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Solving Ax = b: direct method vs. iterative method

@ Direct methods for solving the matrix problem Ax = b: e.g., Gaussian

elimination, LU-decomposition.
@ large operation counts
@ hard to do on parallel machines
@ a solution will be found, and we know how long and how much memory
it takes

@ Iterative methods produce a sequence of vectors that ideally converges to the

solution.
@ much smaller operation counts
@ alot easier to implement on parallel computers
@ not as reliable or predicable (the number of iterations is not known in
advance)
@ For very large problems (especially in 3D), a direct solver is impractical. e.g.,
Gaussian elimination is an O(m?) algorithm.
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Centered difference scheme

As an example, we consider the Poisson equation with the Dirichlet BC:

Viu=g¢g inQ:=(0,1) x(0,1),
u=¢ onodQ

Let u;; represent an approximation to u(x;, y;) and g;; := g(x;, y;). For simplicity, we set
Ax = Ay = h. Then we have

1
iz (io1j 4 iy j + i + w1 — 4u) = g
We can rewrite the above equation as

h2

1
wij = 7 (Ui + i+ wij1 +Uiji1) = T 8ij-

Suh-Yuh Yang ( 5 7 ) i Iterative Methods fo: rse Linea ms — 3/40



Jacobi and Gauss-Seidel iterative methods

@ Jacobi iteration:

2
0 k
+ ul]+1> - Zg,'j, k >0.
Jacobi iteration is about the worst possible iterative method. But it’s very simple,
and useful as a test for parallelization.
@ Gauss-Seidel iteration: Jacobi iteration is rather slow to converge, and can be

made faster by using the updated values of the solution as soon as they are
available.
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@ Important features:
@ The matrix A is never stored;
@ The storage is optimal, essentially only the m? solution values are stored;
@ Each iteration requires O(m?) work.
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Matrix splitting methods

The Jacobi and Gauss-Seidel iterative methods for the linear system Au = f can be
analyzed by viewing them as based on a splitting of the matrix A into

A=M-—N,

where M and N are two m x m matrices. Then the linear system Au = f can be written

as
Mu—-Nu=f =— Mu=Nu+f,

which suggests the iterative method
Mul = NuM £, k>0

The goal is to choose M so that the following conditions hold:
@ The sequence {uM} is easily computed.
@ The sequence {u/} converges rapidly to the solution.
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Jacobi and Gauss-Seidel iterative methods

Consider the linear system Au = f. Let A = D — L — U, where D = diag(A), L is the

negative of the strictly lower part of A, and U is the negative of the strictly upper part
of A. Then

@ Jacobi iteration:

M=D, N=L+U,
Dult = L+ wuM +f, k>o0.
@ Gauss-Seidel iteration:

M=D-1, N=U,
(D—Lyuf = 47, k>o0.
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Convergence analysis

To analyze these methods, we derive from the update formula
W = MG MY,
GulM + c,
where G := M~IN is the iteration matrix and ¢ := M~f.
Let u* represent the true solution to the linear system Au = f. Then u* = Gu* + c. We
call u* a fixed point or an equilibrium of G(-) + c. If e := ull — 4* represents the error

at kth step, then we have
el — Gelkl.

Repeating this process, we obtain
oMl = GFelol,

From this we can see that the method will converge from any initial guess u[! if
G* — 0(an m x m matrix of zeros) as k — co.
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A necessary and sufficient condition

For simplicity, assume that G is a diagonalizable matrix, so that we can write

G = RIR™! «— |RIGR=T| = GR = RT,

where R is the matrix of right eigenvectors of G and I is a diagonal matrix of
eigenvalues 1, - -, Y. Then

GF =RT*R7,
where T* = diag(7%, - -+, 9%,). One observe that the G* — 0 ask — 0 if |7p| < 1 for all

p=1,2,---,m. Thisis, if o(G) < 1, then Gk — 0 as k — 0, where p(G) is the spectral
radius of G. In fact, this is a necessary and sufficient condition:

Theorem: The iteration formula
ultll = Gyl 4 ¢

converges for any initial guess ul if and only if the spectral radius of G be less than 1,
ie,p(G) <1
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Spectral radius
@ The spectral radius of A is defined by
p(A) = max{|A| : det(A — AI) = 0}.

