MA 7007：Numerical Solution of Differential Equations I Elliptic Partial Differential Equations

> Suh-Yuh Yang (楊肅暗)

Department of Mathematics，National Central University
Jhongli District，Taoyuan City 32001，Taiwan

E－mail：syyang＠math．ncu．edu．tw
Website：http：／／www．math．ncu．eud．tw／～syyang／

Introduction

In two space dimensions a constant－coefficient elliptic equation has the form

$$
a_{1} u_{x x}(x, y)+a_{2} u_{x y}(x, y)+a_{3} u_{y y}(x, y)+a_{4} u_{x}(x, y)+a_{5} u_{y}(x, y)+a_{6} u(x, y)=f(x, y)
$$

for all $(x, y) \in \Omega$ ，where $\Omega \subseteq \mathbb{R}^{2}$ is typically an open bounded domain and the coefficients a_{1}, a_{2}, a_{3} satisfy

$$
a_{2}^{2}-4 a_{1} a_{3}<0
$$

This equation must be complemented with some boundary condition on the boundary $\partial \Omega$ such as the Dirichlet boundary condition

$$
u(x, y)=g(x, y) \quad \text { for all }(x, y) \in \partial \Omega
$$

Steady－state heat conduction

Heat conduction problem in two space dimensions：

$$
\left\{\begin{array}{l}
u_{t}=\left(\kappa u_{x}\right)_{x}+\left(\kappa u_{y}\right)_{y}+\psi, \quad t \in(0, T),(x, y) \in \Omega, \\
\text { "Initial and boundary conditions." }
\end{array}\right.
$$

where $\kappa(x, y)>0$ is the diffusivity and $\psi(t, x, y)$ is a source function．If the boundary conditions and the source term are independent of time t ，then we expect a steady state to exist，

$$
\left(\kappa u_{x}\right)_{x}+\left(\kappa u_{y}\right)_{y}=-\psi:=f \quad \text { in } \Omega+\text { "boundary conditions." }
$$

Let $\kappa(x, y) \equiv 1$ for all $(x, y) \in \Omega$ ．
（1）Poisson equation：$u_{x x}+u_{y y}=f$ ．
（2）Laplace equation：$u_{x x}+u_{y y}=0$ ．
Solutions to the Laplace equation are called harmonic functions．

Notation and boundary conditions

Notation：$\nabla:=\left[\partial_{x}, \partial_{y}\right]^{\top}$ ．
（1）gradient operator：$\nabla u=\left[u_{x}, u_{y}\right]^{\top}$ ．
（2）divergence operator：$\nabla \cdot[u, v]^{\top}=u_{x}+v_{y}$ ．
（3）Laplacian operator：$\nabla^{2} u:=\nabla \cdot \nabla u=u_{x x}+u_{y y}:=\Delta u$ ．

Boundary conditions：
（1）Dirichlet BC：$u(x, y)=g(x, y), \quad \forall(x, y) \in \partial \Omega$
（2）Neumann BC：$\frac{\partial u}{\partial n}(x, y)(:=\nabla u(x, y) \cdot n(x, y))=g(x, y), \quad \forall(x, y) \in \partial \Omega$
（3）Robin BC：$a u(x, y)+b \frac{\partial u}{\partial n}(x, y)=g(x, y), \quad \forall(x, y) \in \partial \Omega$
4）Mixed BC：

$$
\left.\frac{\partial u}{\partial n}\right|_{\Gamma_{2}}=g
$$

Centered difference scheme

For example，we consider the Poisson equation with the Dirichlet BC：

$$
\begin{aligned}
\nabla^{2} u & =f \text { in } \Omega:=(0,1) \times(0,1), \\
u & =g \text { on } \partial \Omega .
\end{aligned}
$$

We will use the uniform Cartesian grid：$\left(x_{i}, y_{j}\right)$ ，where $x_{i}=i \Delta x$ and $y_{j}=j \Delta y$ ， Δx and Δy are the grid sizes in $x-$ and y－directions．
Let $u_{i j}$ represent an approximation to $u\left(x_{i}, y_{j}\right)$ and $f_{i j}:=f\left(x_{i}, y_{j}\right)$ ．

$$
\frac{1}{(\Delta x)^{2}}\left(u_{i-1, j}-2 u_{i j}+u_{i+1, j}\right)+\frac{1}{(\Delta y)^{2}}\left(u_{i, j-1}-2 u_{i j}+u_{i, j+1}\right)=f_{i j} .
$$

