (x)dx = σ1 − σ0.

With this condition, we have infinitely many solutions:

∫ t

0
u′′(s)ds =

∫ t

0
f (s)ds⇒ u′(t)− u′(0) =

∫ t

0
f (s)ds⇒ u′(t) = σ0 +

∫ t

0
f (s)ds

⇒
∫ x

0
u′(t)dt = σ0x +

∫ x

0

∫ t

0
f (s)dsdt⇒ u(x) = σ0x + u(0) +

∫ x

0

∫ t

0
f (s)dsdt,

where u(0) can be arbitrary.

Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Steady States and Boundary Value Problems – 43/70



σ0 6= 0 and/or σ1 6= 0

Similarly, the singular linear system AU = F,

1
h2



−h h
1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1
h −h





U0
U1
U2
...

Um
Um+1


=



σ0 + h
2 f (x0)

f (x1)
f (x2)

...
f (xm)

−σ1 + h
2 f (xm+1)


,

has a solution (in fact infinitely many solutions) only if F is orthogonal to the null space
of A>. Proof: Assume that we have a solution U, i.e., AU = F, and A>V = 0. Then
〈F,V〉 = 〈AU,V〉 = 〈U,A>V〉 = 〈U, 0〉 = 0.

Note that we have A>[1, h, · · · , h, 1]> = 0. This gives the condition

h
2

(
f (x0) + 2

m∑
i=1

f (xi) + f (xm+1)

)
= σ1 − σ0,

which is the composite trapezoidal rule approximation to
∫ 1

0 f (x)dx = σ1 − σ0.
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A general linear second order equation

We now consider the more general linear differential equation

a(x)u′′(x) + b(x)u′(x) + c(x)u(x) = f (x) for a < x < b

with two Dirichlet boundary conditions, u(a) = α and u(b) = β. This equation can be
discretized by using the centered difference approximations,

ai

(Ui−1 − 2Ui + Ui+1

h2

)
+ bi

(Ui+1 − Ui−1

2h

)
+ ciUi = fi, (*)

where ai := a(xi), bi := b(xi) and fi := f (xi), with U0 = α and Um+1 = β. This gives
AU = F, where
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2.15 A general linear second order equation
We now consider the more general linear equation

a.x/u00.x/C b.x/u0.x/C c.x/u.x/ D f .x/; (2.64)

together with two boundary conditions, say, the Dirichlet conditions

u.a/ D ˛; u.b/ D ˇ: (2.65)

This equation can be discretized to second order by

ai

�
Ui�1 � 2Ui C UiC1

h2

�
C bi

�
UiC1 � Ui�1

2h

�
C ciUi D fi ; (2.66)

where, for example, ai D a.xi/. This gives the linear system AU D F , where A is the
tridiagonal matrix

A D
1

h2

2
666666664

.h2c1 � 2a1/ .a1 C hb1=2/

.a2 � hb2=2/ .h2c2 � 2a2/ .a2 C hb2=2/

: : :
: : :

: : :

.am�1 � hbm�1=2/ .h2cm�1 � 2am�1/ .am�1 C hbm�1=2/

.am � hbm=2/ .h2cm � 2am/

3
777777775

(2.67)
and

U D

2
666664

U1

U2

:::

Um�1

Um

3
777775
; F D

2
666664

f1 � .a1=h2 � b1=2h/˛

f2

:::

fm�1

fm � .am=h2 C bm=2h/ˇ

3
777775
: (2.68)

This linear system can be solved with standard techniques, assuming the matrix is nonsin-
gular. A singular matrix would be a sign that the discrete system does not have a unique
solution, which may occur if the original problem, or a nearby problem, is not well posed
(see Section 2.13).

The discretization used above, while second order accurate, may not be the best dis-
cretization to use for certain problems of this type. Often the physical problem has certain
properties that we would like to preserve with our discretization, and it is important to un-
derstand the underlying problem and be aware of its mathematical properties before blindly
applying a numerical method. The next example illustrates this.