Thus, p(A) is the smallest number such that a circle with that radius centered at
0 in the complex plane will contain all the eigenvalues of A.

@ Theorem on Spectral Radius: The spectral radius function satisfies

p(A) = iHI}HfHAH,

in which the infimum is taken over all subordinate matrix norms.

@ Corollary on Spectral Radius:

@ p(A) < ||Al| for any subordinate matrix norm.
@ If p(A) < 1then ||A|| < 1 for some subordinate matrix norm.
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Proof of the Theorem (<)

Suppose that p(G) < 1. There is a subordinate matrix norm such that ||G|| < 1. From
the iteration formula, we have

k=1
ull = Gul ¢, P =Gull 4 Ge+e, ---, ulfl =Gkl 4 Z de.
j=0

Using the matrix norm and corresponding vector norm, we obtain
IG5 < IGH 1) < IGIM ) = 0 as koo,

Moreover, by Neumann series we have
0 .
Y Ge=(1I-G) e
j=0

Finally, by letting k — co, we obtain

k-1
S k, [0] 2
lim u klg‘r:o (G u™ + Z G’C) (I-G) e

k—o0 =0
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Proof of the Theorem (=)
Suppose that p(G) > 1. Select v and A so that Gv = Av, where |A| > 1 and v # 0. Recall

k=1
that ul!l = GFulol + Z Glc. Let c = v and ul%) = 0. Then we have
j=0

k-1

k-1
ulfl =y Glo=Y" Vo
=0 j=0

@ IfA=1, ulf = ko, this diverges as k — 0.
@ If A #1,ulM = (AF—1)(A —1) 1o, this diverges as k — oo and this diverges also
because limy_,, A¥ does not exist.

For both cases, {1} diverges, a contradiction! Therefore, p(G) < 1.
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Analysis of Jacobi method

Recall the Jacobi method
Dul+ = (L + U)ulM + f = (D — A)ul +7.
Wehave G=D1(D—-A)=1-D'Aandc=D"f.

As a simple example, we apply this method to the linear system arising from the
centered difference approximation to u”(x) = g(x) with Dirichlet BC,

u(x) =g(x), 0<x<1, u(0)=waand u(l)=_2.

Then the linear system Au = f is

-2 1 u, g(x1) —a/H?
1 -2 1 UQ g(xz)
1 1 -2 1 U3 g(X3)
2 = :
1 -2 1 umfl g(xmfl)
1 -2 U (xn) — B/ W2
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Analysis of Jacobi method (continued)

The iteration matrix is

2
G:I—D*lA:H%A.

The eigenvalues of G are

h? W (2
=1+ ?)\,, =1+ ) h—z(cos(pnh) —1)) =cos(prh), p=12,---,m.

So the spectral radius of G is

T
0(G) = |71| = cos(7th) = cos (m) <1

and the Jacobi method converges for any initial guess ul% for the linear system arising

from the centered difference approximation for the 1-D example.
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Analysis of Gauss-Seidel method

Recall the Gauss-Seidel method
(D—L)yuf+1 = gyl 4 7,

Wehave G = (D—L)'Uandc = (D —L)~f.

Let A be a nonzero eigenvalue of G and v := (vq,vp, - - -, v,,,)—r # 0 be a corresponding
eigenvector. Then we have

(D-L) "o =Av = Uv=A(D—-L)p = ADv=ALv+ U
-1

1 .
= Av; = 5 (*/\1);_1 — Uj+1) = E (/\Ui_l +'U,‘+1>,1 <i<m, Uy =0Upys1 = 0.

Now we set v; = Ai/2y; for 1 < i < m. Then

)L%+1Lll‘ = 3 (A%+lui,1 + A%Mi+1>.