For simplicity，we set $\Delta x=\Delta y=h$ ．Then we have

$$
\nabla_{5}^{2} u_{i j}:=\frac{1}{h^{2}}\left(u_{i-1, j}+u_{i+1, j}+u_{i, j-1}+u_{i, j+1}-4 u_{i j}\right)=f_{i j} .
$$

Let $0=x_{0}<x_{1}<\cdots<x_{m}<x_{m+1}=1$ and $0=y_{0}<y_{1}<\cdots<y_{m}<y_{m+1}=1$ be the partitions．Then $h=1 /(m+1)$ ．From the above equations，we have an $m^{2} \times m^{2}$ linear system $\boldsymbol{A} \boldsymbol{u}=\boldsymbol{F}$ of m^{2} unknowns $u_{i j}$ for $1 \leq i \leq m, 1 \leq j \leq m$ ，where \boldsymbol{A} is sparse （Roughly speaking，at least $\frac{2}{3} \uparrow$ zeros）．

Computational grid：5－point stencil and 9－point stencil

Ordering the unknowns and equations

（a）The rowwise ordering．

（b）The red－black ordering．

The rowwise ordering

Let

$$
\boldsymbol{u}=\left[\begin{array}{c}
u^{[1]} \\
u^{[2]} \\
\vdots \\
u^{[m]}
\end{array}\right], \quad u^{[j]}=\left[\begin{array}{c}
u_{1 j} \\
u_{2 j} \\
\vdots \\
u_{m j}
\end{array}\right], \quad \boldsymbol{F}=\left[\begin{array}{c}
f^{[1]} \\
f^{[2]} \\
\vdots \\
f^{[m]}
\end{array}\right]+B V, \quad f^{[j]}=\left[\begin{array}{c}
f_{1 j} \\
f_{2 j} \\
\vdots \\
f_{m j}
\end{array}\right] .
$$

Then

$$
A=\frac{1}{h^{2}}\left[\begin{array}{ccccc}
T & I & & & \\
I & T & I & & \\
& \ddots & \ddots & \ddots & \\
& & I & T & I \\
& & & I & T
\end{array}\right], \quad T=\left[\begin{array}{rrrrr}
-4 & 1 & & & \\
1 & -4 & 1 & & \\
& \ddots & \ddots & \ddots & \\
& & 1 & -4 & 1 \\
& & & 1 & -4
\end{array}\right]
$$

Accuracy and stability

The local truncation error $\tau_{i j}$ at the grid point (i, j) is defined by

$$
\tau_{i j}:=\frac{1}{h^{2}}\left(u\left(x_{i-1}, y_{j}\right)+u\left(x_{i+1}, y_{j}\right)+u\left(x_{i}, y_{j-1}\right)+u\left(x_{i}, y_{j+1}\right)-4 u\left(x_{i}, y_{j}\right)\right)-f\left(x_{i}, y_{j}\right) .
$$

By the Taylor expansion，we have

$$
\tau_{i j}=\frac{1}{12} h^{2}\left(u_{x x x x}\left(x_{i}, y_{j}\right)+u_{y y y y}\left(x_{i}, y_{j}\right)\right)+O\left(h^{4}\right)
$$

and

$$
A u^{\text {exact }}=\boldsymbol{F}+\boldsymbol{\tau},
$$

where A is the discretization matrix corresponding to the rowwise ordering．Letting the global error $E_{i j}:=u_{i j}-u\left(x_{i}, y_{j}\right)$ and noting that $\boldsymbol{A} \boldsymbol{u}=\boldsymbol{F}$ ，we obtain

$$
A E=-\tau \Longrightarrow E=A^{-1}(-\tau) .
$$

The method will be globally second order accurate in some grid function norm provided that $\left\|\boldsymbol{A}^{-1}\right\|$ is uniformly bounded as $h \rightarrow 0^{+}$．

Accuracy and stability（continued）

We consider the 2－norm for the discretization matrix A ．By further computations，one can show that for $p, q=1,2, \cdots, m$ ，the eigenvector $\boldsymbol{u}^{p, q}$ has the m^{2} elements，

$$
u_{i j}^{p, q}=\sin (p \pi i h) \sin (q \pi i h)
$$

and the corresponding eigenvalue is

$$
\lambda_{p, q}=\frac{2}{h^{2}}((\cos (p \pi h)-1)+(\cos (q \pi h)-1))<0 . \quad\left(\text { Note that } h=\frac{1}{m+1}\right)
$$

