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Introduction

In two space dimensions a constant-coefficient elliptic equation has the form
1tk (X, ) + ity (%, y) + a3ty (x,y) + agii (%, y) + asiy (x,y) +asu(x,y) = f(x,y),

for all (x,y) € Q, where Q) C R?is typically an open bounded domain and the
coefficients aj,a,, a3 satisfy
a% —4aqa3 < 0.

This equation must be complemented with some boundary condition on the boundary
0Q) such as the Dirichlet boundary condition

u(x,y) =g(xy)  forall (x,y) € 0Q.
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Steady-state heat conduction

Heat conduction problem in two space dimensions:

up = (Kuy)x + (kuy)y + 9, t€(0,T), (x,y) € Q,
“Initial and boundary conditions.”

where x(x,y) > 0is the diffusivity and 9 (¢, x, y) is a source function. If the boundary
conditions and the source term are independent of time t, then we expect a steady state
to exist,

(kux)x + (kuy)y = —¢ ;= f in Q 4 “boundary conditions.”

Letx(x,y) = 1forall (x,y) € Q.

@ Poisson equation: uyy + uyy = f.

Q Laplace equation: uyy + tyy = 0.
Solutions to the Laplace equation are called harmonic functions.
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Notation and boundary conditions

Notation: V := [0,,9,] .
@ gradient operator: Vi = [uy, uy] .
@ divergence operator: V - [1,0] T = 1y + vy

Laplacian operator: V2u 1=V - Vi = sy + 1y 1= All.
P P vy

Boundary conditions:
@ Dirichlet BC:  u(x,y) =g(x,y), V(x,y) €0Q

@ Neumann BC: a—u(x,y) (:: Vu(x,y) -n(x,y)) =g(xy), V(xy) €O

on
@ RobinBC:  au(x,y) + bg—Z(x,y) =g(xy), V(xy) €O
@ Mixed BC:
Ou
Arn

Suh-Yuh Yan, Math. Dept., NC va Elliptic Partial Differential Equations —4/31



Centered difference scheme

For example, we consider the Poisson equation with the Dirichlet BC:

Vi = f inQ:=(0,1)x(0,1),
u

g ondQ.

We will use the uniform Cartesian grid: (x;, yj), where x; = iAx and y; = jAy,
Ax and Ay are the grid sizes in x— and y— directions.
Let u;; represent an approximation to u(x;, ;) and f;; := f(x;,;)-

1 1
W(”i—l,j = 2ujj + ujt1) + W(uu 1= 2ui + uij1) = fi.

For simplicity, we set Ax = Ay = h. Then we have

1
2 . _
Vst := 15 (imyj+ i+ iy + hijer — du) = fi.

LetO=xp <x1 < - <xp <xpypy1=1land0=yo <y1 < -+ < Ym < Yms1 = 1 be the
partitions. Then i = 1/ (m + 1). From the above equations, we have an m? x m? linear
system Au = F of m? unknowns ujj for1 <i<m,1<j<m, whereA is sparse
(Roughly speaking, at least 3 1 zeros).
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Computational grid: 5-point stencil and 9-point stencil

Yij+2 Yi+2
1 1 4 1

Yi+1 Yi+1
1 4 1 4 20 |4

vi vi
1 1 4 1

Vji-1 Vi1

Yji—2 V-2

(@) Xi—2  Xi—1 Xi  Xiq1 Xi42 (D) Xi—y  Xi—1 Xi  Xiy1 Xit2
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Ordering the unknowns and equations

13 14 15 16 15 7 16 8

9 10 11 12 5 13 6 14

5 6 7 8 11 3 12 4

1 2 3 4 1 9 2 10
(a) (b)

(a) The rowwise ordering. (b) The red-black ordering.
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The rowwise ordering

Let
u[ll u1]
u[Z] . qu
u= N TR
) g
Then
T I
I T 1
1
A= ” .
I T
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f[l] fij
f[Z] , foi
F=|". |+Bv, fil=|",
f[fn] fnj
—4 1
1 -4 1
T= .