Multiplying A~ 3 leads to

1

Azu; = %(”i—l + ui+1>~
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Analysis of Gauss-Seidel method (continued)

1 1 1
A2u; = E(”i—l +ui+1) = A2(=2)u; = — (i1 + i+1)

— APDu-= (L+U)u
— Au=DYL+Uu=DYD-Au=(1I-D"'Au.

We have already proved that u = (uy,up, - -, um)T is an eigenvector associated with

the eigenvalue AZ of the iteration matrix I — D~1A of the Jacobi method. Moreover,
one can check that the inverse process works as well. From the above discussion, we
can conclude that the eigenvalues A, of the iteration matrix G = (D — L)~'U of the
Gauss-Seidel method should be

Ap = cosz(pnh), p=12---,m,

where cos(prth), p = 1,2, - - ,m, are the eigenvalues of the iteration matrix I — D 1A of
the Jacobi method. It leads to

o((D —L)~'U) = cos?(7th) = cos® (ﬁ) <1

Thus, the Gauss-Seidel method converges for any initial guess u[*!

arising from the 1-D example.

for the linear system
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Successive over-relaxation (SOR) method

The Gauss-Seidel moves u; in right direction but is far too conservative in the amount
it allows u; to move.

Successive Over-Relaxation (SOR): Compute Gauss-Seidel approximation and then
go further:

1/ K k
uf® = 5 (5l ) and W = wufS 4 (1 wpu

can be combined to yield,

k+1 w k+1 k] 2 15
ul[ - E(”z[—l ] +ul[_£1 —hﬂ) +(1—w)u1[].
Remarks:
@ 0 < w < 1: under-relaxation methods and can be used to obtain convergence of
some systems that are not convergent by the GS method.
@ 1 < w: over-relaxation methods, which are used to accelerate the convergence
for systems that are convergent by the GS method.
@ Optimal w for the Poisson problem:
2

= =2 -27h.
“opt = 174 sin(7h) rth
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A general theory for SOR

For a general system Au = f with A = D — L — U, where D = diag(A), L is the
negative of the strictly lower part of A, and U is the negative of the strictly upper part
of A. Then

Successive Over-Relaxation (SOR):
Mul1l = Nyl 4 7,

where 1 1
M:;(D—wL), N:a((l—w)D—&-wu).

A theorem of SOR method states that if A is symmetric and positive definite (SPD) and
D — wL is nonsingular, then SOR method converges for all 0 < w < 2.
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Comparison

Jacobi

Gauss-Seidel

o 10 20 30 40 50 60 70 80 920 100

Errors versus k for Jacobi, Gauss-Seidel and SOR methods.

(Two-point BVP: 1 (x) = f(x), SOR with optimal wopt)
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Recall some properties of SPD

@ Let A € C"*" be a square matrix and x,y € C". Define A* := ZT, x =% and
(x,y) :=y*x € C. Then (Ax,x) = x*Ax is called a quadratic form.

Definition: Let A € C"*™. A is positive definite <= (Ax,x) > 0,V 0 # x € C".
Note 1: A = A* <= (Ax,x) e R,Vx € C".
Note 2: If A € C"™*™ is positive definite, then A = A*. (by Note 1)
Note 3: Let A € R"*™. A is positive definite <= A = AT and (Ax,x) > 0,

V0 #xeR"
Note 4: Let A € C"*" and A = A*. Then A is positive definite <= all of its
eigenvalues are real and positive.
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SPD linear systems

Consider the linear system Au = f, where A € R"*™ is symmetric (S) and positive
definite (PD), or negative definite since negating the system then gives an SPD matrix.
Define ¢ : R" — R by
¢(u) = %uTAu —u'f.
@ Problem (1): Find u* € R" such that ¢(u*) = min,crm ¢(u).
@ Problem (2): Find u* € R" such that Au* = f.

Note: 3! solution u* € IR™ such that Au* = f, since A is SPD.