Example 2.1. Consider heat conduction in a rod with varying heat conduction prop-
erties, where the parameter �.x/ varies with x and is always positive. The steady-state
heat-conduction problem is then

.�.x/u0.x//0 D f .x/ (2.69)

together with some boundary conditions, say, the Dirichlet conditions (2.65). To discretize
this equation we might be tempted to apply the chain rule to rewrite (2.69) as

�.x/u00.x/C �0.x/u0.x/ D f .x/ (2.70)

and then apply the discretization (2.67), yielding the matrix
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The better discretization

1 The above discretization may not be the best discretization to use for certain
problems of this type even if it has second-order accuracy. Often the physical
problem has certain properties that we would like to preserve with our
discretization, and it is important to understand the underlying problem and be
aware of its mathematical properties before blindly applying a numerical
method.

2 Consider heat conduction in a rod with varying heat conduction properties,
where κ(x) varies with x and κ(x) > 0 for all a < x < b,

(κ(x)u′(x))′ = f (x) a < x < b,

with two boundary conditions, u(a) = α and u(b) = β. Applying the product
rule to the above differential equation, we obtain

κ(x)u′′(x) + κ′(x)u′(x) = f (x) a < x < b,

and then apply the discretization (*). However, this is not the best approach
because the resulting linear system may not be symmetric.
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The better discretization (continued)

It is better to discretize the physical problem directly,

κ(xi+1/2)u′(xi+1/2) = κi+1/2

(Ui+1 − Ui

h

)
,

and the analogous approximation at xi−1/2. Differencing these then gives a centered
approximation to (κu′)′ at the grid xi,

(κu′)′(xi) ≈
1
h

{
κi+1/2

(Ui+1 − Ui

h

)
− κi−1/2

(Ui − Ui−1

h

)}
=

1
h2

(
κi−1/2Ui−1 − (κi−1/2 + κi+1/2)Ui + κi+1/2Ui+1

)
.

This leads to a symmetric matrix,
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A D
1

h2

2
66666664

�2�1 .�1 C h�0
1
=2/

.�2 � h�0
2
=2/ �2�2 .�2 C h�0

2
=2/

: : :
: : :

: : :

.�m�1 � h�0
m�1

=2/ �2�m�1 .�m�1 C h�0
m�1

=2/

.�m � h�0
m=2/ �2�m

3
77777775
:

(2.71)
However, this is not the best approach. It is better to discretize the physical problem (2.69)
directly. This can be done by first approximating �.x/u0.x/ at points halfway between the
grid points, using a centered approximation

�.xiC1=2/u
0.xiC1=2/ D �iC1=2

�
UiC1 � Ui

h

�

and the analogous approximation at xi�1=2. Differencing these then gives a centered ap-
proximation to .�u0/0 at the grid point xi:

.�u0/0.xi/ �
1

h

�
�iC1=2

�
UiC1 � Ui

h

�
� �i�1=2

�
Ui � Ui�1

h

��

D
1

h2
Œ�i�1=2Ui�1 � .�i�1=2 C �iC1=2/Ui C �iC1=2UiC1 �:

(2.72)

This leads to the matrix

A D
1

h2

2
66666664

�.�1=2 C �3=2/ �3=2

�3=2 �.�3=2 C �5=2/ �5=2

: : :
: : :

: : :

�m�3=2 �.�m�3=2 C �m�1=2/ �m�1=2

�m�1=2 �.�m�1=2 C �mC1=2/

3
77777775
:

(2.73)
Comparing (2.71) to (2.73), we see that they agree to O.h2/, noting, for example, that

�.xiC1=2/ D �.xi /C
1

2
h�0.xi/C O.h2/ D �.xiC1/ �

1

2
h�0.xiC1/C O.h2/:

However, the matrix (2.73) has the advantage of being symmetric, as we would hope, since
the original differential equation is self-adjoint. Moreover, since � > 0, the matrix can be
shown to be nonsingular and negative definite. This means that all the eigenvalues are neg-
ative, a property also shared by the differential operator @