Thus，the one closest to origin is $\lambda_{1,1}=-2 \pi^{2}+O\left(h^{2}\right)$ ．（Hint：By Taylor expansion： $\left.\cos (x)=1-x^{2} / 2!+x^{4} / 4!-\cdots\right)$ The spectral radius of A^{-1} is

$$
\rho\left(A^{-1}\right)=\frac{1}{\left|\lambda_{1,1}\right|} \approx \frac{1}{2 \pi^{2}} \quad \text { as } h \rightarrow 0^{+}
$$

and then as $h \rightarrow 0^{+}$，

$$
\left\|A^{-1}\right\|_{2}=\sqrt{\rho\left(A^{-\top} A^{-1}\right)}=\sqrt{\rho\left(\left(A^{-1}\right)^{2}\right)}=\sqrt{\left(\rho\left(A^{-1}\right)\right)^{2}}=\rho\left(A^{-1}\right) \approx \frac{1}{2 \pi^{2}}
$$

which is uniformly bounded．

Accuracy and stability（continued）

From the centered difference scheme with uniform mesh size，$\nabla_{5}^{2} u_{i j}=f_{i j}$ ，we obtain an $m^{2} \times m^{2}$ linear system of m^{2} unknowns $u_{i j}$ for $1 \leq i \leq m, 1 \leq j \leq m$ ，

$$
A u=F,
$$

（or more precisely， $\boldsymbol{A}^{h} \boldsymbol{u}^{h}=\boldsymbol{F}^{h}$ ）．Now suppose source term \boldsymbol{F} is perturbed by a small vector \boldsymbol{p}（say，$\|\boldsymbol{p}\|_{2}<\delta$ for a small $\delta>0$ ）and the corresponding solution is denoted by \widetilde{u} ．Then we have

$$
A \widetilde{u}=F+p
$$

and

$$
A(\widetilde{u}-u)=p
$$

which implies

$$
\widetilde{\boldsymbol{u}}-\boldsymbol{u}=\boldsymbol{A}^{-1} \boldsymbol{p} \Longrightarrow\|\widetilde{\boldsymbol{u}}-\boldsymbol{u}\|_{2} \leq\left\|\boldsymbol{A}^{-1}\right\|_{2}\|\boldsymbol{p}\|_{2}<\left\|\boldsymbol{A}^{-1}\right\|_{2} \delta,
$$

where $\|\widetilde{\boldsymbol{u}}-\boldsymbol{u}\|_{2}$ and $\|\boldsymbol{p}\|_{2}$ are grid function norms．Since $\left\|\boldsymbol{A}^{-1}\right\|_{2}$ is uniformly bounded， we have $\|\widetilde{\boldsymbol{u}}-\boldsymbol{u}\|_{2} \leq C \delta$ ．Hence，the centered difference scheme for the Poisson problem is stable．

Condition number

The 2－norm condition number of the discretization matrix \boldsymbol{A} is defined by

$$
\kappa(A):=\|A\|_{2}\left\|A^{-1}\right\|_{2} .
$$

Notice that as $h \rightarrow 0^{+}$，

$$
\|\boldsymbol{A}\|_{2}=\rho(\boldsymbol{A})=\max _{1 \leq p, q \leq m}\left|\lambda_{p, q}\right|=\left|\lambda_{m, m}\right|=\frac{4}{h^{2}}\left|\cos \left(\frac{m}{m+1} \pi\right)-1\right| \approx \frac{4}{h^{2}}|-2|=\frac{8}{h^{2}} .
$$

Therefore

$$
\kappa(\boldsymbol{A}) \approx \frac{4}{\pi^{2} h^{2}}=O\left(h^{-2}\right) \quad \text { as } h \rightarrow 0^{+}
$$

