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Introduction

In two space dimensions a constant-coefficient elliptic equation has the form

a1uxx(x, y) + a2uxy(x, y) + a3uyy(x, y) + a4ux(x, y) + a5uy(x, y) + a6u(x, y) = f (x, y),

for all (x, y) ∈ Ω, where Ω ⊆ R2 is typically an open bounded domain and the
coefficients a1, a2, a3 satisfy

a2
2 − 4a1a3 < 0.

This equation must be complemented with some boundary condition on the boundary
∂Ω such as the Dirichlet boundary condition

u(x, y) = g(x, y) for all (x, y) ∈ ∂Ω.
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Steady-state heat conduction

Heat conduction problem in two space dimensions:{
ut = (κux)x + (κuy)y + ψ, t ∈ (0, T), (x, y) ∈ Ω,
“Initial and boundary conditions.”

where κ(x, y) > 0 is the diffusivity and ψ(t, x, y) is a source function. If the boundary
conditions and the source term are independent of time t, then we expect a steady state
to exist,

(κux)x + (κuy)y = −ψ := f in Ω + “boundary conditions.”

Let κ(x, y) ≡ 1 for all (x, y) ∈ Ω.
1 Poisson equation: uxx + uyy = f .
2 Laplace equation: uxx + uyy = 0.

Solutions to the Laplace equation are called harmonic functions.
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Notation and boundary conditions

Notation: ∇ := [∂x, ∂y]>.

1 gradient operator: ∇u = [ux, uy]>.

2 divergence operator: ∇ · [u, v]> = ux + vy.

3 Laplacian operator: ∇2u := ∇ · ∇u = uxx + uyy := ∆u.

Boundary conditions:
1 Dirichlet BC: u(x, y) = g(x, y), ∀(x, y) ∈ ∂Ω

2 Neumann BC:
∂u
∂n

(x, y)
(

:= ∇u(x, y) · n(x, y)
)
= g(x, y), ∀(x, y) ∈ ∂Ω

3 Robin BC: au(x, y) + b
∂u
∂n

(x, y) = g(x, y), ∀(x, y) ∈ ∂Ω

4 Mixed BC:
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Centered difference scheme

For example, we consider the Poisson equation with the Dirichlet BC:

∇2u = f in Ω := (0, 1)× (0, 1),

u = g on ∂Ω.

We will use the uniform Cartesian grid: (xi, yj), where xi = i∆x and yj = j∆y,
∆x and ∆y are the grid sizes in x− and y− directions.
Let uij represent an approximation to u(xi, yj) and fij := f (xi, yj).

1
(∆x)2 (ui−1,j − 2uij + ui+1,j) +

1
(∆y)2 (ui,j−1 − 2uij + ui,j+1) = fij.

For simplicity, we set ∆x = ∆y = h. Then we have

∇2
5uij :=

1
h2 (ui−1,j + ui+1,j + ui,j−1 + ui,j+1 − 4uij) = fij.

Let 0 = x0 < x1 < · · · < xm < xm+1 = 1 and 0 = y0 < y1 < · · · < ym < ym+1 = 1 be the
partitions. Then h = 1/(m + 1). From the above equations, we have an m2 ×m2 linear
system Au = F of m2 unknowns uij for 1 ≤ i ≤ m, 1 ≤ j ≤ m, where A is sparse
(Roughly speaking, at least 2

3 ↑ zeros).
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Computational grid: 5-point stencil and 9-point stencil
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Figure 3.1. Portion of the computationalgrid for a two-dimensionalelliptic equa-
tion. (a) The 5-point stencil for the Laplacian about the point .i; j / is also indicated. (b)
The 9-point stencil is indicated, which is discussed in Section 3.5.

