MA 7007：Numerical Solution of Differential Equations I Iterative Methods for Sparse Linear Systems

> Suh-Yuh Yang (楊肅暗)

Department of Mathematics，National Central University
Jhongli District，Taoyuan City 32001，Taiwan

E－mail：syyang＠math．ncu．edu．tw
Website：http：／／www．math．ncu．eud．tw／～syyang／

Solving $A x=b$ ：direct method vs．iterative method

－Direct methods for solving the matrix problem $A x=\boldsymbol{b}$ ：e．g．，Gaussian elimination，$L U$－decomposition．
－large operation counts
－hard to do on parallel machines
－a solution will be found，and we know how long and how much memory it takes
－Iterative methods produce a sequence of vectors that ideally converges to the solution．
－much smaller operation counts
－a lot easier to implement on parallel computers
－not as reliable or predicable（the number of iterations is not known in advance）
－For very large problems（especially in 3D），a direct solver is impractical．e．g．， Gaussian elimination is an $O\left(m^{3}\right)$ algorithm．

Centered difference scheme

As an example，we consider the Poisson equation with the Dirichlet BC：

$$
\left\{\begin{array}{l}
\nabla^{2} u=g \text { in } \Omega:=(0,1) \times(0,1), \\
u=\varphi \text { on } \partial \Omega .
\end{array}\right.
$$

Let $u_{i j}$ represent an approximation to $u\left(x_{i}, y_{j}\right)$ and $g_{i j}:=g\left(x_{i}, y_{j}\right)$ ．For simplicity，we set $\Delta x=\Delta y=h$ ．Then we have

$$
\frac{1}{h^{2}}\left(u_{i-1, j}+u_{i+1, j}+u_{i, j-1}+u_{i, j+1}-4 u_{i j}\right)=g_{i j} .
$$

We can rewrite the above equation as

$$
u_{i j}=\frac{1}{4}\left(u_{i-1, j}+u_{i+1, j}+u_{i, j-1}+u_{i, j+1}\right)-\frac{h^{2}}{4} g_{i j} .
$$

Jacobi and Gauss－Seidel iterative methods

－Jacobi iteration：

$$
u_{i j}^{[k+1]}=\frac{1}{4}\left(u_{i-1, j}^{[k]}+u_{i+1, j}^{[k]}+u_{i, j-1}^{[k]}+u_{i, j+1}^{[k]}\right)-\frac{h^{2}}{4} g_{i j}, \quad k \geq 0
$$

Jacobi iteration is about the worst possible iterative method．But it＇s very simple， and useful as a test for parallelization．
－Gauss－Seidel iteration：Jacobi iteration is rather slow to converge，and can be made faster by using the updated values of the solution as soon as they are available．

$$
u_{i j}^{[k+1]}=\frac{1}{4}\left(u_{i-1, j}^{[k+1]}+u_{i+1, j}^{[k]}+u_{i, j-1}^{[k+1]}+u_{i, j+1}^{[k]}\right)-\frac{h^{2}}{4} g_{i j}, \quad k \geq 0 .
$$

－Important features：
－The matrix A is never stored；
－The storage is optimal，essentially only the m^{2} solution values are stored；
－Each iteration requires $O\left(m^{2}\right)$ work．

Matrix splitting methods

The Jacobi and Gauss－Seidel iterative methods for the linear system $A u=f$ can be analyzed by viewing them as based on a splitting of the matrix A into

$$
A=M-N,
$$

where M and N are two $m \times m$ matrices．Then the linear system $A u=f$ can be written as

$$
M u-N u=f \quad \Longrightarrow \quad M u=N u+f
$$

which suggests the iterative method

$$
M u^{[k+1]}=N u^{[k]}+f, \quad k \geq 0 .
$$

The goal is to choose M so that the following conditions hold：
－The sequence $\left\{u^{[k]}\right\}$ is easily computed．
－The sequence $\left\{u^{[k]}\right\}$ converges rapidly to the solution．

Jacobi and Gauss－Seidel iterative methods

Consider the linear system $A u=f$ ．Let $A=D-L-U$ ，where $D=\operatorname{diag}(A), L$ is the negative of the strictly lower part of A ，and U is the negative of the strictly upper part of A ．Then
－Jacobi iteration：

$$
\begin{aligned}
& M=D, \quad N=L+U, \\
& D u^{[k+1]}=(L+U) u^{[k]}+f, \quad k \geq 0 .
\end{aligned}
$$

－Gauss－Seidel iteration：

$$
\begin{aligned}
& M=D-L, \quad N=U, \\
& (D-L) u^{[k+1]}=U u^{[k]}+f, \quad k \geq 0 .
\end{aligned}
$$

Convergence analysis

To analyze these methods，we derive from the update formula

$$
\begin{aligned}
u^{[k+1]} & =M^{-1} N u^{[k]}+M^{-1} f, \\
& =G u^{[k]}+c,
\end{aligned}
$$

where $G:=M^{-1} N$ is the iteration matrix and $c:=M^{-1} f$ ．
Let u^{*} represent the true solution to the linear system $A u=f$ ．Then $u^{*}=G u^{*}+c$ ．We call u^{*} a fixed point or an equilibrium of $G(\cdot)+c$ ．If $e^{[k]}:=u^{[k]}-u^{*}$ represents the error at k th step，then we have

$$
e^{[k+1]}=G e^{[k]}
$$

Repeating this process，we obtain

$$
e^{[k]}=G^{k} e^{[0]},
$$

From this we can see that the method will converge from any initial guess $u^{[0]}$ if $G^{k} \rightarrow 0$（an $m \times m$ matrix of zeros）as $k \rightarrow \infty$ ．

