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Solving Ax = b: direct method vs. iterative method

Direct methods for solving the matrix problem Ax = b: e.g., Gaussian
elimination, LU-decomposition.

large operation counts
hard to do on parallel machines
a solution will be found, and we know how long and how much memory
it takes

Iterative methods produce a sequence of vectors that ideally converges to the
solution.

much smaller operation counts
a lot easier to implement on parallel computers
not as reliable or predicable (the number of iterations is not known in
advance)

For very large problems (especially in 3D), a direct solver is impractical. e.g.,
Gaussian elimination is an O(m3) algorithm.
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Centered difference scheme

As an example, we consider the Poisson equation with the Dirichlet BC:{
∇2u = g in Ω := (0, 1)× (0, 1),
u = ϕ on ∂Ω.

Let uij represent an approximation to u(xi, yj) and gij := g(xi, yj). For simplicity, we set
∆x = ∆y = h. Then we have

1
h2 (ui−1,j + ui+1,j + ui,j−1 + ui,j+1 − 4uij) = gij.

We can rewrite the above equation as

uij =
1
4
(ui−1,j + ui+1,j + ui,j−1 + ui,j+1)−

h2

4
gij.

Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Iterative Methods for Sparse Linear Systems – 3/40



Jacobi and Gauss-Seidel iterative methods

Jacobi iteration:

u[k+1]
ij =

1
4

(
u[k]

i−1,j + u[k]
i+1,j + u[k]

i,j−1 + u[k]
i,j+1

)
− h2

4
gij, k ≥ 0.

Jacobi iteration is about the worst possible iterative method. But it’s very simple,
and useful as a test for parallelization.
Gauss-Seidel iteration: Jacobi iteration is rather slow to converge, and can be
made faster by using the updated values of the solution as soon as they are
available.

u[k+1]
ij =

1
4

(
u[k+1]

i−1,j + u[k]
i+1,j + u[k+1]

i,j−1 + u[k]
i,j+1

)
− h2

4
gij, k ≥ 0.

Important features:
The matrix A is never stored;
The storage is optimal, essentially only the m2 solution values are stored;
Each iteration requires O(m2) work.
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Matrix splitting methods

The Jacobi and Gauss-Seidel iterative methods for the linear system Au = f can be
analyzed by viewing them as based on a splitting of the matrix A into

A = M−N,

where M and N are two m×m matrices. Then the linear system Au = f can be written
as

Mu−Nu = f =⇒ Mu = Nu + f ,

which suggests the iterative method

Mu[k+1] = Nu[k] + f , k ≥ 0.

The goal is to choose M so that the following conditions hold:
The sequence {u[k]} is easily computed.
The sequence {u[k]} converges rapidly to the solution.
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Jacobi and Gauss-Seidel iterative methods

Consider the linear system Au = f . Let A = D− L−U, where D = diag(A), L is the
negative of the strictly lower part of A, and U is the negative of the strictly upper part
of A. Then

Jacobi iteration:

M = D, N = L + U,

Du[k+1] = (L + U)u[k] + f , k ≥ 0.

Gauss-Seidel iteration:

M = D− L, N = U,

(D− L)u[k+1] = Uu[k] + f , k ≥ 0.
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Convergence analysis

To analyze these methods, we derive from the update formula

u[k+1] = M−1Nu[k] + M−1f ,

= Gu[k] + c,

where G := M−1N is the iteration matrix and c := M−1f .

Let u∗ represent the true solution to the linear system Au = f . Then u∗ = Gu∗ + c. We
call u∗ a fixed point or an equilibrium of G(·) + c. If e[k] := u[k] − u∗ represents the error
at kth step, then we have

e[k+1] = Ge[k].

Repeating this process, we obtain

e[k] = Gke[0],

From this we can see that the method will converge from any initial guess u[0] if
Gk → 0(an m×m matrix of zeros) as k→ ∞.

Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Iterative Methods for Sparse Linear Systems – 7/40



A necessary and sufficient condition

For simplicity, assume that G is a diagonalizable matrix, so that we can write

G = RΓR−1 ⇐= R−1GR = Γ =⇒ GR = RΓ,

where R is the matrix of right eigenvectors of G and Γ is a diagonal matrix of
eigenvalues γ1, · · · , γm. Then

Gk = RΓkR−1,

where Γk = diag(γk
1, · · · , γk

m). One observe that the Gk → 0 as k→ 0 if |γp| < 1 for all
p = 1, 2, · · · , m. This is, if ρ(G) < 1, then Gk → 0 as k→ 0, where ρ(G) is the spectral
radius of G. In fact, this is a necessary and sufficient condition:

Theorem: The iteration formula

u[k+1] = Gu[k] + c

converges for any initial guess u[0] if and only if the spectral radius of G be less than 1,
i.e., ρ(G) < 1.
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Spectral radius

The spectral radius of A is defined by

ρ(A) = max{|λ| : det(A− λI) = 0}.