1 —4 1
1 -4
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Accuracy and stability

The local truncation error 7;; at the grid point (i, j) is defined by

1
T = <u(xi71/yj) (i1, yp) +uxi yp-) +ulx, yio) — 4u(xi,yj)) —f(xi,yp)-

By the Taylor expansion, we have

1
Tij = 12h (uxm(xz,y])+uww(xl,y])) +O(hY)

and
Auexact —F4+1
where A is the discretization matrix corresponding to the rowwise ordering. Letting
the global error Ej; := u;; — u(x;,y;) and noting that Au = F, we obtain
AE= 1= E=A"'(-7).

The method will be globally second order accurate in some grid function norm
provided that |[A™!| is uniformly bounded as h — 0.
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Accuracy and stability (continued)

We consider the 2-norm for the discretization matrix A. By further computations, one
can show that forp,q = 1,2, - - ,m, the eigenvector u”7 has the m? elements,

u’;fq = sin(prih) sin(grtih)

and the corresponding eigenvalue is

Apg = h%((cos(pnh) —1) + (cos(grth) — 1)) <0. (Note that h = )

m+1

Thus, the one closest to origin is A1 = —272 + O(h?). (Hint: By Taylor expansion:
cos(x) =1— x2/2!+x*/4! — .. .) The spectral radius of A lis

1 1
A= —~ — h +
o ) ]~ 22 ash—0",

and thenash — 0%,

la71 = eaTa) = y/p((a ) = pa )R =p(a) ~ 5

which is uniformly bounded.
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Accuracy and stability (continued)

From the centered difference scheme with uniform mesh size, V%u,-j = fij, we obtain an

2

m? x m? linear system of m? unknowns ujfor1 <i<m,1<j<m,

Au =F,

(or more precisely, A"u" = F"). Now suppose source term F is perturbed by a small
vector p (say, ||p|l2 < 6 for a small § > 0) and the corresponding solution is denoted by
1. Then we have

Au=F+p,

and
Afi—u)=p,

which implies
i—u=A"p = [i—ul2 <A 2lpl2 < 47128,
where || — u||; and ||p|| are grid function norms. Since ||A~}| is uniformly bounded,

we have || — u||, < Cé. Hence, the centered difference scheme for the Poisson
problem is stable.
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Condition number

The 2-norm condition number of the discretization matrix A is defined by
x(A4) = |Af2]lA™ 2.

Notice that as h — 07,

4 m 4 8
Al = p(A) = 1g;,2ém|/\w = |Amm| = 2 cos(mﬂ) -1 = h7| —-2|= 72
Therefore 4
~ _ -2 +
K(A)~W—O(h ) ash—0".

The discretization matrix A is very ill-conditioned as we refine the grid.
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The 9-point Laplacian

By the Taylor expansion, we have

1 ,0% 1 ,0%
2 2 2 12 4
Vsu(xi,y;) = Vou(xi, yj) + " 3a (xi/yj) + W (xi,y7) + O(K")
2 o*u
2 2
— V5u(xi,y]-) + ﬁh 73y23x2 (xi,yj)

1 *u o*u o*u
= Vzu(xi,yj) + Ehz {ax4 + ZaXZay ay4 } xz,y,) + O(h4)

1
= V() + 35 V) + O(H)

2 o%u 1
— V%u(xi,y]-) + EhZW(xi,yj) — EhZVZf(xi,yj) = Vzu(xi,yj) +0(1h).
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The 9-point Laplacian (continued)

o*u

1
Vsu(xl,y]) + — 12 ay28x2( W Y) — EhZVZf(xi,y]») = VZu(xi,y]-) +0(nt)

W2
= V3u(xi,yj) + -5 o { u(xi—1,Yj—1) — 2u(xi—1,y;) + u(xi—1, Yj+1)
—2u(x;, yj—1) + 4u(x;, y;) — 2u(x;, yir1)
(e, yor) = 20(xie, ) + (¥, i) |+ O()
1
- —hzvzf(xi,yj) = V2u(x;,y;) + O(h*).
Viujj = oz {4141 1j T 4uipr;+4uij +4uz]+1 + i1+ Uim1j4

i1+ UipLien — 20“1‘]‘} =fij+ h V2 (xi, ;)

is a finite difference scheme for the Poisson problem with local truncation error O(h4)
The term 472 V2f(x;, yj) can be exactly computed or approximated by 1, L2V (x;, j)-
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Estimates from the true solution

Suppose we know the true solution. Let E () denote the error function of grid size ,

ie., E(h) = ||[U(h) — U(h)|), where U(h) is the numerical solution vector and U(h) is the
true solution evaluated on the same grid.

