MA 7007：Numerical Solution of Differential Equations I Initial Value Problem for ODEs

Suh－Yuh Yang（楊肅暗）

Department of Mathematics，National Central University Jhongli District，Taoyuan City 32001，Taiwan

E－mail：syyang＠math．ncu．edu．tw
Website：http：／／www．math．ncu．eud．tw／～syyang／

Introduction

－Initial－value problem（IVP）：find $u(t)$ such that

$$
\begin{equation*}
u^{\prime}(t)=f(u(t), t) \quad \text { for } t>t_{0} \tag{*}
\end{equation*}
$$

with some initial data $u\left(t_{0}\right)=\eta$ ．We will often assume $t_{0}=0$ for simplicity．
－In general，$\left({ }^{*}\right)$ may represent a system of ODEs，i．e．，for $t>t_{0}$ ，

$$
\begin{aligned}
u_{1}^{\prime}(t) & =f_{1}\left(u_{1}, u_{2}, \cdots, u_{s}, t\right) \\
u_{2}^{\prime}(t) & =f_{2}\left(u_{1}, u_{2}, \cdots, u_{s}, t\right) \\
& \vdots \\
u_{s}^{\prime}(t) & =f_{s}\left(u_{1}, u_{2}, \cdots, u_{s}, t\right) .
\end{aligned}
$$

－A higher－order ODE can be converted to a first－order system．

Example

Consider the IVP for the ODE，

$$
v^{\prime \prime \prime}(t)=v^{\prime}(t) v(t)-2 t\left(v^{\prime \prime}(t)\right)^{2} \quad \text { for } t>0
$$

with three initial values $v(0)=\eta_{1}, v^{\prime}(0)=\eta_{2}$ ，and $v^{\prime \prime}(0)=\eta_{3}$ ．
Let $u_{1}(t):=v(t), u_{2}(t):=v^{\prime}(t)$ ，and $u_{3}(t):=v^{\prime \prime}(t)$ ．Then we have

$$
\begin{array}{ll}
u_{1}^{\prime}(t) & =u_{2}(t), \\
u_{2}^{\prime}(t) & =u_{3}(t), \\
u_{3}^{\prime}(t) & =u_{1}(t) u_{2}(t)-2 t u_{3}^{2}(t),
\end{array} t>0,
$$

with the initial conditions $u_{1}(0)=\eta_{1}, u_{2}(0)=\eta_{2}$ ，and $u_{3}(0)=\eta_{3}$ ．

Example：An autonomous first－order system

We also may define $u_{4}(t)=t$ such that $u_{4}^{\prime}(t)=1$ and $u_{4}(0)=0$ ．Then the system takes the form

$$
u^{\prime}(t)=f(u(t)), \quad t>0
$$

with

$$
f(u)=\left[\begin{array}{c}
u_{2} \\
u_{3} \\
u_{1} u_{2}-2 u_{4} u_{3}^{2} \\
1
\end{array}\right] \quad \text { and } \quad u(0)=\left[\begin{array}{c}
\eta_{1} \\
\eta_{2} \\
\eta_{3} \\
0
\end{array}\right]
$$

The equation is said to be autonomous since the $\operatorname{RHS} f$ does not depend explicitly on time t ．

Linear ordinary differential equations

－The system of ODEs（ ${ }^{*}$ ）is linear if

$$
f(u, t)=A(t) u+g(t)
$$

where $A(t) \in \mathbb{R}^{s \times s}$ and $g(t) \in \mathbb{R}^{s}$ ．
－An important special case is the constant coefficient linear system

$$
u^{\prime}(t)=A u(t)+g(t),
$$

where $A \in \mathbb{R}^{s \times s}$ is a constant matrix．If $g(t) \equiv 0$ ，then the equation is homogeneous．The solution to the homogeneous system $u^{\prime}(t)=A u(t)$ with $u\left(t_{0}\right)=\eta$ is

$$
u(t)=e^{A\left(t-t_{0}\right)} \eta
$$

where the matrix exponential is defined as in Appendix D．

Duhamel＇s principle

－If $g(t) \not \equiv 0$ ，then the solution to the constant coefficient system can be written as

$$
u(t)=e^{A\left(t-t_{0}\right)} \eta+\int_{t_{0}}^{t} e^{A(t-\tau)} g(\tau) d \tau
$$