Thus, ρ(A) is the smallest number such that a circle with that radius centered at
0 in the complex plane will contain all the eigenvalues of A.

Theorem on Spectral Radius: The spectral radius function satisfies

ρ(A) = inf
‖·‖
‖A‖,

in which the infimum is taken over all subordinate matrix norms.

Corollary on Spectral Radius:
ρ(A) ≤ ‖A‖ for any subordinate matrix norm.
If ρ(A) < 1 then ‖A‖ < 1 for some subordinate matrix norm.
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Proof of the Theorem (⇐)

Suppose that ρ(G) < 1. There is a subordinate matrix norm such that ‖G‖ < 1. From
the iteration formula, we have

u[1] = Gu[0] + c, u[2] = G2u[0] + Gc + c, · · · , u[k] = Gku[0] +
k−1

∑
j=0

Gjc.

Using the matrix norm and corresponding vector norm, we obtain

‖Gku[0]‖ ≤ ‖Gk‖‖u[0]‖ ≤ ‖G‖k‖u[0]‖ → 0 as k→ ∞.

Moreover, by Neumann series we have

∞

∑
j=0

Gjc = (I−G)−1c.

Finally, by letting k→ ∞, we obtain

lim
k→∞

u[k] = lim
k→∞

(
Gku[0] +

k−1

∑
j=0

Gjc

)
= (I−G)−1c.
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Proof of the Theorem (⇒)
Suppose that ρ(G) ≥ 1. Select v and λ so that Gv = λv, where |λ| ≥ 1 and v 6= 0. Recall

that u[k] = Gku[0] +
k−1

∑
j=0

Gjc. Let c = v and u[0] = 0. Then we have

u[k] =
k−1

∑
j=0

Gjv =
k−1

∑
j=0

λjv.

If λ = 1, u[k] = kv, this diverges as k→ ∞.

If λ 6= 1, u[k] = (λk − 1)(λ− 1)−1v, this diverges as k→ ∞ and this diverges also
because limk→∞ λk does not exist.

For both cases, {u[k]} diverges, a contradiction! Therefore, ρ(G) < 1.
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Analysis of Jacobi method

Recall the Jacobi method

Du[k+1] = (L + U)u[k] + f = (D−A)u[k] + f .

We have G = D−1(D−A) = I−D−1A and c = D−1f .

As a simple example, we apply this method to the linear system arising from the
centered difference approximation to u′′(x) = g(x) with Dirichlet BC,

u′′(x) = g(x), 0 < x < 1, u(0) = α and u(1) = β.

Then the linear system Au = f is

1
h2



−2 1
1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1
1 −2





U1
U2
U3
...

Um−1
Um


=



g(x1)− α/h2

g(x2)
g(x3)

...
g(xm−1)

g(xm)− β/h2


.
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Analysis of Jacobi method (continued)

The iteration matrix is

G = I−D−1A = I +
h2

2
A.

The eigenvalues of G are

γp = 1 +
h2

2
λp = 1 +

h2

2

(
2
h2 (cos(pπh)− 1)

)
= cos(pπh), p = 1, 2, · · · , m.

So the spectral radius of G is

ρ(G) = |γ1| = cos(πh) = cos
(

π

m + 1

)
< 1

and the Jacobi method converges for any initial guess u[0] for the linear system arising
from the centered difference approximation for the 1-D example.
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Analysis of Gauss-Seidel method

Recall the Gauss-Seidel method

(D− L)u[k+1] = Uu[k] + f .

We have G = (D− L)−1U and c = (D− L)−1f .

Let λ be a nonzero eigenvalue of G and v := (v1, v2, · · · , vm)> 6= 0 be a corresponding
eigenvector. Then we have

(D− L)−1Uv = λv =⇒ Uv = λ(D− L)v =⇒ λDv = λLv + Uv

=⇒ λvi =
−1
2

(
−λvi−1 − vi+1

)
=

1
2

(
λvi−1 + vi+1

)
, 1 ≤ i ≤ m, v0 = vm+1 = 0.

Now we set vi = λi/2ui for 1 ≤ i ≤ m. Then

λ
i
2 +1ui =

1
2

(
λ

i−1
2 +1ui−1 + λ

i+1
2 ui+1

)
.