If the method is p-th order accurate, i.e., E(h) = Ch? + O(h"*1) as h — 0, then for
0 < hy < hy sufficiently small, we expect E(hy) ~ Ch’i and E(hy) ~ Chg. The order of
convergence can be estimated using

- log(E(h1)/E(hy))

log(l1/h2)
this is because v
E(hy) _, Ch hi\P )
log E() logc—hg = log(E) =plog i
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Estimates from a fine-grid solution

Now suppose we don’t know the exact solution but that we can afford to run the
problem on a very fine grid, say /1, and use the numerical solution U(k) as a reference
solution.

Let U(h) be the numerical solution on a coarser grid &, and U(%) be the restriction of

U(h) to the h-grid. Define the approximate error and the true error as
E(h) = (k) =U(m)[| and  E(h) = [U(k) - Um)]),
respectively. Then consider
U(k) = U (k) = (U(k) = T(R)) + (U(k) — U(R)).

If the method is supposed to be p-th order accurate and i < I, then we will have
U(h) — U(h) ~ U(h) — U(h) since the second term U(h) — U(h) should be negligible
compared to the first term U(k) — U (k). In this case, the approximate error E(h) can be
used as a good estimate of the true error E(h).
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LP-norm and discrete L’-norm for grid functions, 1 < p < co

@ LP-norm: Let U(x) be an approximate solution of u(x) on Q) = [4,b] and let
e(x) := U(x) — u(x), where U(x) and u(x) are smooth enough. Then

b 1/p
lell(cy = max le(] and Jelliay = ([ lorax) , p=1

@ Discrete LP-norm of grid function e: Let U; ~ u(x;), 1 <i < N. Let
e;=U; —u(x;)and e = (ey, - ,ey) . Then

i=1

N 1p
lelleo = max lei| and flelly := (@jle#’) ;P21

© 2-D discrete [P-norm of grid function e:

1/p
— " - 2 .
lelle = max [es| and el := (h ;/Be,,ﬁ) TS
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Review: Vector norm

Let V be a vector space over R, e.g., V = R". A norm is a real-valued function
|||l : V — R that satisfies

@ |Ix| >0,Vx €V, and ||x|| = 0if and only if x = 0;
Q IMx]| = |A|||x]|, Vx € Vand A € R;
Q Ilx+yll < ||l + |lyll, ¥V x,y € V (triangle inequality).

Note: ||x| is called the norm of x, the length or magnitude of x.
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Some vector norms on R”

Letx = (x1,%,--+,%,) | € R™:

The 2-norm (Euclidean norm, or 2 norm):
(1]

ll%ll2 =

@ The infinity norm (¢*°-norm):

[[x]lcc = max |xi].
1<i<n

© The 1-norm (£!-norm):

n
llells =Y lxil-
i=1

=)

Suh-Yuh Yang (

ial Equations — 19/31



The difference between the above norms

@ Take three vectors x = (4,4,—4,4)T,v = (0,5,5,5) T, w = (6,0,0,0) ":

N I 0 I S
x 16 [8 2
v [ 156|866 |5
w |6 6 6

@ What is the unit ball {x € R?
@ 2-norm: a circle;
@ co-norm: a square;
@ 1-norm: a diamond.

¢ ||x|| < 1} for the three norms above?
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Matrix norm

Let A be an n x n real matrix. If || - || is any norm on R”, then

[[Ax]|

[A]l := sup{[|Ax|| : x € R", ||x[| = 1}(<=> [[A]l := sup{ =]

:xe]R",x;éU})

defines a norm on the vector space of all n x n real matrices.
(This is called the matrix norm associated with the given vector norm)
Proof:
@ - |Ax|| > 0Vx e R |x|| =1. ... ||A]| > 0.
Moreover, one can check that ||A|| = 0if and only if A = 0.
@ [[AA]] = sup{[[AAx|| : [lx[| = 1} = sup{|A|[|Ax] : [|x]| =1}
= [Alsup{[|Ax] : [lx[| = 1} = [A[|A].
@ [|A+B|| = sup{[|(A+B)x| : |[x[| = 1} < sup{|[Ax|| +[|Bx| : ||| = 1}
< sup{||Ax| : [[x[| = 1} + sup{[|Bx] : [|x]| = 1} = [|A[| + [|B].
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Some additional properties

Q lAx|| < [lA]lllx]l, ¥ x € R".