This is known as Duhamel＇s principle．
－In particular，if A is constant and so is $g(t) \equiv g \in \mathbb{R}^{s}$ ．Then the solution reduces to

$$
u(t)=e^{A\left(t-t_{0}\right)} \eta+\left(\int_{t_{0}}^{t} e^{A(t-\tau)} d \tau\right) g .
$$

This integral can be computed by expressing $e^{A(t-\tau)}$ as a Taylor series and then integrating term by term．We obtain

$$
\int_{t_{0}}^{t} e^{A(t-\tau)} d \tau=A^{-1}\left(e^{A\left(t-t_{0}\right)}-I\right)
$$

and so

$$
u(t)=e^{A\left(t-t_{0}\right)} \eta+A^{-1}\left(e^{A\left(t-t_{0}\right)}-I\right) g .
$$

Existence and uniqueness of solutions

We consider the following IVP $(s=1)$ ，

$$
u^{\prime}(t)=f(u(t), t), \quad t>t_{0} \quad \text { and } \quad u\left(t_{0}\right)=\eta .
$$

－We say that $f(u, t)$ is Lipschitz continuous in u over the domain

$$
\mathcal{D}:=\left\{(u, t):|u-\eta| \leq a, t_{0} \leq t \leq t_{1}\right\}
$$

if there exists some constant $L \geq 0$ so that

$$
\left|f(u, t)-f\left(u^{*}, t\right)\right| \leq L\left|u-u^{*}\right|
$$

for all (u, t) and $\left(u^{*}, t\right)$ in \mathcal{D} ．
－If f is Lipschitz continuous over the region \mathcal{D} then there is a unique solution to the IVP at least up to time $T^{*}=\min \left\{t_{1}, t_{0}+a / S\right\}$ ，where

$$
S=\max _{(u, t) \in \mathcal{D}}|f(u, t)| .
$$

Example

Consider the following IVP

$$
u^{\prime}(t)=(u(t))^{2}, \quad u(0)=\eta>0 .
$$

－Let $f(u)=u^{2}$ ．By MVT，$\exists \xi$ between u_{1} and u_{2} such that

$$
f\left(u_{1}\right)-f\left(u_{2}\right)=\frac{\partial f(\xi)}{\partial u}\left(u_{1}-u_{2}\right) \Longrightarrow\left|u_{1}^{2}-u_{2}^{2}\right| \leq 2(\eta+a)\left|u_{1}-u_{2}\right| .
$$

Then $f(u)$ is Lipschitz continuous in u over any finite interval $|u-\eta| \leq a$ with $L=2(\eta+a)$ ．
－Since $|f(u)| \leq(\eta+a)^{2}:=S$ ．Then the theorem guarantees that a unique solution exists at least up to time $a /(\eta+a)^{2}$ ．Since a is arbitrary，we can set $a=\eta$ and so there is a solution at least up to time $1 /(4 \eta)$ ．
－In fact，the unique solution is given by

$$
u(t)=\frac{1}{\eta^{-1}-t} .
$$

Note that $u(t) \rightarrow \infty$ as $t \rightarrow 1 / \eta$ and there is no solution beyond time $1 / \eta$ ．

Non－uniqueness

If f is continuous but not Lipschitz continuous，we may have more than one solution， e．g．，

$$
u^{\prime}(t)=\sqrt{u(t)}, \quad u(0)=0
$$

The function $f(u)=\sqrt{u}$ is not Lipschitz continuous near $u=0$ since $f^{\prime}(u)=1 /(2 \sqrt{u}) \rightarrow \infty$ as $u \rightarrow 0^{+}$．

Note that this IVP does not have a unique solution．In fact it has two distinct solutions：

$$
u(t) \equiv 0 \quad \text { and } u(t)=\frac{1}{4} t^{2}
$$

Systems of equations：$s>1$

－We say that function $f(u, t)$ is Lipschitz continuous in u in some norm $\|\cdot\|$ if there exists some constant $L \geq 0$ such that

$$
\left\|f(u, t)-f\left(u^{*}, t\right)\right\| \leq L\left\|u-u^{*}\right\|
$$

for all (u, t) and $\left(u^{*}, t\right)$ in some domain

$$
\mathcal{D}:=\left\{(u, t):\|u-\eta\| \leq a, t_{0} \leq t \leq t_{1}\right\} .
$$

－By the equivalence of finite－dimensional norms，if f is Lipschitz continuous in one norm then it is Lipschitz continuous in any other norm，although the Lipschitz constant may depend on the norm chosen．
－The theorems on existence and uniqueness carry over to systems of equations．