The discretization matrix A is very ill－conditioned as we refine the grid．

The 9－point Laplacian

By the Taylor expansion，we have

$$
\begin{aligned}
& \nabla_{5}^{2} u\left(x_{i}, y_{j}\right)=\nabla^{2} u\left(x_{i}, y_{j}\right)+\frac{1}{12} h^{2} \frac{\partial^{4} u}{\partial x^{4}}\left(x_{i}, y_{j}\right)+\frac{1}{12} h^{2} \frac{\partial^{4} u}{\partial y^{4}}\left(x_{i}, y_{j}\right)+O\left(h^{4}\right) \\
& \Longrightarrow \nabla_{5}^{2} u\left(x_{i}, y_{j}\right)+\frac{2}{12} h^{2} \frac{\partial^{4} u}{\partial y^{2} \partial x^{2}}\left(x_{i}, y_{j}\right) \\
& =\nabla^{2} u\left(x_{i}, y_{j}\right)+\frac{1}{12} h^{2}\left\{\frac{\partial^{4} u}{\partial x^{4}}+2 \frac{\partial^{4} u}{\partial x^{2} \partial y^{2}}+\frac{\partial^{4} u}{\partial y^{4}}\right\}\left(x_{i}, y_{j}\right)+O\left(h^{4}\right) \\
& =\nabla^{2} u\left(x_{i}, y_{j}\right)+\frac{1}{12} h^{2} \nabla^{2} f\left(x_{i}, y_{j}\right)+O\left(h^{4}\right) \\
& \Longrightarrow \nabla_{5}^{2} u\left(x_{i}, y_{j}\right)+\frac{2}{12} h^{2} \frac{\partial^{4} u}{\partial y^{2} \partial x^{2}}\left(x_{i}, y_{j}\right)-\frac{1}{12} h^{2} \nabla^{2} f\left(x_{i}, y_{j}\right)=\nabla^{2} u\left(x_{i}, y_{j}\right)+O\left(h^{4}\right) .
\end{aligned}
$$

The 9－point Laplacian（continued）

$$
\begin{gathered}
\begin{array}{r}
\nabla_{5}^{2} u\left(x_{i}, y_{j}\right)+\frac{2}{12} h^{2} \frac{\partial^{4} u}{\partial y^{2} \partial x^{2}}\left(x_{i}, y_{j}\right)-\frac{1}{12} h^{2} \nabla^{2} f\left(x_{i}, y_{j}\right)=\nabla^{2} u\left(x_{i}, y_{j}\right)+O\left(h^{4}\right) \\
\Longrightarrow \nabla_{5}^{2} u\left(x_{i}, y_{j}\right)+\frac{h^{2}}{6 h^{4}}\left\{u\left(x_{i-1}, y_{j-1}\right)-2 u\left(x_{i-1}, y_{j}\right)+u\left(x_{i-1}, y_{j+1}\right)\right. \\
\\
-2 u\left(x_{i}, y_{j-1}\right)+4 u\left(x_{i}, y_{j}\right)-2 u\left(x_{i}, y_{j+1}\right) \\
+ \\
\left.+u\left(x_{i+1}, y_{j-1}\right)-2 u\left(x_{i+1}, y_{j}\right)+u\left(x_{i+1}, y_{j+1}\right)\right\}+O\left(h^{4}\right) \\
\\
-\frac{1}{12} h^{2} \nabla^{2} f\left(x_{i}, y_{j}\right)=\nabla^{2} u\left(x_{i}, y_{j}\right)+O\left(h^{4}\right) . \\
\therefore \quad \nabla_{9}^{2} u_{i j}:= \\
\frac{1}{6 h^{2}}\left\{4 u_{i-1, j}+4 u_{i+1, j}+4 u_{i, j-1}+4 u_{i, j+1}+u_{i-1, j-1}+u_{i-1, j+1}\right. \\
\\
\left.+u_{i+1, j-1}+u_{i+1, j+1}-20 u_{i j}\right\}=f_{i j}+\frac{1}{12} h^{2} \nabla^{2} f\left(x_{i}, y_{j}\right)
\end{array}
\end{gathered}
$$

is a finite difference scheme for the Poisson problem with local truncation error $O\left(h^{4}\right)$ ． The term $\frac{1}{12} h^{2} \nabla^{2} f\left(x_{i}, y_{j}\right)$ can be exactly computed or approximated by $\frac{1}{12} h^{2} \nabla_{5}^{2} f\left(x_{i}, y_{j}\right)$ ．