\\\\ \\y 5
N7
NIRRT S X
NI
S

(@)
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Proof of Problem (1) <—> Problem (2)

@ Problem (1) = Problem (2):
Let u* € R™ be such that ¢(u*) = min,crm ¢(u). Given 0 # u € R™. Then

gle) == ¢u"+eu)= %( teu) At +eu) —f - (uF 4 eu)

= %u*'Au*+%su*AAu+%£u~Au*+%szu~Auff4u*7£f~u

1 1
= Eszu-Au+eu-Au*fsf-u+ Eu*-Au* —f-u¥,

where we use u* - Au = (u*,Au) = (ATu*,u) = (Au*,u) = (u, Au*) = u - Au*.
. g is a quadratic polynomial in & with leading coefficient 1 - Au > 0.

- g(0) = p(u*) = minyerm ¢(u). ..¢'(0) = 0 (by Fermat’s Theorem).
=u-(Au*—f),V0#uecR"

e=

5.0=¢'(0) = (£u~Au+u~Au* —f‘u)

SAuT =f.
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Proof of Problem (1) <= Problem (2) (continued)

@ Problem (2) = Problem (1):
Assume that Au* = f. Let u € R". Define w := u — u*. Then u = w + u*.
We have

(w+u*) -Alw+u*) —f - (w+u*)

N =

pu) = %u-Auff-u:

1 1
= §w~Aw+w~Au*+§u*~Au* —fw—f-u*

= %w~Aw+w~Au* —frw+¢pu*)

w-Aut —f w4+ ¢(u*) ("AisSPD .. %w~Aw20)
wef =frwtgu’) = ).
(P(M*) = min,crm 4)(1/[)

[\
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Minimization algorithms

Given an initial approximation ul% € R™ of the exact solution u*. Find ul!l € R™,
k=1,2,...of the form

bt =y 4 g Kk =0,1,...,

where d¥l € R™ is the search direction, a; > 0 is the step size (length). We will focus on
two methods:

@ The method of steepest descent (also called the gradient method).

@ The conjugate-gradient method.
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Some notation

Let ¢ : R” — R be a smooth function and u € R™.

@ Gradientof ¢ atu = ¢'(u) := Vo(u) := (a—‘P(u), a—‘P(u), e, a?f,, (u))T.

duq

@ Hessian of ¢ at u,

’p ¢ ¢
aiuf( 1101y " 10Uy,
4’”(”) = :

0%¢ % 0%
Uy 0Uly " Oty dp " m( ) mxm

= (V2w va—"’w))

- ouy - 7 Bum

_ 9¢

= V(5 0 aum P ()

= V(¢'wT)

= (vpw)T)
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Example

Assume that A € R"™*" is a symmetric matrix, f € R™ is a given vector, and
¢ : R™ — Ris defined by ¢(u) := JuTAu—u'f.
Then we can prove that V u € R,
@ ¢'(u) = Au—f;
@ ¢"(u)=A,
by using the following identities:
@ u-Au=uy (A1 -u) +up(Ag. -u) 4+ + (A - 11).
@ ¢"(u) =V(Vow)") =V ((Au—f)") = V(A1 -u—fi, - An 1t —fn).
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Taylor’s expansion of a smooth function ¢ at /¥

Recall that we want to find u* € R™ such that ¢(u*) = minyerm ¢ (1) by using the
minimization algorithm: w1 = K 4 wd K k > 0, where ¢ is a smooth function
givenby ¢(u) := JuT Au — u"f. To determine a) and dl, by Taylor’s expansion, we

have
ey = pl) + Vo) - (k1 —ul)
1 -
(e ). ® 2("7) (k1) 4), for some 5 € wluH]

2
Pt
= ¢(u[k]) + ak¢’(u[k]) dk 4 2fl!f,jl[k] .4,"(,7),1[14,
Sy = () + ape! (ul) - g 4 O(a?), provided the entries in ¢ (17)
are bounded in a neighborhood containing uuk+1].