Multiplying λ−
i+1

2 leads to

λ
1
2 ui =

1
2

(
ui−1 + ui+1

)
.
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Analysis of Gauss-Seidel method (continued)

λ
1
2 ui =

1
2

(
ui−1 + ui+1

)
=⇒ λ

1
2 (−2)ui = −(ui−1 + ui+1)

=⇒ λ
1
2 Du = (L + U)u

=⇒ λ
1
2 u = D−1(L + U)u = D−1(D−A)u = (I−D−1A)u.

We have already proved that u = (u1, u2, · · · , um)> is an eigenvector associated with

the eigenvalue λ
1
2 of the iteration matrix I−D−1A of the Jacobi method. Moreover,

one can check that the inverse process works as well. From the above discussion, we
can conclude that the eigenvalues λp of the iteration matrix G = (D− L)−1U of the
Gauss-Seidel method should be

λp = cos2(pπh), p = 1, 2, · · · , m,

where cos(pπh), p = 1, 2, · · · , m, are the eigenvalues of the iteration matrix I−D−1A of
the Jacobi method. It leads to

ρ((D− L)−1U) = cos2(πh) = cos2
(

π

m + 1

)
< 1.

Thus, the Gauss-Seidel method converges for any initial guess u[0] for the linear system
arising from the 1-D example.
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Successive over-relaxation (SOR) method

The Gauss-Seidel moves ui in right direction but is far too conservative in the amount
it allows ui to move.

Successive Over-Relaxation (SOR): Compute Gauss-Seidel approximation and then
go further:

uGS
i =

1
2

(
u[k+1]

i−1 + u[k]
i+1 − h2fi

)
and u[k+1]

i = ωuGS
i + (1−ω)u[k]

i ,

can be combined to yield,

u[k+1]
i =

ω

2

(
u[k+1]

i−1 + u[k]
i+1 − h2fi

)
+ (1−ω)u[k]

i .

Remarks:
0 < ω < 1: under-relaxation methods and can be used to obtain convergence of
some systems that are not convergent by the GS method.
1 < ω: over-relaxation methods, which are used to accelerate the convergence
for systems that are convergent by the GS method.
Optimal ω for the Poisson problem:

ωopt =
2

1 + sin(πh)
≈ 2− 2πh.
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A general theory for SOR

For a general system Au = f with A = D− L−U, where D = diag(A), L is the
negative of the strictly lower part of A, and U is the negative of the strictly upper part
of A. Then

Successive Over-Relaxation (SOR):

Mu[k+1] = Nu[k] + f ,

where
M =

1
ω
(D−ωL), N =

1
ω
((1−ω)D + ωU).

A theorem of SOR method states that if A is symmetric and positive definite (SPD) and
D−ωL is nonsingular, then SOR method converges for all 0 < ω < 2.

Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Iterative Methods for Sparse Linear Systems – 17/40



Comparison
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and modified equations in the sense of Section 10.9, and see [3] for applications of this
approach to the 9-point Laplacian.)

For the Poisson problem in any number of space dimensions it can be shown that the
SOR method converges most rapidly if ! is chosen as

!opt D
2

1 C sin.�h/
� 2 � 2�h:

This is nearly equal to 2 for small h. One might be tempted to simply set ! D 2 in general,
but this would be a poor choice since SOR does not then converge! In fact the convergence
rate is quite sensitive to the value of ! chosen. With the optimal ! it can be shown that the
spectral radius of the corresponding G matrix is

�opt D !opt � 1 � 1 � 2�h;

but if ! is changed slightly this can deteriorate substantially.
Even with the optimal ! we see that �opt ! 1 as h ! 0, but only linearly in h rather

than quadratically as with Jacobi or Gauss–Seidel. This makes a substantial difference in
practice. The expected number of iterations to converge to the required O.h2/ level, the
analogue of (4.19), is now

kopt D O.m log m/:

Figure 4.1 shows some computational results for the methods described above on
the two-point boundary value problem u00 D f . The SOR method with optimal ! is

0 10 20 30 40 50 60 70 80 90 100
10
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0

SOR

Jacobi

Gauss−Seidel

Figure 4.1. Errors versus k for three methods.Errors versus k for Jacobi, Gauss-Seidel and SOR methods.

(Two-point BVP: u′′(x) = f (x), SOR with optimal ωopt)
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Recall some properties of SPD

Let A ∈ Cm×m be a square matrix and x, y ∈ Cm. Define A∗ := A>, x∗ := x> and
(x, y) := y∗x ∈ C. Then (Ax, x) = x∗Ax is called a quadratic form.

Definition: Let A ∈ Cm×m. A is positive definite⇐⇒ (Ax, x) > 0, ∀ 0 6= x ∈ Cm.