Estimates from the true solution

Suppose we know the true solution．Let $E(h)$ denote the error function of grid size h ， i．e．，$E(h)=\|U(h)-\widehat{U}(h)\|$ ，where $U(h)$ is the numerical solution vector and $\widehat{U}(h)$ is the true solution evaluated on the same grid．

If the method is p－th order accurate，i．e．，$E(h)=C h^{p}+O\left(h^{p+1}\right)$ as $h \rightarrow 0$ ，then for $0<h_{2}<h_{1}$ sufficiently small，we expect $E\left(h_{1}\right) \approx C h_{1}^{p}$ and $E\left(h_{2}\right) \approx C h_{2}^{p}$ ．The order of convergence can be estimated using

$$
p \approx \frac{\log \left(E\left(h_{1}\right) / E\left(h_{2}\right)\right)}{\log \left(h_{1} / h_{2}\right)}
$$

this is because

$$
\log \frac{E\left(h_{1}\right)}{E\left(h_{2}\right)} \approx \log \frac{C h_{1}^{p}}{C h_{2}^{p}}=\log \left(\frac{h_{1}}{h_{2}}\right)^{p}=p \log \frac{h_{1}}{h_{2}} .
$$

Estimates from a fine－grid solution

Now suppose we don＇t know the exact solution but that we can afford to run the problem on a very fine grid，say \bar{h} ，and use the numerical solution $U(\bar{h})$ as a reference solution．

Let $U(h)$ be the numerical solution on a coarser grid h ，and $\bar{U}(h)$ be the restriction of $U(\bar{h})$ to the h－grid．Define the approximate error and the true error as

$$
\bar{E}(h)=\|U(h)-\bar{U}(h)\| \quad \text { and } \quad E(h)=\|U(h)-\widehat{U}(h)\|,
$$

respectively．Then consider

$$
U(h)-\bar{U}(h)=(U(h)-\widehat{U}(h))+(\widehat{U}(h)-\bar{U}(h)) .
$$

If the method is supposed to be p－th order accurate and $\bar{h}^{p} \ll h^{p}$ ，then we will have $U(h)-\bar{U}(h) \approx U(h)-\widehat{U}(h)$ since the second term $\widehat{U}(h)-\bar{U}(h)$ should be negligible compared to the first term $U(h)-\widehat{U}(h)$ ．In this case，the approximate error $\bar{E}(h)$ can be used as a good estimate of the true error $E(h)$ ．

L^{p}－norm and discrete L^{p}－norm for grid functions， $1 \leq p \leq \infty$

（1）L^{p}－norm：Let $U(x)$ be an approximate solution of $u(x)$ on $\bar{\Omega}=[a, b]$ and let $e(x):=U(x)-u(x)$ ，where $U(x)$ and $u(x)$ are smooth enough．Then

$$
\|e\|_{L^{\infty}(\Omega)}:=\max _{a \leq x \leq b}|e(x)| \quad \text { and } \quad\|e\|_{L^{p}(\Omega)}:=\left(\int_{a}^{b}|e(x)|^{p} d x\right)^{1 / p}, \quad p \geq 1
$$

（2）Discrete L^{p}－norm of grid function e ：Let $U_{i} \approx u\left(x_{i}\right), 1 \leq i \leq N$ ．Let $e_{i}=U_{i}-u\left(x_{i}\right)$ and $e=\left(e_{1}, \cdots, e_{N}\right)^{\top}$ ．Then

$$
\|e\|_{\infty}:=\max _{1 \leq i \leq N}\left|e_{i}\right| \quad \text { and } \quad\|e\|_{p}:=\left(h \sum_{i=1}^{N}\left|e_{i}\right|^{p}\right)^{1 / p}, \quad p \geq 1 .
$$

（3）2－D discrete L^{p}－norm of grid function e ：

$$
\|e\|_{\infty}:=\max _{1 \leq i, j \leq N}\left|e_{i j}\right| \text { and }\|e\|_{p}:=\left(h^{2} \sum_{i} \sum_{j}\left|e_{i j}\right|^{p}\right)^{1 / p}, \quad p \geq 1 .
$$