Example

Consider the pendulum problem

$$
\theta^{\prime \prime}(t)=-\sin (\theta(t))
$$

Let $v(t):=\theta^{\prime}(t)$ ，then it can be rewritten as a first－order system of two equations： $u=(\theta, v)^{\top}, f(u)=(v,-\sin (\theta))^{\top}$ and

$$
u^{\prime}(t)=f(u)
$$

Consider the max－norm．In view of

$$
\begin{aligned}
\left|v-v^{*}\right| & \leq\left\|u-u^{*}\right\|_{\infty}, \\
\left|\sin (\theta)-\sin \left(\theta^{*}\right)\right| \leq\left|\theta-\theta^{*}\right| & \leq\left\|u-u^{*}\right\|_{\infty},
\end{aligned}
$$

we have the Lipschitz continuity of f with $L=1$ ，

$$
\left\|f(u)-f\left(u^{*}\right)\right\|_{\infty} \leq\left\|u-u^{*}\right\|_{\infty}
$$

Basic numerical methods

For simplicity，we consider the following autonomous IVP：

$$
u^{\prime}(t)=f(u(t)) \quad \text { for } t>0 \text { and } u(0)=\eta .
$$

Let k be the time step，so $t_{n}=n k$ for $n \geq 0$ ．Let U^{n} represent an approximation to $u\left(t_{n}\right)$ and $U^{0}:=\eta$ ．
－Euler＇s method（also called forward Euler）：

$$
\frac{U^{n+1}-U^{n}}{k}=f\left(U^{n}\right), \quad n=0,1, \cdots
$$

or $U^{n+1}=U^{n}+k f\left(U^{n}\right)$ ，which is a time－marching method．
－Backward Euler method：

$$
\frac{U^{n+1}-U^{n}}{k}=f\left(U^{n+1}\right), \quad n=0,1, \cdots
$$

－Trapezoidal method：averaging the forward and backward Euler methods

$$
\frac{U^{n+1}-U^{n}}{k}=\frac{1}{2}\left(f\left(U^{n}\right)+f\left(U^{n+1}\right)\right), \quad n=0,1, \cdots
$$

Remarks

－The backward Euler and trapezoidal methods give an equation that must be solved for U^{n+1} ，they are called implicit methods and can be solved by using e．g．，Newton＇s method．
－The forward Euler method is an explicit method．
－The trapezoidal method is second order accurate，whereas the Euler methods are only first order accurate．
－The above methods are all one－step methods，meaning that U^{n+1} is determined from U^{n} alone and previous values are not needed．

Multistep methods

One way to get higher order accuracy is to use a multistep method that involves other previous values．
－Midpoint method（the leapfrog method）：Using the approximation

$$
\frac{u(t+k)-u(t-k)}{2 k}=u^{\prime}(t)+\frac{1}{6} k^{2} u^{\prime \prime \prime}(t)+O\left(k^{3}\right)
$$

yields a second order accurate explicit 2－step method

$$
\frac{U^{n+1}-U^{n-1}}{2 k}=f\left(U^{n}\right)
$$

or

$$
U^{n+1}=U^{n-1}+2 k f\left(U^{n}\right)
$$

－Backward differentiation formula（BDF）methods：Using the approximation

$$
\frac{3 u(t+k)-4 u(t)+u(t-k)}{2 k}=u^{\prime}(t+k)-\frac{1}{3} k^{2} u^{\prime \prime \prime}(t+k)+\cdots
$$

yields a second order accurate implicit 2－step method

$$
\frac{3 U^{n+1}-4 U^{n}+U^{n-1}}{2 k}=f\left(U^{n+1}\right)
$$

Local truncation error

As usual，the local truncation error（LTE）of，for example，the midpoint method

$$
\frac{U^{n+1}-U^{n-1}}{2 k}=f\left(U^{n}\right)
$$

is defined by

$$
\begin{aligned}
\tau^{n} & =\frac{u\left(t_{n+1}\right)-u\left(t_{n-1}\right)}{2 k}-f\left(u\left(t_{n}\right)\right) \\
& =\left(u^{\prime}\left(t_{n}\right)+\frac{1}{6} k^{2} u^{\prime \prime \prime}\left(t_{n}\right)+O\left(k^{3}\right)\right)-u^{\prime}\left(t_{n}\right) \\
& =\frac{1}{6} k^{2} u^{\prime \prime \prime}\left(t_{n}\right)+O\left(k^{3}\right)
\end{aligned}
$$