Note 1: A = A∗ ⇐⇒ (Ax, x) ∈ R, ∀ x ∈ Cm.

Note 2: If A ∈ Cm×m is positive definite, then A = A∗. (by Note 1)

Note 3: Let A ∈ Rm×m. A is positive definite⇐⇒ A = A> and (Ax, x) > 0,
∀ 0 6= x ∈ Rm.

Note 4: Let A ∈ Cm×m and A = A∗. Then A is positive definite⇐⇒ all of its
eigenvalues are real and positive.
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SPD linear systems

Consider the linear system Au = f , where A ∈ Rm×m is symmetric (S) and positive
definite (PD), or negative definite since negating the system then gives an SPD matrix.
Define φ : Rm → R by

φ(u) =
1
2

u>Au− u>f .
Problem (1): Find u∗ ∈ Rm such that φ(u∗) = minu∈Rm φ(u).
Problem (2): Find u∗ ∈ Rm such that Au∗ = f .

Note: ∃! solution u∗ ∈ Rm such that Au∗ = f , since A is SPD.
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Figure 4.2. (a) The function �.u/ for m D 2 in a case where A is symmetric and
positive definite. (b) The function �.u/ for m D 2 in a case where A is symmetric but
indefinite.

head uphill or downhill from the current approximation. Since the CG method is based on
minimization, it is necessary for the matrix to be SPD. By viewing CG in a different way it
is possible to generalize it and obtain methods that also work on indefinite problems, such
as the GMRES algorithm described in Section 4.4.

4.3.1 The method of steepest descent

As a prelude to studying CG, we first review the method of steepest descent for minimizing
�.u/. As in all iterative methods we start with an initial guess u0 and iterate to obtain
u1;u2; : : :. For notational convenience we now use subscripts to denote the iteration num-
ber: uk instead of uŒk�. This is potentially confusing since normally we use subscripts to
denote components of the vector, but the formulas below get too messy otherwise and we
will not need to refer to the components of the vector in the rest of this chapter.

From one estimate uk�1 to u� we wish to obtain a better estimate uk by moving
downhill, based on values of �.u/. It seems sensible to move in the direction in which � is
decreasing most rapidly, and go in this direction for as far as we can before �.u/ starts to
increase again. This is easy to implement, since the gradient vector r�.u/ always points
in the direction of most rapid increase of �. So we want to set

uk D uk�1 � ˛k�1r�.uk�1/ (4.28)

for some scalar ˛k�1, chosen to solve the minimization problem

min
˛2R

� .uk�1 � ˛r�.uk�1// : (4.29)

We expect ˛k�1 � 0 and ˛k�1 D 0 only if we are already at the minimum of �, i.e., only
if uk�1 D u�.

For the function �.u/ in (4.25), the gradient is given by (4.27) and so

r�.uk�1/ D Auk�1 � f � �rk�1; (4.30)

where rk�1 D f � Auk�1 is the residual vector based on the current approximation uk�1.
To solve the minimization problem (4.29), we compute the derivative with respect to ˛ and
set this to zero. Note that

φ(u) for m = 2: (a) A is SPD; (b) A is S but indefinite.
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Proof of Problem (1)⇐⇒ Problem (2)

Problem (1) =⇒ Problem (2):

Let u∗ ∈ Rm be such that φ(u∗) = minu∈Rm φ(u). Given 0 6= u ∈ Rm. Then

g(ε) := φ(u∗ + εu) =
1
2
(u∗ + εu) ·A(u∗ + εu)− f · (u∗ + εu)

=
1
2

u∗ ·Au∗ +
1
2

εu∗ ·Au +
1
2

εu ·Au∗ +
1
2

ε2u ·Au− f · u∗ − εf · u

=
1
2

ε2u ·Au + εu ·Au∗ − εf · u +
1
2

u∗ ·Au∗ − f · u∗,

where we use u∗ ·Au = (u∗, Au) = (A>u∗, u) = (Au∗, u) = (u, Au∗) = u ·Au∗.

∴ g is a quadratic polynomial in ε with leading coefficient 1
2 u ·Au > 0.

∵ g(0) = φ(u∗) = minu∈Rm φ(u). ∴ g′(0) = 0 (by Fermat’s Theorem).

∴ 0 = g′(0) =
(

εu ·Au + u ·Au∗ − f · u
)∣∣∣

ε=0
= u · (Au∗ − f ), ∀ 0 6= u ∈ Rm.

∴ Au∗ = f .
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Proof of Problem (1)⇐⇒ Problem (2) (continued)

Problem (2) =⇒ Problem (1):

Assume that Au∗ = f . Let u ∈ Rm. Define w := u− u∗. Then u = w + u∗.