Review：Vector norm

Let \boldsymbol{V} be a vector space over \mathbb{R} ，e．g．， $\boldsymbol{V}=\mathbb{R}^{n}$ ．A norm is a real－valued function $\|\cdot\|: V \rightarrow \mathbb{R}$ that satisfies
（1）$\|x\| \geq 0, \forall x \in V$ ，and $\|x\|=0$ if and only if $x=0$ ；
（2）$\|\lambda x\|=|\lambda|\|x\|, \forall x \in V$ and $\lambda \in \mathbb{R}$ ；
（3）$\|x+y\| \leq\|x\|+\|y\|, \forall x, y \in V$（triangle inequality）．
Note：$\|x\|$ is called the norm of x ，the length or magnitude of x ．

Some vector norms on \mathbb{R}^{n}

Let $\boldsymbol{x}=\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{\top} \in \mathbb{R}^{n}$ ：
（1）The 2－norm（Euclidean norm，or ℓ^{2} norm）：

$$
\|x\|_{2}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}
$$

（2）The infinity norm（ ℓ^{∞}－norm）：

$$
\|x\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right|
$$

（3）The 1－norm（ ℓ^{1}－norm）：

$$
\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|
$$

The difference between the above norms

（1）Take three vectors $\boldsymbol{x}=(4,4,-4,4)^{\top}, v=(0,5,5,5)^{\top}, w=(6,0,0,0)^{\top}$ ：

	$\\|\cdot\\|_{1}$	$\\|\cdot\\|_{2}$	$\\|\cdot\\|_{\infty}$
\boldsymbol{x}	16	8	4
v	15	8.66	5
w	6	6	6

（2）What is the unit ball $\left\{x \in \mathbb{R}^{2}:\|x\| \leq 1\right\}$ for the three norms above？
－2－norm：a circle；
－∞－norm：a square；
－1－norm：a diamond．

Matrix norm

Let A be an $n \times n$ real matrix．If $\|\cdot\|$ is any norm on \mathbb{R}^{n} ，then

$$
\|A\|:=\sup \left\{\|A x\|: x \in \mathbb{R}^{n},\|x\|=1\right\}\left(\Longleftrightarrow\|A\|:=\sup \left\{\frac{\|A x\|}{\|x\|}: x \in \mathbb{R}^{n}, x \neq \mathbf{0}\right\}\right)
$$

defines a norm on the vector space of all $n \times n$ real matrices．
（This is called the matrix norm associated with the given vector norm）
Proof：
－$\because\|A x\| \geq 0 \forall x \in \mathbb{R}^{n},\|x\|=1 . \therefore\|A\| \geq 0$.
Moreover，one can check that $\|A\|=0$ if and only if $\boldsymbol{A}=\mathbf{0}$ ．
－$\|\lambda \boldsymbol{A}\|=\sup \{\|\lambda A \boldsymbol{x}\|:\|\boldsymbol{x}\|=1\}=\sup \{|\lambda|\|\boldsymbol{A}\|:\|\boldsymbol{x}\|=1\}$
$=|\lambda| \sup \{\|A x\|:\|x\|=1\}=|\lambda|\|A\|$ ．
－$\|\boldsymbol{A}+\boldsymbol{B}\|=\sup \{\|(\boldsymbol{A}+\boldsymbol{B}) \boldsymbol{x}\|:\|\boldsymbol{x}\|=1\} \leq \sup \{\|\boldsymbol{A} \boldsymbol{x}\|+\|\boldsymbol{B} \boldsymbol{x}\|:\|\boldsymbol{x}\|=1\}$
$\leq \sup \{\|\boldsymbol{A} \boldsymbol{x}\|:\|\boldsymbol{x}\|=1\}+\sup \{\|\boldsymbol{B} \boldsymbol{x}\|:\|\boldsymbol{x}\|=1\}=\|\boldsymbol{A}\|+\|\boldsymbol{B}\|$ ．

Some additional properties

（1）$\|A x\| \leq\|A\|\|x\|, \forall x \in \mathbb{R}^{n}$ ．
Proof：
Let $x \neq \mathbf{0}$ ．Then $v=\frac{x}{\|x\|}$ is of norm $1 . \quad \therefore\|A\| \geq\|A v\|=\frac{\|A x\|}{\|x\|}$ ．
（2）$\|I\|=1$ ．
（3）$\|A B\| \leq\|A\|\|B\|$ ．
Proof：
$\|A B\|:=\sup \left\{\|(A B) x\|: x \in \mathbb{R}^{n},\|x\|=1\right\}$
$\leq \sup \left\{\|A\|\|B \boldsymbol{x}\|: x \in \mathbb{R}^{n},\|x\|=1\right\}$
$\leq \sup \left\{\|\boldsymbol{A}\|\|\boldsymbol{B}\|\|\boldsymbol{x}\|: x \in \mathbb{R}^{n},\|x\|=1\right\}=\|\boldsymbol{A}\|\|\boldsymbol{B}\|$ ．