@x
�.x/ @

@x
(see Section C.8). It is

generally desirable to have important properties such as these modeled by the discrete ap-
proximation to the differential equation. One can then show, for example, that the solution
to the difference equations satisfies a maximum principle of the same type as the solution
to the differential equation: for the homogeneous equation with f .x/ � 0, the values of
u.x/ lie between the values of the boundary values ˛ and ˇ everywhere, so the maximum
and minimum values of u arise on the boundaries. For the heat conduction problem this is
physically obvious: the steady-state temperature in the rod won’t exceed what’s imposed
at the boundaries if there is no heat source.
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Some good properties

1 The matrix yielded by above method has the advantage of being symmetric, as
we would hope since the original differential equation is self-adjoint.

2 Moreover since κ > 0, the matrix can be shown to be nonsigular and negative
definite.

3 When solving the resulting linear system by iterative methods it is also often
desirable that the matrix have properties such as negative definiteness, since
some iterative methods (e.g., the conjugate-gradient method) depend on such
properties.
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Nonlinear equations: motion of a pendulum

Consider the motion of a pendulum with mass m at the end of a rigid (massless) bar of
length L, and let θ(t) be the angle of the pendulum from vertical at time t. Ignoring the
mass of the bar and forces of friction and air resistance, the pendulum motion can be
modeled as

θ′′(t) = −
g
L

sin(θ(t)),

where g is the gravitational constant.
———————————————

F = ma = −mg sin θ =⇒ a = −g sin θ

arc length s = Lθ =⇒ v =
ds
dt

= L
dθ
dt

and a =
d2s
dt2

= L
d2θ

dt2

Therefore, L
d2θ

dt2
= −g sin θ

=⇒
d2θ

dt2
= −

g
L

sin θ
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Nonlinear equations

Taking g/L = 1 for simplicity, we have

θ′′(t) = − sin(θ(t)) for 0 < t < T,

θ(0) = α and θ(T) = β (given θ′(0) is more natural ⇒ IVP).

For small amplitudes of the angle θ, we have sin(θ(t)) ≈ θ(t) and

θ′′(t) = −θ(t) for 0 < t < T,

θ(0) = α and θ(T) = β.

The general solutions are of the form:

θ(t) = A cos(t) + B sin(t). (has period 2π)
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Solutions for various θ(0) and θ′(0) = 0 (IVPs)
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2.16. Nonlinear equations 37

When solving the resulting linear system by iterative methods (see Chapters 3 and 4)
it is also often desirable that the matrix have properties such as negative definiteness, since
some iterative methods (e.g., the conjugate-gradient (CG) method in Section 4.3) depend
on such properties.

2.16 Nonlinear equations
We next consider a nonlinear BVP to illustrate the new complications that arise in this
case. We will consider a specific example that has a simple physical interpretation which
makes it easy to understand and interpret solutions. This example also illustrates that not
all 2-point BVPs are steady-state problems.

Consider the motion of a pendulum with mass m at the end of a rigid (but massless)
bar of length L, and let �.t/ be the angle of the pendulum from vertical at time t , as illus-
trated in Figure 2.3. Ignoring the mass of the bar and forces of friction and air resistance,
we see that the differential equation for the pendulum motion can be well approximated by

� 00.t/ D �.g=L/ sin.�.t//; (2.74)

where g is the gravitational constant. Taking g=L D 1 for simplicity we have

� 00.t/ D � sin.�.t// (2.75)

as our model problem.
For small amplitudes of the angle � it is possible to approximate sin.�/ � � and

obtain the approximate linear differential equation

� 00.t/ D ��.t/ (2.76)

(a)

�

0 1 2 3 4 5 6 7 8 9 10
−2

−1

0

1

2

0 1 2 3 4 5 6 7 8 9 10
−2

−1

0

1

2

(b)

(c)

Figure 2.3. (a) Pendulum. (b) Solutions to the linear equation (2.76) for various
initial � and zero initial velocity. (c) Solutions to the nonlinear equation (2.75) for various
initial � and zero initial velocity.