We have

φ(u) =
1
2

u ·Au− f · u =
1
2
(w + u∗) ·A(w + u∗)− f · (w + u∗)

=
1
2

w ·Aw + w ·Au∗ +
1
2

u∗ ·Au∗ − f ·w− f · u∗

=
1
2

w ·Aw + w ·Au∗ − f ·w + φ(u∗)

≥ w ·Au∗ − f ·w + φ(u∗) (∵ A is SPD ∴
1
2

w ·Aw ≥ 0)

= w · f − f ·w + φ(u∗) = φ(u∗).

∴ φ(u∗) = minu∈Rm φ(u).
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Minimization algorithms

Given an initial approximation u[0] ∈ Rm of the exact solution u∗. Find u[k] ∈ Rm,
k = 1, 2, . . . of the form

u[k+1] = u[k] + αkd[k], k = 0, 1, . . . ,

where d[k] ∈ Rm is the search direction, αk > 0 is the step size (length). We will focus on
two methods:

The method of steepest descent (also called the gradient method).
The conjugate-gradient method.
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Some notation

Let φ : Rm → R be a smooth function and u ∈ Rm.

Gradient of φ at u = φ′(u) := ∇φ(u) :=
(

∂φ
∂u1

(u), ∂φ
∂u2

(u), · · · , ∂φ
∂um

(u)
)>

.

Hessian of φ at u,

φ′′(u) =


∂2φ

∂u2
1
(u)

∂2φ

∂u1∂u2
(u) · · · ∂2φ

∂u1∂um
(u)

...
... · · ·

...
∂2φ

∂um∂u1
(u)

∂2φ

∂um∂u2
(u) · · · ∂2φ

∂u2
m
(u)


m×m

=
(
∇ ∂φ

∂u1
(u), · · · ,∇ ∂φ

∂um
(u)
)

:= ∇
( ∂φ

∂u1
(u), · · · ,

∂φ

∂um
(u)
)

= ∇
(

φ′(u)>
)

= ∇
(
∇φ(u)>

)
.
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Example

Assume that A ∈ Rm×m is a symmetric matrix, f ∈ Rm is a given vector, and
φ : Rm → R is defined by φ(u) := 1

2 u>Au− u>f .

Then we can prove that ∀ u ∈ Rm,
φ′(u) = Au− f ;
φ′′(u) = A,

by using the following identities:
u ·Au = u1(A1· · u) + u2(A2· · u) + · · ·+ um(Am· · u).
φ′′(u) = ∇(∇φ(u)>) = ∇((Au− f )>) = ∇(A1· · u− f1, · · · , Am· · u− fm).
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Taylor’s expansion of a smooth function φ at u[k]

Recall that we want to find u∗ ∈ Rm such that φ(u∗) = minu∈Rm φ(u) by using the
minimization algorithm: u[k+1] = u[k] + αkd[k], k ≥ 0, where φ is a smooth function
given by φ(u) := 1

2 u>Au− u>f . To determine αk and d[k], by Taylor’s expansion, we
have

φ(u[k+1]) = φ(u[k]) +∇φ(u[k]) · (u[k+1] − u[k])

+(u[k+1] − u[k]) · φ′′(η)

2!
(u[k+1] − u[k]), for some η ∈ u[k]u[k+1]

= φ(u[k]) + αkφ′(u[k]) · d[k] +
α2

k
2!

d[k] · φ′′(η)d[k].

∴ φ(u[k+1]) = φ(u[k]) + αkφ′(u[k]) · d[k] + O(α2
k), provided the entries in φ′′(η)

are bounded in a neighborhood containing u[k]u[k+1].

∴ If φ′(u[k]) · d[k] < 0 and αk > 0 is sufficiently small, then φ(u[k+1]) < φ(u[k]).
In this case, we call d[k] a descent direction.
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The method of steepest descent

Note that φ(u) := 1
2 u>Au− u>f and A is SPD.

If we choose d[k] = −φ′(u[k]) = −(Au[k] − f ) and if φ′(u[k]) 6= 0,

then we have φ′(u[k]) · d[k] = −‖φ′(u[k])‖2
2 < 0.

We obtain the so-called steepest descent method or the gradient method.

Note: If φ′(u[k]) = 0 then Au[k] − f = 0 =⇒ Au[k] = f =⇒ u[k] is the exact solution.
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How to choose αk > 0 in the method of steepest descent?

Determine optimal αk such that φ(u[k] + αkd[k]) = minα∈R φ(u[k] + αd[k]).

Notice that φ(u[k] + αd[k]) can be viewed as a quadratic function in α with positive
leading coefficient.