A necessary and sufficient condition

For simplicity，assume that G is a diagonalizable matrix，so that we can write

$$
G=R \Gamma R^{-1} \Longleftarrow R^{-1} G R=\Gamma \quad \Longrightarrow \quad G R=R \Gamma
$$

where R is the matrix of right eigenvectors of G and Γ is a diagonal matrix of eigenvalues $\gamma_{1}, \cdots, \gamma_{m}$ ．Then

$$
G^{k}=R \Gamma^{k} R^{-1},
$$

where $\Gamma^{k}=\operatorname{diag}\left(\gamma_{1}^{k}, \cdots, \gamma_{m}^{k}\right)$ ．One observe that the $G^{k} \rightarrow 0$ as $k \rightarrow 0$ if $\left|\gamma_{p}\right|<1$ for all $p=1,2, \cdots, m$ ．This is，if $\rho(G)<1$ ，then $G^{k} \rightarrow 0$ as $k \rightarrow 0$ ，where $\rho(G)$ is the spectral radius of G ．In fact，this is a necessary and sufficient condition：

Theorem：The iteration formula

$$
u^{[k+1]}=G u^{[k]}+c
$$

converges for any initial guess $u^{[0]}$ if and only if the spectral radius of G be less than 1 ， i．e．，$\rho(G)<1$ ．

Spectral radius

－The spectral radius of A is defined by

$$
\rho(A)=\max \{|\lambda|: \operatorname{det}(A-\lambda I)=0\} .
$$

Thus，$\rho(A)$ is the smallest number such that a circle with that radius centered at 0 in the complex plane will contain all the eigenvalues of A ．
－Theorem on Spectral Radius：The spectral radius function satisfies

$$
\rho(A)=\inf _{\|\cdot\|}\|A\|
$$

in which the infimum is taken over all subordinate matrix norms．
－Corollary on Spectral Radius：
－$\rho(A) \leq\|A\|$ for any subordinate matrix norm．
－If $\rho(A)<1$ then $\|A\|<1$ for some subordinate matrix norm．

Proof of the Theorem（ \Leftarrow ）

Suppose that $\rho(G)<1$ ．There is a subordinate matrix norm such that $\|G\|<1$ ．From the iteration formula，we have

$$
u^{[1]}=G u^{[0]}+c, \quad u^{[2]}=G^{2} u^{[0]}+G c+c, \quad \cdots, \quad u^{[k]}=G^{k} u^{[0]}+\sum_{j=0}^{k-1} G^{j} c .
$$

Using the matrix norm and corresponding vector norm，we obtain

$$
\left\|G^{k} u^{[0]}\right\| \leq\left\|G^{k}\right\|\left\|u^{[0]}\right\| \leq\|G\|^{k}\left\|u^{[0]}\right\| \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty .
$$

Moreover，by Neumann series we have

$$
\sum_{j=0}^{\infty} G^{j} c=(I-G)^{-1} c
$$

Finally，by letting $k \rightarrow \infty$ ，we obtain

$$
\lim _{k \rightarrow \infty} u^{[k]}=\lim _{k \rightarrow \infty}\left(G^{k} u^{[0]}+\sum_{j=0}^{k-1} G^{j} c\right)=(I-G)^{-1} c .
$$

Proof of the Theorem (\Rightarrow)

Suppose that $\rho(G) \geq 1$ ．Select v and λ so that $G v=\lambda v$ ，where $|\lambda| \geq 1$ and $v \neq 0$ ．Recall that $u^{[k]}=G^{k} u^{[0]}+\sum_{j=0}^{k-1} G^{j} c$ ．Let $c=v$ and $u^{[0]}=0$ ．Then we have

$$
u^{[k]}=\sum_{j=0}^{k-1} G^{j} v=\sum_{j=0}^{k-1} \lambda^{j} v
$$

－If $\lambda=1, u^{[k]}=k v$ ，this diverges as $k \rightarrow \infty$ ．
－If $\lambda \neq 1, u^{[k]}=\left(\lambda^{k}-1\right)(\lambda-1)^{-1} v$ ，this diverges as $k \rightarrow \infty$ and this diverges also because $\lim _{k \rightarrow \infty} \lambda^{k}$ does not exist．
For both cases，$\left\{u^{[k]}\right\}$ diverges，a contradiction！Therefore，$\rho(G)<1$ ．

Analysis of Jacobi method

Recall the Jacobi method

$$
D u^{[k+1]}=(L+U) u^{[k]}+f=(D-A) u^{[k]}+f .
$$

We have $G=D^{-1}(D-A)=I-D^{-1} A$ and $c=D^{-1} f$ ．
As a simple example，we apply this method to the linear system arising from the centered difference approximation to $u^{\prime \prime}(x)=g(x)$ with Dirichlet BC，

$$
u^{\prime \prime}(x)=g(x), \quad 0<x<1, \quad u(0)=\alpha \text { and } u(1)=\beta .
$$

Then the linear system $A u=f$ is

$$
\frac{1}{h^{2}}\left[\begin{array}{rrrrrr}
-2 & 1 & & & & \\
1 & -2 & 1 & & & \\
& 1 & -2 & 1 & & \\
& & \ddots & \ddots & \ddots & \\
& & & 1 & -2 & 1 \\
& & & & 1 & -2
\end{array}\right]\left[\begin{array}{c}
U_{1} \\
U_{2} \\
U_{3} \\
\vdots \\
U_{m-1} \\
U_{m}
\end{array}\right]=\left[\begin{array}{c}
g\left(x_{1}\right)-\alpha / h^{2} \\
g\left(x_{2}\right) \\
g\left(x_{3}\right) \\
\vdots \\
g\left(x_{m-1}\right) \\
g\left(x_{m}\right)-\beta / h^{2}
\end{array}\right] .
$$