Some matrix norms

Let $\boldsymbol{A}_{n \times n}=\left(a_{i j}\right)$ be an $n \times n$ real matrix．Then
（1）The ∞－matrix norm：

$$
\|\boldsymbol{A}\|_{\infty}=\max _{1 \leq i \leq n} \sum_{j=1}^{n}\left|a_{i j}\right| .
$$

（2）The 1－matrix norm：

$$
\|\boldsymbol{A}\|_{1}=\max _{1 \leq j \leq n} \sum_{i=1}^{n}\left|a_{i j}\right| .
$$

（3）The 2－matrix norm：

$$
\|\boldsymbol{A}\|_{2}=\sup _{\|\boldsymbol{x}\|_{2}=1}\|\boldsymbol{A} \boldsymbol{x}\|_{2}
$$

The 2－matrix norm

（1）$\|\boldsymbol{A}\|_{2}$ is not easy to compute．
（2）Since $\boldsymbol{A}^{\top} \boldsymbol{A}$ is symmetric， $\boldsymbol{A}^{\top} \boldsymbol{A}$ has n real eigenvalues，$\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n} \in \mathbb{R}$ ． Moreover，one can prove that they are all nonnegative．Then

$$
\rho\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right):=\max _{1 \leq i \leq n}\left\{\lambda_{i}\right\} \geq 0 .
$$

is called the spectral radius of $\boldsymbol{A}^{\top} \boldsymbol{A}$ ．
（3）Then the 2－matrix norm of A is given by

$$
\|A\|_{2}=\sqrt{\rho\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)}
$$

4．The 2－matrix norm is also called the spectral norm．

Some error analysis

（1）Suppose that we want to solve the linear system $A x=b, b$ but b is somehow perturbed to \widetilde{b}（this may happen when we convert a real \boldsymbol{b} to a floating－point \boldsymbol{b} ）．
（2）Then actual solution would satisfy a slightly different linear system

$$
A \widetilde{x}=\widetilde{b}
$$

（3）Question：Is \tilde{x} very different from the desired solution x of the original system？
（4）Of course，the answer should depend on how good the matrix \boldsymbol{A} is．
（5）Let $\|\cdot\|$ be a vector norm，we consider two types of errors：
－absolute error：$\|x-\widetilde{x}\|$ ？
－relative error：$\|x-\widetilde{x}\| /\|x\|$ ？

The absolute error

For the absolute error，we have

$$
\|x-\widetilde{\boldsymbol{x}}\|=\left\|A^{-1} \boldsymbol{b}-\boldsymbol{A}^{-1} \widetilde{\boldsymbol{b}}\right\|=\left\|\boldsymbol{A}^{-1}(\boldsymbol{b}-\widetilde{\boldsymbol{b}})\right\| \leq\left\|\boldsymbol{A}^{-1}\right\|\|\boldsymbol{b}-\widetilde{\boldsymbol{b}}\| .
$$

Therefore，the absolute error of x depends on two factors：the absolute error of \boldsymbol{b} and the matrix norm of A^{-1} ．

The relative error

For the relative error，we have

$$
\begin{aligned}
\|x-\widetilde{\boldsymbol{x}}\| & =\left\|A^{-1} \boldsymbol{b}-A^{-1} \widetilde{\boldsymbol{b}}\right\|=\left\|A^{-1}(\boldsymbol{b}-\widetilde{\boldsymbol{b}})\right\| \\
& \leq\left\|A^{-1}\right\|\|\boldsymbol{b}-\widetilde{\boldsymbol{b}}\|=\left\|A^{-1}\right\|\|A x\| \frac{\|\boldsymbol{b}-\widetilde{\boldsymbol{b}}\|}{\|\boldsymbol{b}\|} \\
& \leq\left\|A^{-1}\right\|\|A\|\|x\| \frac{\|\boldsymbol{b}-\widetilde{\boldsymbol{b}}\|}{\|\boldsymbol{b}\|} .
\end{aligned}
$$