If αk is optimal, then
d

dα
φ(u[k] + αd[k])

∣∣∣
α=αk

= 0.

∴ φ′(u[k] + αd[k]) · d[k]
∣∣∣
α=αk

= 0.

∴ φ′(u[k] + αkd[k]) · d[k] = 0.

=⇒ 0 = φ′(u[k] + αkd[k]) · d[k] =
(

A(u[k] + αkd[k])− f
)
· d[k]

= (Au[k] − f ) · d[k] + αkd[k] ·Ad[k].

∴ αk = −
(Au[k] − f ) · d[k]

d[k] ·Ad[k]
=

d[k] · d[k]

d[k] ·Ad[k]
,

provided d[k] = −φ′(u[k]) = −(Au[k] − f ) 6= 0.

∵ A is SPD. ∴ d[k] ·Ad[k] > 0, provided d[k] = −φ′(u[k]) = −(Au[k] − f ) 6= 0.

∴ αk > 0, provided d[k] = −φ′(u[k]) = −(Au[k] − f ) 6= 0.
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The method of steepest descent with optimal step length αk

The steepest descent algorithm takes the form, for k = 0, 1, 2, . . .

u[k+1] = u[k] + αkd[k],

αk =
d[k] · d[k]

d[k] ·Ad[k]
,

where
d[k] = −(Au[k] − f ).
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u�

u0

u1

u2
u3

u4

Figure 4.3. Several iterates of the method of steepest descent in the case m D 2.
The concentric ellipses are level sets of �.u/.

point where �.u/ is minimized along this line. This will occur at the point where this line
is tangent to a contour line. Consequently, the next search direction will be orthogonal to
the current search direction, and in two dimensions we simply alternate between only two
search directions. (Which particular directions depend on the location of u0.)

If A is SPD, then the contour lines (level sets of �) are always ellipses. How rapidly
this algorithm converges depends on the geometry of these ellipses and on the particular
starting vector u0 chosen. Figure 4.4(a) shows the best possible case, where the ellipses are
circles. In this case the iterates converge in one step from any starting guess, since the first
search direction r0 generates a line that always passes through the minimum u� from any
point.

Figure 4.4(b) shows a bad case, where the ellipses are long and skinny and the iter-
ation slowly traverses back and forth in this shallow valley searching for the minimum. In
general steepest descent is a slow algorithm, particularly when m is large, and should not
be used in practice. Shortly we will see a way to improve this algorithm dramatically.

The geometry of the level sets of �.u/ is closely related to the eigenstructure of
the matrix A. In the case m D 2 as shown in Figures 4.3 and 4.4, each ellipse can be
characterized by a major and minor axis, as shown in Figure 4.5 for a typical level set.
The points v1 and v2 have the property that the gradient r�.vj / lies in the direction that
connects vj to the center u�, i.e.,

Avj � f D �j .vj � u�/ (4.34)

for some scalar �j . Since f D Au�, this gives

A.vj � u�/ D �j .vj � u�/ (4.35)

m = 2: the concentric ellipses are level sets of φ(u).
(∵ A is SPD, the level sets of φ are always ellipses)
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Remarks

It appears that in each iteration we must do two matrix-vector multiples, Au[k] to
compute d[k] and then Ad[k] to compute αk. However, note that

d[k+1] = f −Au[k+1]

= f −A(u[k] + αkd[k])

= d[k] − αkAd[k].

So once we have computed Ad[k] as needed for αk, we can also use this result to
compute d[k+1].
Since d[k+1] = d[k] − αkAd[k], we have

d[k+1] · d[k] = d[k] · d[k] − αkAd[k] · d[k]

= d[k] · d[k] − d[k] · d[k]

d[k] ·Ad[k]
Ad[k] · d[k]

= 0.
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The major and minor axes of the elliptical level set of φ(u)

Assume that A is a SPD 2× 2 matrix. Let v1 and v2 be the points that the gradient
∇φ(vj) lies in the direction that connects vj to the center u∗, see the figure below.
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(a)

u�

u0

u1

(b)

u�

u0

Figure 4.4. (a) If A is a scalar multiple of the identity, then the level sets of �.u/
are circular and steepest descent converges in one iteration from any initial guess u0. (b)
If the level sets of �.u/ are far from circular, then steepest descent may converge slowly.

u�

v2

v1

Figure 4.5. The major and minor axes of the elliptical level set of �.u/ point in
the directions of the eigenvectors of A.

and hence each direction vj � u� is an eigenvector of the matrix A, and the scalar �j is an
eigenvalue.