S ¢ (ul) -4 < 0and &y > 0 is sufficiently small, then ¢(u*+1) < ¢(ul).
In this case, we call d (K a descent direction.
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The method of steepest descent

Note that p(u) := Ju" Au—u'f and A is SPD.

If we choose ¥ = —¢/ (ulf) = —(Aul — ) and if ¢/ () #£ 0,

then we have ¢/ (ulll) - dll = —||¢’ ()| 3 < 0.

We obtain the so-called steepest descent method or the gradient method.

Note: If ¢' (1) = 0 then Aul — f = 0 = Aull = f = 4l is the exact solution.
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How to choose «; > 0 in the method of steepest descent?

Determine optimal a; such that ¢(u¥ 4 ad™) = mingeg ¢l + ad).

Notice that ¢(u¥ 4- ad{) can be viewed as a quadratic function in & with positive
leading coefficient.

=0.

a=up

If oy is optimal, then ﬁ¢(u[k] + adM)

=0.

a=ny

¢/ () 4 ) - d — o,

o (4 ad®y - gl¥

¢’(u[k] + ad™y - gl = (A(u[k] + agd™) ,f) . 4l
(Auld — ) - d® 4 g d¥ . Agll,

=0

(Auld —f)- . dlkl Al . glk]

ST TR AR g Adl
provided d = —¢/(ul) = —(Auld —f) # 0.
AisSPD.  .dl . Adl > 0, provided d¥ = —¢'(ul) = —(Auld —f) £ 0.

o a > 0, provided d¥ = —¢/ (ulH) = —(Aulkl — ) £ 0.
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The method of steepest descent with optimal step length «;,

The steepest descent algorithm takes the form, fork =0,1,2,...

I B O
_ Alkl . glk]
S < I

where

d¥ = —(Aull —5).

\

m = 2: the concentric ellipses are level sets of ¢(u).
(. Ais SPD, the level sets of ¢ are always ellipses)
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Remarks

@ It appears that in each iteration we must do two matrix-vector multiples, Au¥ to
compute d (K and then Ad¥ to compute a,. However, note that

d[k+l] _ f _ Au[k+1]
= f- Al + adl®)
d¥ — a AdM.

So once we have computed Ad (K as needed for w, we can also use this result to
compute dl<+1].
@ Since dFt1 = 4K — 4, AdlM, we have
dbtl gkl = gkl gl Aglk L g
Al . glk]
LS L ey L I |
T ¥ SR
= 0.
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The major and minor axes of the elliptical level set of ¢(u)

Assume that A is a SPD 2 x 2 matrix. Let v; and v; be the points that the gradient
V¢(vj) lies in the direction that connects v; to the center u*, see the figure below.

Then forj = 1,2, V§(v;) = Av; — f = Aj(v; — u*), for some A; € R.
Since f = Au*, this gives Av; — f = A(v; — u*) = A;(v; — u*).

Hence, each direction v; — u* is an eigenvector of A and A; is an eigenvalue.
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Level sets of ¢p(u): m =2

(a) // (b)

(a) level sets of ¢(u) are circular; (b) level sets of ¢(u) are far from circular.
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The length of the major and minor axes

The length of the major and minor axes is related to the magnitude of A; and A,.
Suppose that v; and v; lie on the level set along which ¢(u) = 1. Then we have

P(v) = Av] - UTf = —v Av] - vTAu =1, j=12

Taking the inner product of A(vj — u*) = Aj(v; — u*) with v; — u* and combining with
%vaAvj — v]-TAu* =1, we have

2+ uTAu* |
o w3 = 222 =2,
Aj

Hence the ratio of the length of the major axis to the length of the minor axis is

HZ)] *ll*Hz /\2 /
oz —wlly VA

where A; < A; and #;(A) is the 2-norm condition number of A.
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The 2-norm condition number of A: x;(A)

Let A € R™* ™ be a SPD matrix.
Let0 < A; < Ay < --- < Ay, be the eigenvalues of A.