So，the local truncation error is $O\left(k^{2}\right)$ and we say that methods is second order accurate，although it is not yet clear that the global error will have this behavior（we need some form of stability to guarantee it）．

One－step errors

Based on the form $U^{n+1}=U^{n-1}+2 k f\left(U^{n}\right)$ ，we define

$$
\mathcal{L}^{n}:=u\left(t_{n+1}\right)-u\left(t_{n-1}\right)-2 k f\left(u\left(t_{n}\right)\right)=\frac{1}{3} k^{3} u^{\prime \prime \prime}\left(t_{n}\right)+O\left(k^{4}\right)=2 k \tau^{n} .
$$

－Using this alternative definition，many standard results in ODE theory sat that a p th order accurate method should have an LTE that is $O\left(k^{p+1}\right)$ ．
－But here we will call \mathcal{L}^{n} the one－step error，since this can be viewed as the error that would be introduced in one time step if the past values U^{n}, U^{n-1}, \ldots were all taken to be the exact values from $u(t)$ ．
－For example，in the midpoint method，we suppose that $U^{n}=u\left(t_{n}\right)$ and $U^{n-1}=u\left(t_{n-1}\right)$ ，then

$$
\begin{gathered}
U^{n+1}=u\left(t_{n-1}\right)+2 k f\left(u\left(t_{n}\right)\right) \\
\Longrightarrow u\left(t_{n+1}\right)-U^{n+1}=u\left(t_{n+1}\right)-u\left(t_{n-1}\right)-2 k f\left(u\left(t_{n}\right)\right)=\mathcal{L}^{n}=O\left(k^{3}\right) .
\end{gathered}
$$

We see that in one step the error introduced is $O\left(k^{3}\right)$ ．
－If we want to compute an approximation to the true solution $u(T)$ at some fixed time T ，we need to take T / k time steps．Then a rough estimate of the global error at time T is taking sum of all one－step errors，

$$
\mathrm{GE} \approx O\left(k^{3}\right) \times T / k=O\left(k^{2}\right)
$$

Taylor series methods

Consider the IVP：$u^{\prime}(t)=f(u(t), t)$ for $t>0$ with the initial condition $u(0)=\eta$ ．
－By the Taylor series expansion，we have

$$
u\left(t_{n+1}\right)=u\left(t_{n}\right)+k u^{\prime}\left(t_{n}\right)+\frac{1}{2} k^{2} u^{\prime \prime}\left(t_{n}\right)+\cdots .
$$

If we drop all terms of order k^{2} and higher，we obtain

$$
u\left(t_{n+1}\right)=u\left(t_{n}\right)+k f\left(u\left(t_{n}\right), t_{n}\right)+O\left(k^{2}\right) .
$$

This suggests the forward Euler method

$$
U^{n+1}=U^{n}+k f\left(U^{n}, t_{n}\right)
$$

and the one－step error is $O\left(k^{2}\right)$ ．
－A Taylor series method of higher accuracy can be derived by keeping more terms in the Taylor series．If we keep the first $p+1$ terms of the Taylor series expansion

$$
u\left(t_{n+1}\right) \approx u\left(t_{n}\right)+k u^{\prime}\left(t_{n}\right)+\frac{1}{2} k^{2} u^{\prime \prime}\left(t_{n}\right)+\cdots+\frac{1}{p!} k^{p} u^{(p)}\left(t_{n}\right)
$$

then we obtain a p th order accurate method．

Taylor series methods（continued）

The problem is that we are given only

$$
u^{\prime}(t)=f(u(t), t)
$$

and we must compute the higher derivatives by repeated differentiation of this function．For example，we can compute

$$
\begin{aligned}
u^{\prime \prime}(t) & =f_{u}(u(t), t) u^{\prime}(t)+f_{t}(u(t), t) \\
& =f_{u}(u(t), t) f(u(t), t)+f_{t}(u(t), t) .
\end{aligned}
$$

Example．Consider the equation $u^{\prime}(t)=t^{2} \sin (u(t))$ ．Then we can compute

$$
\begin{aligned}
u^{\prime \prime}(t) & =2 t \sin (u(t))+t^{2} \cos (u(t)) u^{\prime}(t) \\
& =2 t \sin (u(t))+t^{4} \cos (u(t)) \sin (u(t)) .
\end{aligned}
$$