If the eigenvalues of A are distinct, then the ellipse is noncircular and there are two
unique directions for which the relation (4.34) holds, since there are two one-dimensional
eigenspaces. Note that these two directions are always orthogonal since a symmetric matrix

Then for j = 1, 2, ∇φ(vj) = Avj − f = λj(vj − u∗), for some λj ∈ R.

Since f = Au∗, this gives Avj − f = A(vj − u∗) = λj(vj − u∗).

Hence, each direction vj − u∗ is an eigenvector of A and λj is an eigenvalue.
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Level sets of φ(u): m = 2
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(a)

u�

u0

u1

(b)

u�

u0

Figure 4.4. (a) If A is a scalar multiple of the identity, then the level sets of �.u/
are circular and steepest descent converges in one iteration from any initial guess u0. (b)
If the level sets of �.u/ are far from circular, then steepest descent may converge slowly.

u�

v2

v1

Figure 4.5. The major and minor axes of the elliptical level set of �.u/ point in
the directions of the eigenvectors of A.

and hence each direction vj � u� is an eigenvector of the matrix A, and the scalar �j is an
eigenvalue.

If the eigenvalues of A are distinct, then the ellipse is noncircular and there are two
unique directions for which the relation (4.34) holds, since there are two one-dimensional
eigenspaces. Note that these two directions are always orthogonal since a symmetric matrix

(a) level sets of φ(u) are circular; (b) level sets of φ(u) are far from circular.

Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Iterative Methods for Sparse Linear Systems – 32/40



The length of the major and minor axes

The length of the major and minor axes is related to the magnitude of λ1 and λ2.
Suppose that v1 and v2 lie on the level set along which φ(u) = 1. Then we have

φ(vj) =
1
2

v>j Avj − v>j f =
1
2

v>j Avj − v>j Au∗ = 1, j = 1, 2.

Taking the inner product of A(vj − u∗) = λj(vj − u∗) with vj − u∗ and combining with
1
2 v>j Avj − v>j Au∗ = 1, we have

‖vj − u∗‖2
2 =

2 + u∗>Au∗

λj
, j = 1, 2.

Hence the ratio of the length of the major axis to the length of the minor axis is

‖v1 − u∗‖2

‖v2 − u∗‖2
=

√
λ2

λ1
=
√

κ2(A).

where λ1 ≤ λ2 and κ2(A) is the 2-norm condition number of A.
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The 2-norm condition number of A: κ2(A)

Let A ∈ Rm×m be a SPD matrix.

Let 0 < λ1 ≤ λ2 ≤ · · · ≤ λm be the eigenvalues of A.

Then 0 <
1

λm
≤ 1

λm−1
≤ · · · ≤ 1

λ1
are the eigenvalues of A−1.

Let ρ(A) denote the spectral radius of A, i.e., the maximum size of the eigenvalues of
A. That is, ρ(A) = max

j
|λj|.

κ2(A) := ‖A‖2‖A−1‖2 =
√

ρ(A∗A)
√

ρ((A−1)∗A−1)

=
√

ρ(A>A)
√

ρ((A−1)>A−1) =
√

ρ(A2)
√

ρ((A−1)2)

=
√

λ2
m

√
1

λ2
1
=

λm

λ1
=

λmax

λmin
.
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The A-conjugate search direction

The steepest descent direction can be generalized by choosing a search direction p[k] in
the (k + 1)th iteration that might be different from the direction d[k].

We set
u[k+1] = u[k] + αkp[k],

where αk is chosen to minimize φ(u[k] + αkp[k]) over all scalar α. In other words, we
perform a line search along the line through u[k] in the direction p[k] and find the
minimum of φ on this line. The solution is at the point where the line is tangent to a
contour line of φ, and

αk =
d[k] · p[k]

p[k] ·Ap[k]
.
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The A-conjugate search direction (continued)

A bad choice of search direction p[k] would be a direction orthogonal to d[k], since
then p[k] would be tangent to the level set of φ at u[k], φ(u) could only increase
along this line, and so u[k+1] = u[k]. Note that in this case

αk =
d[k] · p[k]

p[k] ·Ap[k]
=

0
p[k] ·Ap[k]

= 0.

But as long as p[k] · d[k] 6= 0, the new point u[k+1] will be different from u[k] and
will satisfy φ(u[k+1]) < φ(u[k]).
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u0

u1

u�

Figure 4.6. The CG algorithm converges in two iterations from any initial guess
u0 in the case m D 2. The two search directions used are A-conjugate.

this line, and so uk D uk�1. But as long as pT
k�1

rk�1 ¤ 0, the new point uk will be
different from uk�1 and will satisfy �.uk / < �.uk�1/.