Analysis of Jacobi method（continued）

The iteration matrix is

$$
G=I-D^{-1} A=I+\frac{h^{2}}{2} A
$$

The eigenvalues of G are

$$
\gamma_{p}=1+\frac{h^{2}}{2} \lambda_{p}=1+\frac{h^{2}}{2}\left(\frac{2}{h^{2}}(\cos (p \pi h)-1)\right)=\cos (p \pi h), \quad p=1,2, \cdots, m .
$$

So the spectral radius of G is

$$
\rho(G)=\left|\gamma_{1}\right|=\cos (\pi h)=\cos \left(\frac{\pi}{m+1}\right)<1
$$

and the Jacobi method converges for any initial guess $u^{[0]}$ for the linear system arising from the centered difference approximation for the 1－D example．

Analysis of Gauss－Seidel method

Recall the Gauss－Seidel method

$$
(D-L) u^{[k+1]}=U u^{[k]}+f .
$$

We have $G=(D-L)^{-1} U$ and $c=(D-L)^{-1} f$ ．
Let λ be a nonzero eigenvalue of G and $v:=\left(v_{1}, v_{2}, \cdots, v_{m}\right)^{\top} \neq 0$ be a corresponding eigenvector．Then we have

$$
\begin{aligned}
& (D-L)^{-1} U v=\lambda v \Longrightarrow U v=\lambda(D-L) v \Longrightarrow \lambda D v=\lambda L v+U v \\
& \Longrightarrow \lambda v_{i}=\frac{-1}{2}\left(-\lambda v_{i-1}-v_{i+1}\right)=\frac{1}{2}\left(\lambda v_{i-1}+v_{i+1}\right), 1 \leq i \leq m, v_{0}=v_{m+1}=0 .
\end{aligned}
$$

Now we set $v_{i}=\lambda^{i / 2} u_{i}$ for $1 \leq i \leq m$ ．Then

$$
\lambda^{\frac{i}{2}+1} u_{i}=\frac{1}{2}\left(\lambda^{\frac{i-1}{2}+1} u_{i-1}+\lambda^{\frac{i+1}{2}} u_{i+1}\right) .
$$

Multiplying $\lambda^{-\frac{i+1}{2}}$ leads to

$$
\lambda^{\frac{1}{2}} u_{i}=\frac{1}{2}\left(u_{i-1}+u_{i+1}\right) .
$$

Analysis of Gauss－Seidel method（continued）

$$
\begin{aligned}
& \lambda^{\frac{1}{2}} u_{i}=\frac{1}{2}\left(u_{i-1}+u_{i+1}\right) \Longrightarrow \lambda^{\frac{1}{2}}(-2) u_{i}=-\left(u_{i-1}+u_{i+1}\right) \\
& \Longrightarrow \lambda^{\frac{1}{2}} D u=(L+U) u \\
& \Longrightarrow \lambda^{\frac{1}{2}} u=D^{-1}(L+U) u=D^{-1}(D-A) u=\left(I-D^{-1} A\right) u .
\end{aligned}
$$

We have already proved that $u=\left(u_{1}, u_{2}, \cdots, u_{m}\right)^{\top}$ is an eigenvector associated with the eigenvalue $\lambda^{\frac{1}{2}}$ of the iteration matrix $I-D^{-1} A$ of the Jacobi method．Moreover， one can check that the inverse process works as well．From the above discussion，we can conclude that the eigenvalues λ_{p} of the iteration matrix $G=(D-L)^{-1} U$ of the Gauss－Seidel method should be

$$
\lambda_{p}=\cos ^{2}(p \pi h), \quad p=1,2, \cdots, m,
$$

where $\cos (p \pi h), p=1,2, \cdots, m$ ，are the eigenvalues of the iteration matrix $I-D^{-1} A$ of the Jacobi method．It leads to

$$
\rho\left((D-L)^{-1} U\right)=\cos ^{2}(\pi h)=\cos ^{2}\left(\frac{\pi}{m+1}\right)<1
$$

Thus，the Gauss－Seidel method converges for any initial guess $u^{[0]}$ for the linear system arising from the 1－D example．

Successive over－relaxation（SOR）method

The Gauss－Seidel moves u_{i} in right direction but is far too conservative in the amount it allows u_{i} to move．

Successive Over－Relaxation（SOR）：Compute Gauss－Seidel approximation and then go further：

$$
u_{i}^{\mathrm{GS}}=\frac{1}{2}\left(u_{i-1}^{[k+1]}+u_{i+1}^{[k]}-h^{2} f_{i}\right) \quad \text { and } \quad u_{i}^{[k+1]}=\omega u_{i}^{\mathrm{GS}}+(1-\omega) u_{i}^{[k]},
$$

can be combined to yield，

$$
u_{i}^{[k+1]}=\frac{\omega}{2}\left(u_{i-1}^{[k+1]}+u_{i+1}^{[k]}-h^{2} f_{i}\right)+(1-\omega) u_{i}^{[k]} .
$$

Remarks：

－ $0<\omega<1$ ：under－relaxation methods and can be used to obtain convergence of some systems that are not convergent by the GS method．
－ $1<\omega$ ：over－relaxation methods，which are used to accelerate the convergence for systems that are convergent by the GS method．
－Optimal ω for the Poisson problem：

$$
\omega_{\mathrm{opt}}=\frac{2}{1+\sin (\pi h)} \approx 2-2 \pi h .
$$

A general theory for SOR

For a general system $A u=f$ with $A=D-L-U$ ，where $D=\operatorname{diag}(A), L$ is the negative of the strictly lower part of A ，and U is the negative of the strictly upper part of A ．Then