Let uij represent an approximation to u.xi ; yj /. To discretize (3.5) we replace the
x- and y-derivatives with centered finite differences, which gives

1

.�x/2
.ui�1;j � 2uij C uiC1;j /C

1

.�y/2
.ui;j�1 � 2uij C ui;jC1/ D fij : (3.9)

For simplicity of notation we will consider the special case where�x D �y � h, although
it is easy to handle the general case. We can then rewrite (3.9) as

1

h2
.ui�1;j C uiC1;j C ui;j�1 C ui;jC1 � 4uij / D fij : (3.10)

This finite difference scheme can be represented by the 5-point stencil shown in Figure 3.1.
We have both an unknown uij and an equation of the form (3.10) at each of m2 grid points
for i D 1; 2; : : : ; m and j D 1; 2; : : : ; m, where h D 1=.m C 1/ as in one dimension.
We thus have a linear system of m2 unknowns. The difference equations at points near the
boundary will of course involve the known boundary values, just as in the one-dimensional
case, which can be moved to the right-hand side.

3.3 Ordering the unknowns and equations
If we collect all these equations together into a matrix equation, we will have an m2 �
m2 matrix that is very sparse, i.e., most of the elements are zero. Since each equation
involves at most five unknowns (fewer near the boundary), each row of the matrix has at
most five nonzeros and at least m2 � 5 elements that are zero. This is analogous to the
tridiagonal matrix (2.9) seen in the one-dimensional case, in which each row has at most
three nonzeros.

Recall from Section 2.14 that the structure of the matrix depends on the order we
choose to enumerate the unknowns. Unfortunately, in two space dimensions the struc-
ture of the matrix is not as compact as in one dimension, no matter how we order the
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Ordering the unknowns and equations
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Figure 3.2. (a) The natural rowwise order of unknowns and equations on a 4 � 4

grid. (b) The red-black ordering.

3.4 Accuracy and stability
The discretization of the two-dimensional Poisson problem can be analyzed using exactly
the same approach as we used for the one-dimensional boundary value problem. The local
truncation error �ij at the .i; j / grid point is defined in the obvious way,

�ij D
1

h2
.u.xi�1; yj /Cu.xiC1; yj /Cu.xi ; yj�1/Cu.xi ; yjC1/�4u.xi ; yj //�f .xi ; yj /;

and by splitting this into the second order difference in the x- and y-directions it is clear
from previous results that

�ij D
1

12
h2.uxxxx C uyyyy/C O.h4/:

For this linear system of equations the global error Eij D uij � u.xi ; yj / then solves the
linear system

AhEh D ��h

just as in one dimension, where Ah is now the discretization matrix with mesh spacing h,
e.g., the matrix (3.12) if the rowwise ordering is used. The method will be globally second
order accurate in some norm provided that it is stable, i.e., that k.Ah/�1k is uniformly
bounded as h ! 0.

In the 2-norm this is again easy to check for this simple problem, since we can explic-
itly compute the spectral radius of the matrix, as we did in one dimension in Section 2.10.
The eigenvalues and eigenvectors of A can now be indexed by two parameters p and k

corresponding to wave numbers in the x- and y-directions for p; k D 1; 2; : : : ; m. The
.p; q/ eigenvector up;q has the m2 elements

u
p;q
ij D sin.p� ih/ sin.q�j h/: (3.14)

The corresponding eigenvalue is

�p;q D
2

h2
..cos.p�h/ � 1/C .cos.q�h/ � 1// : (3.15)

(a) The rowwise ordering. (b) The red-black ordering.
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The rowwise ordering

Let

u =


u[1]

u[2]

...
u[m]

 , u[j] =


u1j
u2j
...

umj

 , F =


f [1]

f [2]

...
f [m]

+ BV, f [j] =


f1j
f2j
...

fmj

 .

Then

A =
1
h2


T I
I T I

. . .
. . .

. . .
I T I

I T

 , T =


−4 1

1 −4 1
. . .

. . .
. . .

1 −4 1
1 −4

 .
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Accuracy and stability

The local truncation error τij at the grid point (i, j) is defined by

τij :=
1
h2

(
u(xi−1, yj) + u(xi+1, yj) + u(xi, yj−1) + u(xi, yj+1)− 4u(xi, yj)

)
− f (xi, yj).