Intuitively we might suppose that the best choice for pk�1 would be the direction
of steepest descent rk�1, but Figure 4.4(b) illustrates that this does not always give rapid
convergence. A much better choice, if we could arrange it, would be to choose the direction
pk�1 to point directly toward the solution u�, as shown in Figure 4.6. Then minimizing �
along this line would give uk D u�, in which case we would have converged.

Since we don’t know u�, it seems there is little hope of determining this direction in
general. But in two dimensions (m D 2) it turns out that we can take an arbitrary initial
guess u0 and initial search direction p0 and then from the next iterate u1 determine the
direction p1 that leads directly to the solution, as illustrated in Figure 4.6. Once we obtain
u1 by the formulas (4.39) and (4.40), we choose the next search direction p1 to be a vector
satisfying

pT
1 Ap0 D 0: (4.41)

Below we will show that this is the optimal search direction, leading directly to u2 D u�.
When m > 2 we generally cannot converge in two iterations, but we will see below that it
is possible to define an algorithm that converges in at most m iterations to the exact solution
(in exact arithmetic, at least).

Two vectors p0 and p1 that satisfy (4.41) are said to be A-conjugate. For any SPD
matrix A, the vectors u and v are A-conjugate if the inner product of u with Av is zero,
uT Av D 0. If A D I , this just means the vectors are orthogonal, and A-conjugacy is a
natural generalization of the notion of orthogonality. This concept is easily explained in
terms of the ellipses that are level sets of the function �.u/ defined by (4.25). Consider

The two search directions used are A-conjugate
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The A-conjugate search direction (continued)

Once we obtain u[1] by the formulas

u[k+1] = u[k] + αkp[k] and αk =
d[k] · p[k]

p[k] ·Ap[k]
,

we choose the next search direction p[1] to be a vector satisfying

p[1] ·Ap[0] = 0.

Two vectors p[0] and p[1] that satisfy the above equation are said to be A-conjugate.
For any SPD matrix A, the vectors u and v are A-conjugate if the inner product of
u with Av is zero, i.e., u ·Av = 0.
If A = I, this just means the vectors are orthogonal, and A-conjugate is a natural
generalization of the notion of orthogonality.
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The conjugate-gradient algorithm

Given u[0] ∈ Rm,
p[0] := d[0] := −(Au[0] − f ).

Find u[1] and p[1], u[2] and p[2], · · · , such that for k = 0, 1, · · · ,

u[k+1] = u[k] + αkp[k],

αk =
d[k] · p[k]

p[k] ·Ap[k]
(optimal step length),

p[k+1] = d[k+1] + βkp[k] (for next step),

where

βk =
−d[k+1] ·Ap[k]

p[k] ·Ap[k]
,

d[k] = −(Au[k] − f ) (= f −Au[k], residual).
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Some properties

The vectors generated in the CG algorithm have the following properties, provided
d[k] 6= 0 (if d[k] = 0, then we have converged):

p[k] is A-conjugate to all the previous search directions, i.e., p[k] ·Ap[j] = 0 for
j = 0, 1, · · · , k− 1.
Partial proof: Note that

βk =
−d[k+1] ·Ap[k]

p[k] ·Ap[k]
⇒ (d[k+1] + βkp[k]) ·Ap[k] = 0⇒ p[k+1] ·Ap[k] = 0.

The residual d[k] is orthogonal to all previous residuals, d[k] · d[j] = 0 for
j = 0, 1, · · · , k− 1.
The following three subspaces of Rm are identical:

span(p[0], p[1], p[2], · · · , p[k−1]),

span(d[0], Ad[0], A2d[0], · · · , Ak−1d[0]),

span(Ae[0], A2e[0], A3e[0], · · · , Ake[0]) (e[0] := u[0] − u∗).
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Convergence of conjugate gradient

There exists k ≤ m such that Au[k] = f .
Define the A-norm by

‖e‖A :=
√

e>Ae.

Then we have that after k steps of the conjugate gradient method, the iteration
error e[k] := u[k] − u∗ satisfies the bound

‖e[k]‖A ≤ 2

(√
κ2(A)− 1√
κ2(A) + 1

)k

‖e[0]‖A

Thus, for a given ε > 0, to satisfy ‖u[k] − u∗‖A ≤ ε‖u[0] − u∗‖A, it is sufficient to
choose k such that

2

(√
κ2(A)− 1√
κ2(A) + 1

)k

≤ ε.

That is
k ≥ 1

2

√
κ2(A) log

2
ε
= O(

√
κ2(A)).

In many numerical methods for elliptic PDEs, κ2(A) = O(h−2).
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