That is

$$
\frac{\|\boldsymbol{x}-\widetilde{\boldsymbol{x}}\|}{\|\boldsymbol{x}\|} \leq\left\|A^{-1}\right\|\|A\| \frac{\|\boldsymbol{b}-\widetilde{\boldsymbol{b}}\|}{\|\boldsymbol{b}\|} .
$$

Therefore，the relative error of x depends on two factors：the relative error of \boldsymbol{b} and $\|A\|\left\|A^{-1}\right\|$ ．

Condition number

（1）Therefore，we define a condition number of the matrix A as

$$
\kappa(A):=\|A\|\left\|A^{-1}\right\| .
$$

$\kappa(A)$ measures how good the matrix A is．
（2）Example：Let $\varepsilon>0$ and

$$
A=\left[\begin{array}{cc}
1 & 1+\varepsilon \\
1-\varepsilon & 1
\end{array}\right] \Longrightarrow A^{-1}=\varepsilon^{-2}\left[\begin{array}{cc}
1 & -1-\varepsilon \\
-1+\varepsilon & 1
\end{array}\right]
$$

Then $\|\boldsymbol{A}\|_{\infty}=2+\varepsilon,\left\|\boldsymbol{A}^{-1}\right\|_{\infty}=\varepsilon^{-2}(2+\varepsilon)$ ，and $\kappa(\boldsymbol{A})=\left(\frac{2+\varepsilon}{\varepsilon}\right)^{2} \geq \frac{4}{\varepsilon^{2}}$ ．

Condition number（continued）

（1）For example，if $\varepsilon=0.01$ ，then $\kappa(A) \geq 40000$ ．
（2）What does this mean？
It means that the relative error in x can be 40000 times greater than the relative error in \boldsymbol{b} ．
（3）If $\kappa(\boldsymbol{A})$ is large，we say that \boldsymbol{A} is ill－conditioned，otherwise \boldsymbol{A} is well－conditioned．
（4）In the ill－conditioned case，the solution is very sensitive to the small changes in the right－hand vector \boldsymbol{b}（higher precision in \boldsymbol{b} may be needed）．

Another way to measure the error

Consider the linear system $A \boldsymbol{x}=\boldsymbol{b}(\neq \mathbf{0})$ ．Let $\widetilde{\boldsymbol{x}}$ be a computed solution（an approximation to x ）．
（1）Residual vector：

$$
r=b-A \widetilde{x} .
$$

（2）Error vector：

$$
e=x-\widetilde{x} .
$$

（3）They satisfy

$$
A e=A x-A \widetilde{x}=b-A \widetilde{x}=r .
$$

4 Moreover，we have

$$
\frac{1}{\kappa(\boldsymbol{A})} \frac{\|\boldsymbol{r}\|}{\|\boldsymbol{b}\|} \leq \frac{\|\boldsymbol{e}\|}{\|\boldsymbol{x}\|} \leq \kappa(\boldsymbol{A}) \frac{\|\boldsymbol{r}\|}{\|\boldsymbol{b}\|} .
$$

（Theorem on bounds involving condition number）

Proof of the Theorem

$\because A e=r$.
$\therefore e=A^{-1} r$ ．
$\therefore\|\boldsymbol{e}\|\|\boldsymbol{b}\|=\left\|\boldsymbol{A}^{-1} \boldsymbol{r}\right\|\|A x\| \leq\left\|A^{-1}\right\|\|r\|\|A\|\|x\|$ ．
$\therefore \frac{\|\boldsymbol{e}\|}{\|\boldsymbol{x}\|} \leq \kappa(\boldsymbol{A}) \frac{\|\boldsymbol{r}\|}{\|\boldsymbol{b}\|}$ ．
On the other hand，we have $\|\boldsymbol{r}\|\|\boldsymbol{x}\|=\|\boldsymbol{A e}\|\left\|\boldsymbol{A}^{-1} \boldsymbol{b}\right\| \leq\|\boldsymbol{A}\|\|\boldsymbol{e}\|\left\|\boldsymbol{A}^{-1}\right\|\|\boldsymbol{b}\|$ ．
$\therefore \frac{1}{\kappa(A)} \frac{\|\boldsymbol{r}\|}{\|\boldsymbol{b}\|} \leq \frac{\|\boldsymbol{e}\|}{\|\boldsymbol{x}\|}$ ．