(a) pendulum; (b) solutions to the linear equation and (c) solutions to the nonlinear
equation for various initial θ and zero initial velocity.

Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Steady States and Boundary Value Problems – 51/70



Discretization of the nonlinear BVP

1 Following the approach for linear problems, we obtain the system of equations

1
h2

(
θi−1 − 2θi + θi+1

)
+ sin(θi) = 0,

for i = 1, 2, · · · ,m, where h := T/(m + 1) and θ0 := α, θm+1 := β.
2 This is now a nonlinear system of equations of the form

G(θ) = 0,

where G : Rm → Rm and θ := (θ1, θ2, · · · , θm)>.
3 This cannot be solved as easily as the tridiagonal linear systems. Instead of a

direct method, we must generally use some iterative method, such as Newton’s
method.
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Newton’s method for nonlinear system of equations

If θ[k] is our approximation to θ in step k, then Newton’s method is derived via the
Taylor expansion

G(θ[k+1]) = G(θ[k]) + G′(θ[k])
(
θ[k+1] − θ[k]

)
+ · · · .

Setting G(θ[k+1]) = 0 as desired, and dropping the higher order terms, results in

0 ≈ G(θ[k]) + G′(θ[k])
(
θ[k+1] − θ[k]

)
.

This gives the Newton update

θ[k+1] := θ[k] + δ[k],

where δ[k] solves the linear system

J(θ[k])δ[k] = −G(θ[k]).

where J(θ) := G′(θ) ∈ Rm×m is the Jacobian matrix with elements

Jij(θ) =
∂

∂θj
Gi(θ) for i, j = 1, 2, · · · ,m.
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Jacobian matrix J(θ)

In our case,

Gi(θ) = Gi(θ1, θ2, · · · , θm) =
1
h2

(
θi−1 − 2θi + θi+1

)
+ sin(θi),

and hence

Jij(θ) =

 1/h2 if j = i− 1 or j = i + 1,
−2/h2 + cos(θi) if j = i,
0 otherwise,

so that

J(θ) =
1
h2


−2 + h2 cos(θ1) 1

1 −2 + h2 cos(θ2) 1
. . .

. . . 1
1 −2 + h2 cos(θm)

 .
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Some remarks

1 With Newton’s method, we need an initial guess that has to be close enough to
an exact solution.

2 Newton’s method can be shown to converge quadratically if we start with an
initial guess that is sufficiently close to an exact solution.

3 The solution of the nonlinear problem found above is an isolated solution in the
sense that there are no other solutions very nearby (it is also said to be locally
unique). It does not follow that this is the unique solution to the nonlinear BVP.
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Accuracy on nonlinear equations

1 Keep clear the distinction between the convergence of Newton’s method to a
solution of the finite difference equations and the convergence of this finite
difference approximation to the solution of the differential equation.

2 Local truncation error: inserting the true solution into the finite difference
equations:

τi :=
1
h2

(
θ(ti−1)− 2θ(ti) + θ(ti+1)

)
+ sin(θ(ti))− 0

= (θ′′(ti) + sin(θ(ti))) +
1

12
h2θ(4)(ti) + O(h4)

=
1
12

h2θ(4)(ti) + O(h4), i = 1, 2, · · · ,m.

Hence, the LTE is O(h2).

3 Global error: Let θ̂ be the vector of true values at the grid points. Let
τ = (τ1, τ2, · · · , τm)>. Then G(θ̂) = τ . Let E := θ − θ̂ be the global error, then
we have

G(θ)− G(θ̂) = 0− τ = −τ
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Global error

1 Recall the linear case (i.e., G(θ) = Aθ − F):

G(θ)− G(θ̂) = Aθ − Aθ̂ = AE = −τ =⇒ · · · =⇒ Eh = (Ah)−1(−τ h).