By the Taylor expansion, we have

τij =
1
12

h2
(

uxxxx(xi, yj) + uyyyy(xi, yj)
)
+ O(h4)

and
Auexact = F + τ,

where A is the discretization matrix corresponding to the rowwise ordering. Letting
the global error Eij := uij − u(xi, yj) and noting that Au = F, we obtain

AE = −τ =⇒ E = A−1(−τ).

The method will be globally second order accurate in some grid function norm
provided that ‖A−1‖ is uniformly bounded as h→ 0+.
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Accuracy and stability (continued)

We consider the 2-norm for the discretization matrix A. By further computations, one
can show that for p, q = 1, 2, · · · , m, the eigenvector up,q has the m2 elements,

up,q
ij = sin(pπih) sin(qπih)

and the corresponding eigenvalue is

λp,q =
2
h2

(
(cos(pπh)− 1) + (cos(qπh)− 1)

)
< 0. (Note that h =

1
m + 1

)

Thus, the one closest to origin is λ1,1 = −2π2 + O(h2). (Hint: By Taylor expansion:
cos(x) = 1− x2/2! + x4/4!− · · · ) The spectral radius of A−1 is

ρ(A−1) =
1
|λ1,1|

≈ 1
2π2 as h→ 0+,

and then as h→ 0+,

‖A−1‖2 =
√

ρ(A−>A−1) =
√

ρ((A−1)2) =
√
(ρ(A−1))2 = ρ(A−1) ≈ 1

2π2 ,

which is uniformly bounded.
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Accuracy and stability (continued)

From the centered difference scheme with uniform mesh size, ∇2
5uij = fij, we obtain an

m2 ×m2 linear system of m2 unknowns uij for 1 ≤ i ≤ m, 1 ≤ j ≤ m,

Au = F,

(or more precisely, Ahuh = Fh). Now suppose source term F is perturbed by a small
vector p (say, ‖p‖2 < δ for a small δ > 0) and the corresponding solution is denoted by
ũ. Then we have

Aũ = F + p,

and
A(ũ− u) = p,

which implies

ũ− u = A−1p =⇒ ‖ũ− u‖2 ≤ ‖A−1‖2‖p‖2 < ‖A−1‖2δ,

where ‖ũ− u‖2 and ‖p‖2 are grid function norms. Since ‖A−1‖2 is uniformly bounded,
we have ‖ũ− u‖2 ≤ Cδ. Hence, the centered difference scheme for the Poisson
problem is stable.
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Condition number

The 2-norm condition number of the discretization matrix A is defined by

κ(A) := ‖A‖2‖A−1‖2.

Notice that as h→ 0+,

‖A‖2 = ρ(A) = max
1≤p,q≤m

|λp,q| = |λm,m| =
4
h2

∣∣∣∣cos(
m

m + 1
π)− 1

∣∣∣∣ ≈ 4
h2 | − 2| = 8

h2 .

Therefore
κ(A) ≈ 4

π2h2 = O(h−2) as h→ 0+.

The discretization matrix A is very ill-conditioned as we refine the grid.
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The 9-point Laplacian

By the Taylor expansion, we have

∇2
5u(xi, yj) = ∇2u(xi, yj) +

1
12

h2 ∂4u
∂x4 (xi, yj) +

1
12

h2 ∂4u
∂y4 (xi, yj) + O(h4)

=⇒ ∇2
5u(xi, yj) +

2
12

h2 ∂4u
∂y2∂x2 (xi, yj)

= ∇2u(xi, yj) +
1
12

h2
{

∂4u
∂x4 + 2

∂4u
∂x2∂y2 +

∂4u
∂y4

}
(xi, yj) + O(h4)

= ∇2u(xi, yj) +
1
12

h2∇2f (xi, yj) + O(h4)

=⇒ ∇2
5u(xi, yj) +

2
12

h2 ∂4u
∂y2∂x2 (xi, yj)−

1
12

h2∇2f (xi, yj) = ∇2u(xi, yj) + O(h4).
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The 9-point Laplacian (continued)