Successive Over－Relaxation（SOR）：

$$
M u^{[k+1]}=N u^{[k]}+f
$$

where

$$
M=\frac{1}{\omega}(D-\omega L), \quad N=\frac{1}{\omega}((1-\omega) D+\omega U)
$$

A theorem of SOR method states that if A is symmetric and positive definite（SPD）and $D-\omega L$ is nonsingular，then SOR method converges for all $0<\omega<2$ ．

Comparison

Errors versus k for Jacobi，Gauss－Seidel and SOR methods． （Two－point BVP：$u^{\prime \prime}(x)=f(x)$ ，SOR with optimal $\omega_{\text {opt }}$ ）

Recall some properties of SPD

－Let $A \in \mathbb{C}^{m \times m}$ be a square matrix and $x, y \in \mathbb{C}^{m}$ ．Define $A^{*}:=\bar{A}^{\top}, x^{*}:=\bar{x}^{\top}$ and $(x, y):=y^{*} x \in \mathbb{C}$ ．Then $(A x, x)=x^{*} A x$ is called a quadratic form．
－Definition：Let $A \in \mathbb{C}^{m \times m}$ ．A is positive definite $\Longleftrightarrow(A x, x)>0, \forall 0 \neq x \in \mathbb{C}^{m}$ ．
－Note 1：$A=A^{*} \Longleftrightarrow(A x, x) \in \mathbb{R}, \forall x \in \mathbb{C}^{m}$ ．
－Note 2：If $A \in \mathbb{C}^{m \times m}$ is positive definite，then $A=A^{*}$ ．（by Note 1）
－Note 3：Let $A \in \mathbb{R}^{m \times m}$ ．A is positive definite $\Longleftrightarrow A=A^{\top}$ and $(A x, x)>0$ ， $\forall 0 \neq x \in \mathbb{R}^{m}$ ．
－Note 4：Let $A \in \mathbb{C}^{m \times m}$ and $A=A^{*}$ ．Then A is positive definite \Longleftrightarrow all of its eigenvalues are real and positive．

SPD linear systems

Consider the linear system $A u=f$ ，where $A \in \mathbb{R}^{m \times m}$ is symmetric（ S ）and positive definite（PD），or negative definite since negating the system then gives an SPD matrix． Define $\phi: \mathbb{R}^{m} \rightarrow \mathbb{R}$ by

$$
\phi(u)=\frac{1}{2} u^{\top} A u-u^{\top} f .
$$

－Problem（1）：Find $u^{*} \in \mathbb{R}^{m}$ such that $\phi\left(u^{*}\right)=\min _{u \in \mathbb{R}^{m}} \phi(u)$ ．
－Problem（2）：Find $u^{*} \in \mathbb{R}^{m}$ such that $A u^{*}=f$ ．
Note：\exists ！solution $u^{*} \in \mathbb{R}^{m}$ such that $A u^{*}=f$ ，since A is SPD．
（a）

（b）

$$
\phi(u) \text { for } m=2 \text { : (a) } A \text { is SPD; (b) } A \text { is } \mathrm{S} \text { but indefinite. }
$$

Proof of Problem（1）\Longleftrightarrow Problem（2）

－Problem（1）\Longrightarrow Problem（2）：
Let $u^{*} \in \mathbb{R}^{m}$ be such that $\phi\left(u^{*}\right)=\min _{u \in \mathbb{R}^{m}} \phi(u)$ ．Given $0 \neq u \in \mathbb{R}^{m}$ ．Then

$$
\begin{aligned}
g(\varepsilon) & :=\phi\left(u^{*}+\varepsilon u\right)=\frac{1}{2}\left(u^{*}+\varepsilon u\right) \cdot A\left(u^{*}+\varepsilon u\right)-f \cdot\left(u^{*}+\varepsilon u\right) \\
& =\frac{1}{2} u^{*} \cdot A u^{*}+\frac{1}{2} \varepsilon u^{*} \cdot A u+\frac{1}{2} \varepsilon u \cdot A u^{*}+\frac{1}{2} \varepsilon^{2} u \cdot A u-f \cdot u^{*}-\varepsilon f \cdot u \\
& =\frac{1}{2} \varepsilon^{2} u \cdot A u+\varepsilon u \cdot A u^{*}-\varepsilon f \cdot u+\frac{1}{2} u^{*} \cdot A u^{*}-f \cdot u^{*},
\end{aligned}
$$

where we use $u^{*} \cdot A u=\left(u^{*}, A u\right)=\left(A^{\top} u^{*}, u\right)=\left(A u^{*}, u\right)=\left(u, A u^{*}\right)=u \cdot A u^{*}$ ．
$\therefore g$ is a quadratic polynomial in ε with leading coefficient $\frac{1}{2} u \cdot A u>0$ ．
$\because g(0)=\phi\left(u^{*}\right)=\min _{u \in \mathbb{R}^{m}} \phi(u) . \quad \therefore g^{\prime}(0)=0$（by Fermat＇s Theorem）．
$\therefore 0=g^{\prime}(0)=\left.\left(\varepsilon u \cdot A u+u \cdot A u^{*}-f \cdot u\right)\right|_{\varepsilon=0}=u \cdot\left(A u^{*}-f\right), \forall 0 \neq u \in \mathbb{R}^{m}$ ．
$\therefore A u^{*}=f$ ．