2 Use Taylor series expansions to write

G(θ) = G(θ̂) + J(θ̂)E + O(‖E‖2) =⇒ J(θ̂)E = −τ + O(‖E‖2).

If we ignore the higher order terms, then we again have a linear relation between
the local and global errors.

3 Let Ĵh := J(θ̂) on a grid with grid spacing h.

Definition: The nonlinear difference method G(θ) = 0 is stable in some norm
‖ · ‖ if the matrices (̂Jh)−1 are uniformly bounded in this norm as h→ 0, i.e.,
there exist C > 0 and h0 > 0 such that

‖(̂Jh)−1‖ ≤ C for all 0 < h < h0.

4 It can be shown that if the method is stable in this sense and consistent
(‖τ h‖ → 0 as h→ 0+), then the method converges (‖Eh‖ → 0 as h→ 0+).
(This is not obvious in the nonlinear case)
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Singular perturbation problems

1 Singular perturbation problem =⇒ boundary and/or interior layers =⇒
solution varies rapidly =⇒ difficult to solve numerically.

2 Consider the time-dependent problem which models the temperature u(x, t) of a
fluid flowing through a pipe with constant velocity a and the fluid has constant
heat diffusion coefficient κ > 0 and ψ is the source term:

ut + aux = κuxx + ψ(x) 0 < x < 1 ⊕ IC ⊕ BC.

Suppose that a > 0. Then we naturally have a boundary condition at the left
boundary x = 0, specifying the temperature of the incoming fluid:

u(0, t) = α(t).

Since κ > 0, the heat can diffuse upstream, we need to specify

u(1, t) = β(t)

to determine a unique solution. If κ = 0 (no diffusion), we only need BC at x = 0
since a > 0.
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Steady-state convection-diffusion (對對對流流流-擴擴擴散散散) problem

If α, β and ψ are all independent of time t, then we expect to having a steady-state
solution by solving the following two-point BVP, called the
convection/advection-diffusion problem (κ, a > 0):{

−κu′′(x) + au′(x) = ψ(x), 0 < x < 1,
u(0) = α and u(1) = β,

1 a is small relative to κ⇒ smooth solution, the problem is easy to solve.
2 a is large relative to κ⇒ convection-dominated (對流佔優)⇒mainly hyperbolic

nature, non-smooth solution.

Define the Péclet number by Pe := a/κ, which is the ratio of advection velocity
to transport speed due to diffusion.

To reduce to one-parameter case, let ε = κ/a > 0 and rewrite equation in the
form

εu′′(x)− u′(x) = f (x)
(

:= −
1
a
ψ(x)

)
.

Then a large relative to κ (large Péclet number)⇐⇒ 0 < ε� 1.
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The singularly perturbed problem

As ε→ 0+, the equation
εu′′(x)− u′(x) = f (x)

reduces to a first order equation

−u′(x) = f (x),

which allows only one boundary condition (u(0) = α), rather than two.

However, for ε > 0, no matter how small, we have a second order equation that needs
two conditions. Thus, we expect to see strange behavior at the outflow boundary
(x = 1) as ε→ 0+.

Indeed, the solution u may exhibit the behavior of boundary layer of width O(ε) at the
outflow boundary, namely, a narrow region where the solution u changes rapidly. In
this case, we call {

−κu′′(x) + au′(x) = ψ(x), 0 < x < 1,
u(0) = α and u(1) = β,

with 0 < ε� 1 a singularly perturbed problem.
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An example of boundary layer

Let α = 1, β = 3, and f (x) = −1. Then the exact solution is given by

u(x) = α+ x + (β − α− 1)

(
ex/ε − 1
e1/ε − 1

)
.
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boundary conditions. The solution of the perturbed equation looks nearly identical to the
solution of the unperturbed equation for small a, and the difference in solutions is O.a/ as
a ! 0.