∇2
5u(xi, yj) +

2
12

h2 ∂4u
∂y2∂x2 (xi, yj)−

1
12

h2∇2f (xi, yj) = ∇2u(xi, yj) + O(h4)

=⇒ ∇2
5u(xi, yj) +

h2

6h4

{
u(xi−1, yj−1)− 2u(xi−1, yj) + u(xi−1, yj+1)

−2u(xi, yj−1) + 4u(xi, yj)− 2u(xi, yj+1)

+u(xi+1, yj−1)− 2u(xi+1, yj) + u(xi+1, yj+1)
}
+ O(h4)

− 1
12

h2∇2f (xi, yj) = ∇2u(xi, yj) + O(h4).

∴ ∇2
9uij :=

1
6h2

{
4ui−1,j + 4ui+1,j + 4ui,j−1 + 4ui,j+1 + ui−1,j−1 + ui−1,j+1

+ui+1,j−1 + ui+1,j+1 − 20uij

}
= fij +

1
12

h2∇2f (xi, yj)

is a finite difference scheme for the Poisson problem with local truncation error O(h4).
The term 1

12 h2∇2f (xi, yj) can be exactly computed or approximated by 1
12 h2∇2

5f (xi, yj).
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Estimates from the true solution

Suppose we know the true solution. Let E(h) denote the error function of grid size h,
i.e., E(h) = ‖U(h)− Û(h)‖, where U(h) is the numerical solution vector and Û(h) is the
true solution evaluated on the same grid.

If the method is p-th order accurate, i.e., E(h) = Chp + O(hp+1) as h→ 0, then for
0 < h2 < h1 sufficiently small, we expect E(h1) ≈ Chp

1 and E(h2) ≈ Chp
2. The order of

convergence can be estimated using

p ≈ log(E(h1)/E(h2))

log(h1/h2)
,

this is because

log
E(h1)

E(h2)
≈ log

Chp
1

Chp
2
= log

( h1

h2

)p
= p log

h1

h2
.
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Estimates from a fine-grid solution

Now suppose we don’t know the exact solution but that we can afford to run the
problem on a very fine grid, say h, and use the numerical solution U(h) as a reference
solution.

Let U(h) be the numerical solution on a coarser grid h, and U(h) be the restriction of
U(h) to the h-grid. Define the approximate error and the true error as

E(h) = ‖U(h)−U(h)‖ and E(h) = ‖U(h)− Û(h)‖,

respectively. Then consider

U(h)−U(h) = (U(h)− Û(h)) + (Û(h)−U(h)).

If the method is supposed to be p-th order accurate and h
p � hp, then we will have

U(h)−U(h) ≈ U(h)− Û(h) since the second term Û(h)−U(h) should be negligible
compared to the first term U(h)− Û(h). In this case, the approximate error E(h) can be
used as a good estimate of the true error E(h).
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Lp-norm and discrete Lp-norm for grid functions, 1 ≤ p ≤ ∞

1 Lp-norm: Let U(x) be an approximate solution of u(x) on Ω = [a, b] and let
e(x) := U(x)− u(x), where U(x) and u(x) are smooth enough. Then

‖e‖L∞(Ω) := max
a≤x≤b

|e(x)| and ‖e‖Lp(Ω) :=
(∫ b

a
|e(x)|pdx

)1/p

, p ≥ 1.

2 Discrete Lp-norm of grid function e: Let Ui ≈ u(xi), 1 ≤ i ≤ N. Let
ei = Ui − u(xi) and e = (e1, · · · , eN)

>. Then

‖e‖∞ := max
1≤i≤N

|ei| and ‖e‖p :=

(
h

N

∑
i=1
|ei|p

)1/p

, p ≥ 1.