Proof:
A
Letx # 0. Thenv = ﬁ is of norm 1. ~Al > (A = ”H;‘C‘H
Q (1 =1
Q |AaB| < [|A[l]|B].
Proof:

|AB| := sup{[|(AB)x|| : x € R", [|x[| =1}
< sup{[|A[||Bx|| : x € R", [|x]| =1}
< sup{[|A[[[IB][[lx[| : x € R", [|x]| = 1} = [[A][||B]|.
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Some matrix norms

LetAyx, = (aij) be an 1 X n real matrix. Then

@ The co-matrix norm:
n
]l = max Y |a].
1

1<i<n?
Sisn =

@ The 1-matrix norm:
HAH] = max Z|a,]‘
i=1

© The 2-matrix norm:
[All2 = sup [[Ax[l2.
lxl2=1
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The 2-matrix norm

© |/A])2 is not easy to compute.

9 Since ATA is symmetric, AT A has n real eigenvalues, A1, Ay, -+, Ay € R.
Moreover, one can prove that they are all nonnegative. Then

ATA) = AL >0
p(AA) = max{A:} >0

is called the spectral radius of AT A.
© Then the 2-matrix norm of A is given by

IAll2 = /p(ATA).

© The 2-matrix norm is also called the spectral norm.
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Some error analysis

@ Suppose that we want to solve the linear system Ax = b, but b is somehow
perturbed to b (this may happen when we convert a real b to a floating-point b).

@ Then actual solution would satisfy a slightly different linear system
AX =b.
@ Question: Is X very different from the desired solution x of the original system?

@ Of course, the answer should depend on how good the matrix A is.

@ Let | - || be a vector norm, we consider two types of errors:

@ absolute error: ||x —%||?
o relative error: ||x — x| /||x||?
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The absolute error

For the absolute error, we have
x—%| = |[A7"0—A7'b|| = AT (b - b)[| < A" [|b—B].

Therefore, the absolute error of x depends on two factors: the absolute error of b and
the matrix norm of A~
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The relative error

For the relative error, we have

=%l = A7 A7B) = A7 (b D)
- = _ b—b
< a5 = A lax) !
_ b—b|
< |aAf = I
4~ a2
That is ~
=% _ oy o=
<A !|a .
o < laa e

Therefore, the relative error of x depends on two factors: the relative error of b and
laffa=ty.
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Condition number
@ Therefore, we define a condition number of the matrix A as
K(A) = lA] a7

%(A) measures how good the matrix A is.
@ Example: Lete > 0 and

- 1 1+¢ -1 -2 1 —1—¢
A_{l—s 1 }éA T 1te 1 ]
2 2 4
Then Al =2+, |47 = & 2(2+¢), and x(4) = jg) > 5
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Condition number (continued)

@ For example, if ¢ = 0.01, then x(A) > 40000.

@ What does this mean?
It means that the relative error in x can be 40000 times greater than the relative
error in b.

If k(A) is large, we say that A is ill-conditioned, otherwise A is well-conditioned.

©0

In the ill-conditioned case, the solution is very sensitive to the small changes in
the right-hand vector b (higher precision in b may be needed).
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Another way to measure the error

Consider the linear system Ax = b(# 0). Let X be a computed solution (an
approximation to x).

@ Residual vector:
@ Error vector:
@ They satisfy

Ae=Ax—AX=b—-Ax=r.

@ Moreover, we have
Ll el

() o] = Jlxl =

K(A) %

(Theorem on bounds involving condition number)
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Proof of the Theorem

cAe=r.

se=A"lr

ol = A=l Ax] < A rll AL =]
- el 7]

On the other hand, we have |r||||x|| = [|Ae][[|A~"b]| < [|A[l[le][A~"]|]b]|

Ll el
“x(A) bl T Il
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