Singular perturbation problems cause numerical difficulties because the solution
changes rapidly over a very small interval in space. In this region derivatives of u.x/

are large, giving rise to large errors in our finite difference approximations. Recall that
the error in our approximation to u00.x/ is proportional to h2u0000.x/, for example. If h is
not small enough, then the local truncation error will be very large in the boundary layer.
Moreover, even if the truncation error is large only in the boundary layer, the resulting
global error may be large everywhere. (Recall that the global error E is obtained from the
truncation error � by solving a linear system AE D �� , which means that each element
of E depends on all elements of � since A�1 is a dense matrix.) This is clearly seen in
Figure 2.6(b), where the numerical solution with h D 1=10 is plotted. Errors are large even
in regions where the exact solution is nearly linear and u0000 � 0.

On finer grids the solution looks better (see Figure 2.6(c) and (d)), and as h ! 0

the method does exhibit second order accurate convergence. But it is necessary to have a
sufficiently fine grid before reasonable results are obtained; we need enough grid points to
enable the boundary layer to be well resolved.

(a) 0 0.2 0.4 0.6 0.8 1

1

1.5

2

2.5

3

(b) 0 0.2 0.4 0.6 0.8 1

1

1.5

2

2.5

3

(c) 0 0.2 0.4 0.6 0.8 1

1

1.5

2

2.5

3

(d) 0 0.2 0.4 0.6 0.8 1

1

1.5

2

2.5

3

Figure 2.6. (a) Solutions to the steady state advection-diffusion equation (2.88)
for different values of �. The four lines correspond to � D 0:3; 0:1; 0:05, and 0:01 from
top to bottom. (b) Numerical solution with � D 0:01 and h D 1=10. (c) h D 1=25. (d)
h D 1=100.

(a) Exact solutions: ε = 0.3, 0.1, 0.05, and 0.01 from top to bottom.
(b) Numerical solution for ε = 0.01 with h = 1/10.

(c) h = 1/25. (d) h = 1/100.
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Difficulties in numerical computation

1 Most numerical methods exhibit spurious oscillations or low accuracy for
singular perturbation problems (see Figure (b) and (c)).

2 Since the solution changes rapidly over a very small interval in space,
derivatives of u(x) are large. For example,

u′′(x) = D2u(x)−
1

12
h2u′′′′(x) + O(h4).

If h is not small enough, then the local truncation error will be very large in the
boundary layer. Moreover, even if the truncation error is large only in the
boundary layer, the resulting global error E = −A−1τ may be large everywhere,
since A−1 is a dense matrix.

3 On finer grids the solution looks better (Figure (c) and (d)), and as h→ 0 the
method does exhibit second order accurate convergence.

=⇒ a huge number of linear equations.
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Interior layers (ILs)

Consider the nonlinear 2-point boundary value problem{
εu′′(x) + u(x)(u′(x)− 1) = 0 for a < x < b,
u(a) = α and u(b) = β.

Setting ε = 0 gives a reduced equation

u(x)(u′(x)− 1) = 0 for a < x < b

=⇒ u(x) = 0 or u(x) = x + C for some C ∈ R,

for which we generally can enforce only one boundary condition:
1 u(x) = x + α− a if u(a) = α is imposed.
2 u(x) = x + β − b if u(b) = β is imposed.
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Example of IL

For 0 < ε� 1, the solution of the full equation{
εu′′(x) + u(x)(u′(x)− 1) = 0 for a < x < b,
u(a) = α and u(b) = β

must satisfy both boundary conditions. The figure below shows a solution.

     












 

  

  

Outer solutions and full solution to the singular perturbation problem with a = 0,
b = 1, α = −1, and β = 1.5. The solution has an interior layer centered about x̄ = 0.25
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How to determine the location and width of the IL?
– Perturbation Theory

Assume the interior layer is centered at some location x̄ ∈ (a, b), and we zoom in on the
solution by assuming that u(x) has the approximate form

u(x) = W((x− x̄)/εk)

for some power k to be determined. Then we have

u′(x) = ε−kW′((x− x̄)/εk),

u′′(x) = ε−kW′′((x− x̄)/εk).