3 2-D discrete Lp-norm of grid function e:

‖e‖∞ := max
1≤i,j≤N

|eij| and ‖e‖p :=

(
h2 ∑

i
∑

j
|eij|p

)1/p

, p ≥ 1.
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Review: Vector norm

Let V be a vector space over R, e.g., V = Rn. A norm is a real-valued function
‖ · ‖ : V → R that satisfies

1 ‖x‖ ≥ 0, ∀ x ∈ V , and ‖x‖ = 0 if and only if x = 0;
2 ‖λx‖ = |λ|‖x‖, ∀ x ∈ V and λ ∈ R;
3 ‖x + y‖ ≤ ‖x‖+ ‖y‖, ∀ x, y ∈ V (triangle inequality).

Note: ‖x‖ is called the norm of x, the length or magnitude of x.
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Some vector norms on Rn

Let x = (x1, x2, · · · , xn)> ∈ Rn:
1 The 2-norm (Euclidean norm, or `2 norm):

‖x‖2 =

√
n

∑
i=1

x2
i .

2 The infinity norm (`∞-norm):

‖x‖∞ = max
1≤i≤n

|xi|.

3 The 1-norm (`1-norm):

‖x‖1 =
n

∑
i=1
|xi|.
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The difference between the above norms

1 Take three vectors x = (4, 4,−4, 4)>, v = (0, 5, 5, 5)>, w = (6, 0, 0, 0)>:

‖ · ‖1 ‖ · ‖2 ‖ · ‖∞

x 16 8 4
v 15 8.66 5
w 6 6 6

2 What is the unit ball {x ∈ R2 : ‖x‖ ≤ 1} for the three norms above?
2-norm: a circle;
∞-norm: a square;
1-norm: a diamond.
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Matrix norm
Let A be an n× n real matrix. If ‖ · ‖ is any norm on Rn, then

‖A‖ := sup{‖Ax‖ : x ∈ Rn, ‖x‖ = 1}
(
⇐⇒ ‖A‖ := sup{ ‖Ax‖

‖x‖ : x ∈ Rn, x 6= 0}
)

defines a norm on the vector space of all n× n real matrices.
(This is called the matrix norm associated with the given vector norm)

Proof:

∵ ‖Ax‖ ≥ 0 ∀ x ∈ Rn, ‖x‖ = 1. ∴ ‖A‖ ≥ 0.
Moreover, one can check that ‖A‖ = 0 if and only if A = 0.

‖λA‖ = sup{‖λAx‖ : ‖x‖ = 1} = sup{|λ|‖Ax‖ : ‖x‖ = 1}
= |λ| sup{‖Ax‖ : ‖x‖ = 1} = |λ|‖A‖.
‖A + B‖ = sup{‖(A + B)x‖ : ‖x‖ = 1} ≤ sup{‖Ax‖+ ‖Bx‖ : ‖x‖ = 1}
≤ sup{‖Ax‖ : ‖x‖ = 1}+ sup{‖Bx‖ : ‖x‖ = 1} = ‖A‖+ ‖B‖.
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Some additional properties

1 ‖Ax‖ ≤ ‖A‖‖x‖, ∀ x ∈ Rn.

Proof:

Let x 6= 0. Then v =
x
‖x‖ is of norm 1. ∴ ‖A‖ ≥ ‖Av‖ = ‖Ax‖

‖x‖ .

2 ‖I‖ = 1.
3 ‖AB‖ ≤ ‖A‖‖B‖.

Proof:
‖AB‖ := sup{‖(AB)x‖ : x ∈ Rn, ‖x‖ = 1}
≤ sup{‖A‖‖Bx‖ : x ∈ Rn, ‖x‖ = 1}
≤ sup{‖A‖‖B‖‖x‖ : x ∈ Rn, ‖x‖ = 1} = ‖A‖‖B‖.
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Some matrix norms
Let An×n = (aij) be an n× n real matrix. Then

1 The ∞-matrix norm:

‖A‖∞ = max
1≤i≤n

n

∑
j=1
|aij|.

2 The 1-matrix norm:

‖A‖1 = max
1≤j≤n

n

∑
i=1
|aij|.

3 The 2-matrix norm:
‖A‖2 = sup

‖x‖2=1
‖Ax‖2.
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The 2-matrix norm

1 ‖A‖2 is not easy to compute.