1 1 1
Then0 < — < < -+ < —— are the eigenvalues of AL
Am )‘mfl /\1

Let p(A) denote the spectral radius of A, i.e., the maximum size of the eigenvalues of
A. Thatis, p(A) = max |A;].
]

K2(A) = [Af2lA V2 = \Jo(AarA)Jo((a-1) A

VR(ATA) Jo((A1)TA) =y /p(42)y/p((A-1)2)

Y el U VR PN
" )\% )\l )\min '
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The A-conjugate search direction

The steepest descent direction can be generalized by choosing a search direction p! in
the (k + 1)th iteration that might be different from the direction dXl.

We set
as)

= ulf 4+ apl,

where a; is chosen to minimize ¢(ul + a;pl!) over all scalar a. In other words, we
perform a line search along the line through # in the direction p/ and find the
minimum of ¢ on this line. The solution is at the point where the line is tangent to a
contour line of ¢, and

dlkl . plk]

M= R ApR
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The A-conjugate search direction (continued)

@ A bad choice of search direction p/! would be a direction orthogonal to 4], since
then pll would be tangent to the level set of ¢ at uld, ¢(u1) could only increase
along this line, and so ulk+1 = 4K Note that in this case

4K i 0
= W apl  pH - apE

@ Butas long as pld - 4K +£ 0, the new point u*1] will be different from ul and
will satisfy ¢p(ult1l) < ¢(uld).

1o

The two search directions used are A-conjugate
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The A-conjugate search direction (continued)

Once we obtain u!] by the formulas
dld . ple

(1] — K (K] = L
u =u®™ +ap™ and ap = v
p[k] . Ap[k]

we choose the next search direction p[!! to be a vector satisfying
p[l] . AP[O] —=0.

Two vectors pl% and pl!] that satisfy the above equation are said to be A-conjugate.

@ For any SPD matrix A, the vectors u and v are A-conjugate if the inner product of
u with Av is zero, i.e., u - Av = 0.

@ If A = I, this just means the vectors are orthogonal, and A-conjugate is a natural
generalization of the notion of orthogonality.
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The conjugate-gradient algorithm

Given ul? € R™,
PO g0 = (4l ).

Find ulY and p[l], ul?l and p[z], ..., such thatfork=0,1,---,

T
_ Al ph timal step length
= W (optimal step length),
plertl = gkl L gpl (for next step),
where
5 —dlk+1] . AplK
k = S PR R
p[k] . Ap[k]
- _(Au[k] -f) (=f — AulM, residual).
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Some properties

The vectors generated in the CG algorithm have the following properties, provided
dl # 0 (if dKl = 0, then we have converged):

@ pl is A-conjugate to all the previous search directions, i.e., pil - Apll = 0 for
=01, k-1
Partial proof: Note that

7d[k+1] . Ap[k]

i = @ ) apk = 0 = plel gl <
pl-Ap

Br =

@ The residual d¥ is orthogonal to all previous residuals, d (K. 4l = 0 for
j=01,--- k-1
@ The following three subspaces of R" are identical:

span(pl®, pll pl2, ... pl=1ly,
span(d[o],Ad[o],AZd[o], e ,Ak_ld[o]),
span(Ael%l, A2101, A3 ... AkelOly (el = 40 — ).
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Convergence of conjugate gradient

@ There exists k < m such that Aulkl = f

@ Define the A-norm by
llella := Ve Ae.

Then we have that after k steps of the conjugate gradient method, the iteration
error el := ull — y* satisfies the bound

k
A)—-1
e sz(%) 1€

@ Thus, for a given & > 0, to satisfy [|ul¥ — u*||4 < e||ul® — u*| 4, it is sufficient to
choose k such that

k
Kz(A)—l
2<m> =e

k> %,/KZ(A) log% — 0(y/xa(A)).

In many numerical methods for elliptic PDEs, x3(A) = O(h~2).

That is
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