Proof of Problem（1）\Longleftrightarrow Problem（2）（continued）

－Problem（2）\Longrightarrow Problem（1）：
Assume that $A u^{*}=f$ ．Let $u \in \mathbb{R}^{m}$ ．Define $w:=u-u^{*}$ ．Then $u=w+u^{*}$ ．
We have

$$
\begin{aligned}
\phi(u) & =\frac{1}{2} u \cdot A u-f \cdot u=\frac{1}{2}\left(w+u^{*}\right) \cdot A\left(w+u^{*}\right)-f \cdot\left(w+u^{*}\right) \\
& =\frac{1}{2} w \cdot A w+w \cdot A u^{*}+\frac{1}{2} u^{*} \cdot A u^{*}-f \cdot w-f \cdot u^{*} \\
& =\frac{1}{2} w \cdot A w+w \cdot A u^{*}-f \cdot w+\phi\left(u^{*}\right) \\
& \geq w \cdot A u^{*}-f \cdot w+\phi\left(u^{*}\right) \quad\left(\because A \text { is SPD } \therefore \frac{1}{2} w \cdot A w \geq 0\right) \\
& =w \cdot f-f \cdot w+\phi\left(u^{*}\right)=\phi\left(u^{*}\right) .
\end{aligned}
$$

$\therefore \phi\left(u^{*}\right)=\min _{u \in \mathbb{R}^{m}} \phi(u)$ ．

Minimization algorithms

Given an initial approximation $u^{[0]} \in \mathbb{R}^{m}$ of the exact solution u^{*} ．Find $u^{[k]} \in \mathbb{R}^{m}$ ， $k=1,2, \ldots$ of the form

$$
u^{[k+1]}=u^{[k]}+\alpha_{k} d^{[k]}, k=0,1, \ldots,
$$

where $d^{[k]} \in \mathbb{R}^{m}$ is the search direction，$\alpha_{k}>0$ is the step size（length）．We will focus on two methods：
－The method of steepest descent（also called the gradient method）．
－The conjugate－gradient method．

Some notation

Let $\phi: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be a smooth function and $u \in \mathbb{R}^{m}$ ．
－Gradient of ϕ at $u=\phi^{\prime}(u):=\nabla \phi(u):=\left(\frac{\partial \phi}{\partial u_{1}}(u), \frac{\partial \phi}{\partial u_{2}}(u), \cdots, \frac{\partial \phi}{\partial u_{m}}(u)\right)^{\top}$ ．
－Hessian of ϕ at u ，

$$
\begin{aligned}
\phi^{\prime \prime}(u) & =\left[\begin{array}{cccc}
\frac{\partial^{2} \phi}{\partial u_{1}^{2}}(u) & \frac{\partial^{2} \phi}{\partial u_{1} \partial u_{2}}(u) & \cdots & \frac{\partial^{2} \phi}{\partial u_{1} \partial u_{m}}(u) \\
\vdots & \vdots & \cdots & \vdots \\
\frac{\partial^{2} \phi}{\partial u_{m} \partial u_{1}}(u) & \frac{\partial^{2} \phi}{\partial u_{m} \partial u_{2}}(u) & \cdots & \frac{\partial^{2} \phi}{\partial u_{m}^{2}}(u)
\end{array}\right]_{m \times m} \\
& =\left(\nabla \frac{\partial \phi}{\partial u_{1}}(u), \cdots, \nabla \frac{\partial \phi}{\partial u_{m}}(u)\right) \\
& =\nabla\left(\frac{\partial \phi}{\partial u_{1}}(u), \cdots, \frac{\partial \phi}{\partial u_{m}}(u)\right) \\
& =\nabla\left(\phi^{\prime}(u)^{\top}\right) \\
& =\nabla\left(\nabla \phi(u)^{\top}\right)
\end{aligned}
$$

Example

Assume that $A \in \mathbb{R}^{m \times m}$ is a symmetric matrix，$f \in \mathbb{R}^{m}$ is a given vector，and $\phi: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is defined by $\phi(u):=\frac{1}{2} u^{\top} A u-u^{\top} f$ ．
Then we can prove that $\forall u \in \mathbb{R}^{m}$ ，
－$\phi^{\prime}(u)=A u-f$ ；
－$\phi^{\prime \prime}(u)=A$ ，
by using the following identities：
－$u \cdot A u=u_{1}\left(A_{1} \cdot u\right)+u_{2}\left(A_{2} \cdot u\right)+\cdots+u_{m}\left(A_{m} \cdot u\right)$ ．
－$\phi^{\prime \prime}(u)=\nabla\left(\nabla \phi(u)^{\top}\right)=\nabla\left((A u-f)^{\top}\right)=\nabla\left(A_{1} \cdot u-f_{1}, \cdots, A_{m} \cdot u-f_{m}\right)$ ．

Taylor＇s expansion of a smooth function ϕ at $u^{[k]}$

Recall that we want to find $u^{*} \in \mathbb{R}^{m}$ such that $\phi\left(u^{*}\right)=\min _{u \in \mathbb{R}^{m}} \phi(u)$ by using the minimization algorithm：$u^{[k+1]}=u^{[k]}+\alpha_{k} d^{[k]}, k \geq 0$ ，where ϕ is a smooth function given by $\phi(u):=\frac{1}{2} u^{\top} A u-u^{\top} f$ ．To determine α_{k} and $d^{[k]}$ ，by Taylor＇s expansion，we have

$$
\begin{aligned}
\phi\left(u^{[k+1]}\right)= & \phi\left(u^{[k]}\right)+\nabla \phi\left(u^{[k]}\right) \cdot\left(u^{[k+1]}-u^{[k]}\right) \\
& +\left(u^{[k+1]}-u^{[k]}\right) \cdot \frac{\phi^{\prime \prime}(\eta)}{2!}\left(u^{[k+1]}-u^{[k]}\right), \text { for some } \eta \in \overline{u^{[k]} u^{[k+1]}} \\
= & \phi\left(u^{[k]}\right)+\alpha_{k} \phi^{\prime}\left(u^{[k]}\right) \cdot d^{[k]}+\frac{\alpha_{k}^{2}}{2!} d^{[k]} \cdot \phi^{\prime \prime}(\eta) d^{[k]} .
\end{aligned}
$$