2 Since A>A is symmetric, A>A has n real eigenvalues, λ1, λ2, · · · , λn ∈ R.
Moreover, one can prove that they are all nonnegative. Then

ρ(A>A) := max
1≤i≤n

{λi} ≥ 0.

is called the spectral radius of A>A.
3 Then the 2-matrix norm of A is given by

‖A‖2 =
√

ρ(A>A).

4 The 2-matrix norm is also called the spectral norm.
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Some error analysis

1 Suppose that we want to solve the linear system Ax = b, but b is somehow
perturbed to b̃ (this may happen when we convert a real b to a floating-point b).

2 Then actual solution would satisfy a slightly different linear system

Ax̃ = b̃.

3 Question: Is x̃ very different from the desired solution x of the original system?
4 Of course, the answer should depend on how good the matrix A is.

5 Let ‖ · ‖ be a vector norm, we consider two types of errors:
absolute error: ‖x− x̃‖?
relative error: ‖x− x̃‖/‖x‖?
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The absolute error
For the absolute error, we have

‖x− x̃‖ = ‖A−1b−A−1b̃‖ = ‖A−1(b− b̃)‖ ≤ ‖A−1‖‖b− b̃‖.

Therefore, the absolute error of x depends on two factors: the absolute error of b and
the matrix norm of A−1.
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The relative error
For the relative error, we have

‖x− x̃‖ = ‖A−1b−A−1b̃‖ = ‖A−1(b− b̃)‖

≤ ‖A−1‖‖b− b̃‖ = ‖A−1‖‖Ax‖ ‖b− b̃‖
‖b‖

≤ ‖A−1‖‖A‖‖x‖ ‖b− b̃‖
‖b‖ .

That is
‖x− x̃‖
‖x‖ ≤ ‖A−1‖‖A‖ ‖b− b̃‖

‖b‖ .

Therefore, the relative error of x depends on two factors: the relative error of b and
‖A‖‖A−1‖.
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Condition number

1 Therefore, we define a condition number of the matrix A as

κ(A) := ‖A‖‖A−1‖.

κ(A) measures how good the matrix A is.
2 Example: Let ε > 0 and

A =

[
1 1 + ε

1− ε 1

]
=⇒ A−1 = ε−2

[
1 −1− ε

−1 + ε 1

]
.

Then ‖A‖∞ = 2 + ε, ‖A−1‖∞ = ε−2(2 + ε), and κ(A) =
( 2 + ε

ε

)2
≥ 4

ε2 .
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Condition number (continued)

1 For example, if ε = 0.01, then κ(A) ≥ 40000.
2 What does this mean?

It means that the relative error in x can be 40000 times greater than the relative
error in b.

3 If κ(A) is large, we say that A is ill-conditioned, otherwise A is well-conditioned.
4 In the ill-conditioned case, the solution is very sensitive to the small changes in

the right-hand vector b (higher precision in b may be needed).
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Another way to measure the error
Consider the linear system Ax = b( 6= 0). Let x̃ be a computed solution (an
approximation to x).

1 Residual vector:
r = b−Ax̃.

2 Error vector:
e = x− x̃.

3 They satisfy
Ae = Ax−Ax̃ = b−Ax̃ = r.

4 Moreover, we have
1

κ(A)

‖r‖
‖b‖ ≤

‖e‖
‖x‖ ≤ κ(A)

‖r‖
‖b‖ .

(Theorem on bounds involving condition number)
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Proof of the Theorem

∵ Ae = r.

∴ e = A−1r.

∴ ‖e‖‖b‖ = ‖A−1r‖‖Ax‖ ≤ ‖A−1‖‖r‖‖A‖‖x‖.

∴
‖e‖
‖x‖ ≤ κ(A)

‖r‖
‖b‖ .

On the other hand, we have ‖r‖‖x‖ = ‖Ae‖‖A−1b‖ ≤ ‖A‖‖e‖‖A−1‖‖b‖.

∴
1

κ(A)

‖r‖
‖b‖ ≤

‖e‖
‖x‖ .
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