Substituting these into the equation

εu′′(x) + u(x)(u′(x)− 1) = 0 for a < x < b

gives
ε · ε−2kW′′(ξ) + W(ξ)(ε−kW′(ξ)− 1) = 0

multiply by ε2k−1 =⇒ W′′(ξ) + W(ξ)(εk−1W′(ξ)− ε2k−1) = 0,
where ξ = (x− x̄)/εk.
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Determine the layer width O(εk)

By rescaling the independent variable by a factor εk, we have converted the singular
perturbation problem into a problem where the highest order derivative W′′ has
coefficient 1 and the small parameter appears only in the lower order term:

W′′(ξ) + W(ξ)(εk−1W′(ξ)− ε2k−1) = 0, where ξ :=
x− x̄
εk .

1 For k < 1, the lower order term blows up as ε→ 0+, or dividing by εk−1 shows
that we still have a singular perturbation problem.

2 The lower order term behaves well in the limit ε→ 0+ only if we take k ≥ 1.
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Boundary conditions

Boundary conditions: Fix x at any value away from x̄, then

ξ :=
x− x̄
εk → ±∞ as ε→ 0+.

So we define boundary conditions at ±∞,

W(ξ)→ x̄ + α− a as ξ → −∞,
W(ξ)→ x̄ + β − b as ξ → +∞.

We also require
W′(ξ) = εku′(x)→ 0 as ξ → ±∞,

since outside the layer the linear functions have the desired slope.

Observe that if k > 1, the lower order term vanishes as ε→ 0+ and the equation
reduces to W′′(ξ) = 0. This implies the solution simply appears linear, while it does
not allow us to capture the full behavior in the interior layer.
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Approximate solution

Taking k = 1 gives the proper interior problem

W′′(ξ) + W(ξ)(W′(ξ)− ε) = 0.

Now letting ε→ 0, we have

W′′(ξ) + W(ξ)W′(ξ) = 0,

which has the solutions

W(ξ) = w0 tanh(w0ξ/2),

tanh(x) =
sinh(x)

cosh(x)
=

ex−e−x

2
ex+e−x

2

=
1− e−2x

1 + e−2x


for arbitrary constants w0. The boundary conditions lead to

w0 =
1
2

(a− b + β − α) and x̄ =
1
2

(a + b− α− β).

Combining the inner and outer solutions, we obtain an approximate solution

u(x) ≈ ũ(x) := x− x̄ + w0 tanh(w0(x− x̄)/2ε).

Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Steady States and Boundary Value Problems – 68/70



Finite difference approximation

In summary, the solution has an interior layer of width O(ε) at x = x̄ with roughly
linear solution outside the layer. This type of information may be all we need to know
about the solution for some applications.

This nonlinear problem{
εu′′(x) + u(x)(u′(x)− 1) = 0 for a < x < b,
u(a) = α and u(b) = β

can be solved numerically on a uniform grid using the finite difference equations

Gi(U) := ε

(
Ui−1 − 2Ui + Ui+1

h2

)
+ Ui

(
Ui+1 − Ui−1

2h
− 1

)
= 0

for i = 1, 2, · · · ,m with U0 = α and Um+1 = β. This gives a nonlinear system of
equations G(U) = 0 that can be solved using Newton’s method. The initial guess for
Newton’s method can be chosen as Ui = ũ(xi), 1 ≤ i ≤ m, which is already very
accurate at nearly all grid points.
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Nonuniform grids

On the other hand, when ε is very small, highly accurate numerical results can be
obtained with less computation by using a nonuniform grid, with grid points clustered
in the layer (see figure below). The width of the layer is O(ε) and, moreover, from

u(x) ≈ ũ(x) := x− x̄ + w0 tanh(w0(x− x̄)/2ε),

we expect that most of the transition occurs for, say, | 12 w0ξ| < 2. This translates into
|x− x̄| < 4ε/w0.

     






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





Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Steady States and Boundary Value Problems – 70/70