$\therefore \phi\left(u^{[k+1]}\right)=\phi\left(u^{[k]}\right)+\alpha_{k} \phi^{\prime}\left(u^{[k]}\right) \cdot d^{[k]}+O\left(\alpha_{k}^{2}\right)$ ，provided the entries in $\phi^{\prime \prime}(\eta)$ are bounded in a neighborhood containing $\overline{u^{[k]} u^{[k+1]}}$ ．
\therefore If $\phi^{\prime}\left(u^{[k]}\right) \cdot d^{[k]}<0$ and $\alpha_{k}>0$ is sufficiently small，then $\phi\left(u^{[k+1]}\right)<\phi\left(u^{[k]}\right)$ ． In this case，we call $d^{[k]}$ a descent direction．

The method of steepest descent

Note that $\phi(u):=\frac{1}{2} u^{\top} A u-u^{\top} f$ and A is SPD．
If we choose $d^{[k]}=-\phi^{\prime}\left(u^{[k]}\right)=-\left(A u^{[k]}-f\right)$ and if $\phi^{\prime}\left(u^{[k]}\right) \neq 0$ ，
then we have $\phi^{\prime}\left(u^{[k]}\right) \cdot d^{[k]}=-\left\|\phi^{\prime}\left(u^{[k]}\right)\right\|_{2}^{2}<0$ ．
We obtain the so－called steepest descent method or the gradient method．
Note：If $\phi^{\prime}\left(u^{[k]}\right)=0$ then $A u^{[k]}-f=0 \Longrightarrow A u^{[k]}=f \Longrightarrow u^{[k]}$ is the exact solution．

How to choose $\alpha_{k}>0$ in the method of steepest descent？

Determine optimal α_{k} such that $\phi\left(u^{[k]}+\alpha_{k} d^{[k]}\right)=\min _{\alpha \in \mathbb{R}} \phi\left(u^{[k]}+\alpha d^{[k]}\right)$ ．
Notice that $\phi\left(u^{[k]}+\alpha d^{[k]}\right)$ can be viewed as a quadratic function in α with positive leading coefficient．
If α_{k} is optimal，then $\left.\frac{d}{d \alpha} \phi\left(u^{[k]}+\alpha d^{[k]}\right)\right|_{\alpha=\alpha_{k}}=0$ ．
$\left.\therefore \phi^{\prime}\left(u^{[k]}+\alpha d^{[k]}\right) \cdot d^{[k]}\right|_{\alpha=\alpha_{k}}=0$.
$\therefore \phi^{\prime}\left(u^{[k]}+\alpha_{k} d^{[k]}\right) \cdot d^{[k]}=0$ ．

$$
\begin{aligned}
\Longrightarrow 0 & =\phi^{\prime}\left(u^{[k]}+\alpha_{k} d^{[k]}\right) \cdot d^{[k]}=\left(A\left(u^{[k]}+\alpha_{k} d^{[k]}\right)-f\right) \cdot d^{[k]} \\
& =\left(A u^{[k]}-f\right) \cdot d^{[k]}+\alpha_{k} d^{[k]} \cdot A d^{[k]} .
\end{aligned}
$$

$\therefore \alpha_{k}=-\frac{\left(A u^{[k]}-f\right) \cdot d^{[k]}}{d^{[k]} \cdot A d^{[k]}}=\frac{d^{[k]} \cdot d^{[k]}}{d^{[k]} \cdot A d^{[k]}}$,
provided $d^{[k]}=-\phi^{\prime}\left(u^{[k]}\right)=-\left(A u^{[k]}-f\right) \neq 0$ ．
$\because A$ is SPD．$\quad \therefore d^{[k]} \cdot A d^{[k]}>0$, provided $d^{[k]}=-\phi^{\prime}\left(u^{[k]}\right)=-\left(A u^{[k]}-f\right) \neq 0$ ．
$\therefore \alpha_{k}>0$ ，provided $d^{[k]}=-\phi^{\prime}\left(u^{[k]}\right)=-\left(A u^{[k]}-f\right) \neq 0$ ．

The method of steepest descent with optimal step length α_{k}

The steepest descent algorithm takes the form，for $k=0,1,2, \ldots$

$$
\begin{aligned}
u^{[k+1]} & =u^{[k]}+\alpha_{k} d^{[k]} \\
\alpha_{k} & =\frac{d^{[k]} \cdot d^{[k]}}{d^{[k]} \cdot A d^{[k]}},
\end{aligned}
$$

where

$$
d^{[k]}=-\left(A u^{[k]}-f\right) .
$$

$m=2$ ：the concentric ellipses are level sets of $\phi(u)$ ．
（ $\because A$ is SPD，the level sets of ϕ are always ellipses）

Remarks

－It appears that in each iteration we must do two matrix－vector multiples，$A u^{[k]}$ to compute $d^{[k]}$ and then $A d^{[k]}$ to compute α_{k} ．However，note that

$$
\begin{aligned}
d^{[k+1]} & =f-A u^{[k+1]} \\
& =f-A\left(u^{[k]}+\alpha_{k} d^{[k]}\right) \\
& =d^{[k]}-\alpha_{k} A d^{[k]} .
\end{aligned}
$$

So once we have computed $A d^{[k]}$ as needed for α_{k} ，we can also use this result to compute $d^{[k+1]}$ ．
－Since $d^{[k+1]}=d^{[k]}-\alpha_{k} A d^{[k]}$ ，we have

$$
\begin{aligned}
d^{[k+1]} \cdot d^{[k]} & =d^{[k]} \cdot d^{[k]}-\alpha_{k} A d^{[k]} \cdot d^{[k]} \\
& =d^{[k]} \cdot d^{[k]}-\frac{d^{[k]} \cdot d^{[k]}}{d^{[k]} \cdot A d^{[k]}} A d^{[k]} \cdot d^{[k]} \\
& =0 .
\end{aligned}
$$

The major and minor axes of the elliptical level set of $\phi(u)$

Assume that A is a SPD 2×2 matrix．Let v_{1} and v_{2} be the points that the gradient $\nabla \phi\left(v_{j}\right)$ lies in the direction that connects v_{j} to the center u^{*} ，see the figure below．

Then for $j=1,2, \nabla \phi\left(v_{j}\right)=A v_{j}-f=\lambda_{j}\left(v_{j}-u^{*}\right)$ ，for some $\lambda_{j} \in \mathbb{R}$ ．
Since $f=A u^{*}$ ，this gives $A v_{j}-f=A\left(v_{j}-u^{*}\right)=\lambda_{j}\left(v_{j}-u^{*}\right)$ ．
Hence，each direction $v_{j}-u^{*}$ is an eigenvector of A and λ_{j} is an eigenvalue．

Level sets of $\phi(u): m=2$
（a）

（a）level sets of $\phi(u)$ are circular；（b）level sets of $\phi(u)$ are far from circular．

The length of the major and minor axes

The length of the major and minor axes is related to the magnitude of λ_{1} and λ_{2} ． Suppose that v_{1} and v_{2} lie on the level set along which $\phi(u)=1$ ．Then we have

$$
\phi\left(v_{j}\right)=\frac{1}{2} v_{j}^{\top} A v_{j}-v_{j}^{\top} f=\frac{1}{2} v_{j}^{\top} A v_{j}-v_{j}^{\top} A u^{*}=1, \quad j=1,2 .
$$

Taking the inner product of $A\left(v_{j}-u^{*}\right)=\lambda_{j}\left(v_{j}-u^{*}\right)$ with $v_{j}-u^{*}$ and combining with $\frac{1}{2} v_{j}^{\top} A v_{j}-v_{j}^{\top} A u^{*}=1$ ，we have

$$
\left\|v_{j}-u^{*}\right\|_{2}^{2}=\frac{2+u^{* \top} A u^{*}}{\lambda_{j}}, \quad j=1,2
$$

Hence the ratio of the length of the major axis to the length of the minor axis is

$$
\frac{\left\|v_{1}-u^{*}\right\|_{2}}{\left\|v_{2}-u^{*}\right\|_{2}}=\sqrt{\frac{\lambda_{2}}{\lambda_{1}}}=\sqrt{\kappa_{2}(A)}
$$

where $\lambda_{1} \leq \lambda_{2}$ and $\kappa_{2}(A)$ is the 2－norm condition number of A ．

The 2－norm condition number of $A: \kappa_{2}(A)$

Let $A \in \mathbb{R}^{m \times m}$ be a SPD matrix．
Let $0<\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{m}$ be the eigenvalues of A ．
Then $0<\frac{1}{\lambda_{m}} \leq \frac{1}{\lambda_{m-1}} \leq \cdots \leq \frac{1}{\lambda_{1}}$ are the eigenvalues of A^{-1} ．
Let $\rho(A)$ denote the spectral radius of A ，i．e．，the maximum size of the eigenvalues of A．That is，$\rho(A)=\max _{j}\left|\lambda_{j}\right|$ ．

$$
\begin{aligned}
\kappa_{2}(A) & :=\|A\|_{2}\left\|A^{-1}\right\|_{2}=\sqrt{\rho\left(A^{*} A\right)} \sqrt{\rho\left(\left(A^{-1}\right)^{*} A^{-1}\right)} \\
& =\sqrt{\rho\left(A^{\top} A\right)} \sqrt{\rho\left(\left(A^{-1}\right)^{\top} A^{-1}\right)}=\sqrt{\rho\left(A^{2}\right)} \sqrt{\rho\left(\left(A^{-1}\right)^{2}\right)} \\
& =\sqrt{\lambda_{m}^{2}} \sqrt{\frac{1}{\lambda_{1}^{2}}}=\frac{\lambda_{m}}{\lambda_{1}}=\frac{\lambda_{\max }}{\lambda_{\min }}
\end{aligned}
$$

The A－conjugate search direction

The steepest descent direction can be generalized by choosing a search direction $p^{[k]}$ in the $(k+1)$ th iteration that might be different from the direction $d^{[k]}$ ．

We set

$$
u^{[k+1]}=u^{[k]}+\alpha_{k} p^{[k]}
$$

where α_{k} is chosen to minimize $\phi\left(u^{[k]}+\alpha_{k} p^{[k]}\right)$ over all scalar α ．In other words，we perform a line search along the line through $u^{[k]}$ in the direction $p^{[k]}$ and find the minimum of ϕ on this line．The solution is at the point where the line is tangent to a contour line of ϕ ，and

$$
\alpha_{k}=\frac{d^{[k]} \cdot p^{[k]}}{p^{[k]} \cdot A p^{[k]}}
$$

The A－conjugate search direction（continued）

－A bad choice of search direction $p^{[k]}$ would be a direction orthogonal to $d^{[k]}$ ，since then $p^{[k]}$ would be tangent to the level set of ϕ at $u^{[k]}, \phi(u)$ could only increase along this line，and so $u^{[k+1]}=u^{[k]}$ ．Note that in this case

$$
\alpha_{k}=\frac{d^{[k]} \cdot p^{[k]}}{p^{[k]} \cdot A p^{[k]}}=\frac{0}{p^{[k]} \cdot A p^{[k]}}=0
$$

－But as long as $p^{[k]} \cdot d^{[k]} \neq 0$ ，the new point $u^{[k+1]}$ will be different from $u^{[k]}$ and will satisfy $\phi\left(u^{[k+1]}\right)<\phi\left(u^{[k]}\right)$ ．

The two search directions used are A－conjugate

The A－conjugate search direction（continued）

Once we obtain $u^{[1]}$ by the formulas

$$
u^{[k+1]}=u^{[k]}+\alpha_{k} p^{[k]} \quad \text { and } \quad \alpha_{k}=\frac{d^{[k]} \cdot p^{[k]}}{p^{[k]} \cdot A p^{[k]}},
$$

we choose the next search direction $p^{[1]}$ to be a vector satisfying

$$
p^{[1]} \cdot A p^{[0]}=0 .
$$

Two vectors $p^{[0]}$ and $p^{[1]}$ that satisfy the above equation are said to be A－conjugate．
－For any SPD matrix A ，the vectors u and v are A－conjugate if the inner product of u with $A v$ is zero，i．e．，$u \cdot A v=0$ ．
－If $A=I$ ，this just means the vectors are orthogonal，and A－conjugate is a natural generalization of the notion of orthogonality．

The conjugate－gradient algorithm

Given $u^{[0]} \in \mathbb{R}^{m}$,

$$
p^{[0]}:=d^{[0]}:=-\left(A u^{[0]}-f\right) .
$$

Find $u^{[1]}$ and $p^{[1]}, u^{[2]}$ and $p^{[2]}, \cdots$ ，such that for $k=0,1, \cdots$ ，

$$
\begin{aligned}
u^{[k+1]} & =u^{[k]}+\alpha_{k} p^{[k]}, \\
\alpha_{k} & =\frac{d^{[k]} \cdot p^{[k]}}{p^{[k]} \cdot A p^{[k]}} \quad \text { (optimal step length), } \\
p^{[k+1]} & =d^{[k+1]}+\beta_{k} p^{[k]} \quad \text { (for next step), }
\end{aligned}
$$

where

$$
\begin{aligned}
\beta_{k} & =\frac{-d^{[k+1]} \cdot A p^{[k]}}{p^{[k]} \cdot A p^{[k]}} \\
d^{[k]} & =-\left(A u^{[k]}-f\right) \quad\left(=f-A u^{[k]}, \text { residual }\right)
\end{aligned}
$$

Some properties

The vectors generated in the CG algorithm have the following properties，provided $d^{[k]} \neq 0$（if $d^{[k]}=0$ ，then we have converged）：
－$p^{[k]}$ is A－conjugate to all the previous search directions，i．e．，$p^{[k]} \cdot A p^{[j]}=0$ for $j=0,1, \cdots, k-1$ ．
Partial proof：Note that

$$
\beta_{k}=\frac{-d^{[k+1]} \cdot A p^{[k]}}{p^{[k]} \cdot A p^{[k]}} \Rightarrow\left(d^{[k+1]}+\beta_{k} p^{[k]}\right) \cdot A p^{[k]}=0 \Rightarrow p^{[k+1]} \cdot A p^{[k]}=0
$$

－The residual $d^{[k]}$ is orthogonal to all previous residuals，$d^{[k]} \cdot d^{[j]}=0$ for $j=0,1, \cdots, k-1$ ．
－The following three subspaces of \mathbb{R}^{m} are identical：

$$
\begin{aligned}
& \operatorname{span}\left(p^{[0]}, p^{[1]}, p^{[2]}, \cdots, p^{[k-1]}\right), \\
& \operatorname{span}\left(d^{[0]}, A d^{[0]}, A^{2} d^{[0]}, \cdots, A^{k-1} d^{[0]}\right) \\
& \operatorname{span}\left(A e^{[0]}, A^{2} e^{[0]}, A^{3} e^{[0]}, \cdots, A^{k} e^{[0]}\right) \quad\left(e^{[0]}:=u^{[0]}-u^{*}\right) .
\end{aligned}
$$

Convergence of conjugate gradient

－There exists $k \leq m$ such that $A u^{[k]}=f$ ．
－Define the A－norm by

$$
\|e\|_{A}:=\sqrt{e^{\top} A e} .
$$

Then we have that after k steps of the conjugate gradient method，the iteration error $e^{[k]}:=u^{[k]}-u^{*}$ satisfies the bound

$$
\left\|e^{[k]}\right\|_{A} \leq 2\left(\frac{\sqrt{\kappa_{2}(A)}-1}{\sqrt{\kappa_{2}(A)}+1}\right)^{k}\left\|e^{[0]}\right\|_{A}
$$

－Thus，for a given $\varepsilon>0$ ，to satisfy $\left\|u^{[k]}-u^{*}\right\|_{A} \leq \varepsilon\left\|u^{[0]}-u^{*}\right\|_{A}$ ，it is sufficient to choose k such that

$$
2\left(\frac{\sqrt{\kappa_{2}(A)}-1}{\sqrt{\kappa_{2}(A)}+1}\right)^{k} \leq \varepsilon .
$$

That is

$$
k \geq \frac{1}{2} \sqrt{\kappa_{2}(A)} \log \frac{2}{\varepsilon}=O\left(\sqrt{\kappa_{2}(A)}\right) .
$$

In many numerical methods for elliptic PDEs，$\kappa_{2}(A)=O\left(h^{-2}\right)$ ．