Hence，a second order method is given by

$$
U^{n+1}=U^{n}+k t_{n}^{2} \sin \left(U^{n}\right)+\frac{1}{2} k^{2}\left(2 t_{n} \sin \left(U^{n}\right)+t_{n}^{4} \cos \left(U^{n}\right) \sin \left(U^{n}\right)\right)
$$

Advantages and disadvantages of Taylor－series methods

－Disadvantages：
－The method depends on repeated differentiation of the differential equation，unless we intend to use only the method of order 1．Thus，$f(u, t)$ must have partial derivatives of sufficient high order in the region where are solving the problem．Such an assumption is not necessary for the existence of a solution．
－The various derivatives formula need to be programmed．
－Advantages：
－Conceptual simplicity．
－Potential for high precision：If we get e．g． 10 derivatives of $u(t)$ ，then the method is order 10 （i．e．，terms up to and including the one involving k^{10} ）．

Basic concepts of Runge－Kutta methods

We wish to approximate the following nonautonomous IVP：

$$
\left\{\begin{array}{l}
u^{\prime}(t)=f(u(t), t), \\
u(0)=\eta .
\end{array}\right.
$$

－From the Taylor theorem，we have

$$
u(t+k)=u(t)+k u^{\prime}(t)+\frac{k^{2}}{2!} u^{\prime \prime}(t)+O\left(k^{3}\right) .
$$

－By the chain rule，we obtain

$$
\left\{\begin{aligned}
u^{\prime \prime}(t) & =f_{t}+f_{u} u^{\prime}=f_{t}+f_{u} f, \\
u^{\prime \prime \prime}(t) & =f_{t t}+f_{t u} f+\left(f_{t}+f_{u} f\right) f_{u}+f\left(f_{u t}+f_{u u} f\right)
\end{aligned}\right.
$$

Basic concepts of Runge－Kutta methods（continued）

－In the Taylor expansion，we have

$$
\begin{aligned}
u(t+k) & =u(t)+k f(u, t)+\frac{k^{2}}{2}\left(f_{t}(u, t)+f_{u}(u, t) f(u, t)\right)+O\left(k^{3}\right) \\
& \left.=u(t)+\frac{k}{2} f(u, t)+\frac{k}{2}\left[f(u, t)+k f_{t}(u, t)+k f_{u}(u, t) f(u, t)\right)\right]+O\left(k^{3}\right) \\
& =u(t)+\frac{k}{2} f(u, t)+\frac{k}{2} f(u+k f(u, t), t+k)+O\left(k^{3}\right)
\end{aligned}
$$

－Note that the term in the square blankets above can be obtained by the Taylor expansion in two variables

$$
f(u+k f(t, u), t+k)=f(u, t)+k f_{t}(u, t)+k f(u, t) f_{u}(u, t)+O\left(k^{2}\right) .
$$

A second－order Runge－Kutta method

－Therefore，we have

$$
u(t+k)=u(t)+\frac{k}{2} f(u, t)+\frac{k}{2} f(u+k f(u, t), t+k)+O\left(k^{3}\right) .
$$

Then a 2nd－order Runge－Kutta（RK）method is given by

$$
U^{n+1}=U^{n}+\frac{k}{2}\left(F_{1}+F_{2}\right)
$$

where

$$
F_{1}=f\left(U^{n}, t_{n}\right) \quad \text { and } \quad F_{2}=f\left(U^{n}+k F_{1}, t_{n}+k\right) .
$$

－It is a multistage（two－stage）explicit method．
－It is known as Heun＇s method．

The general second－order Runge－Kutta method

－In general，the 2 nd order RK method needs

$$
\begin{aligned}
u(t+k) & =u(t)+\omega_{1} k f+\omega_{2} k f(u+\beta k f, t+\alpha k)+O\left(k^{3}\right) \\
& =u(t)+\omega_{1} k f+\omega_{2} k\left(f+\alpha k f_{t}+\beta k f f_{u}\right)+O\left(k^{3}\right) .
\end{aligned}
$$

－Compare with

$$
u(t+k)=u(t)+k f+\frac{k^{2}}{2}\left(f_{t}+f_{u} f\right)+O\left(k^{3}\right)
$$

we have

$$
\begin{aligned}
\omega_{1}+\omega_{2} & =1 \\
\omega_{2} \alpha & =1 / 2 \\
\omega_{2} \beta & =1 / 2 .
\end{aligned}
$$

The modified Euler method

－The previous method（Heun＇s method）is obtained by setting

$$
\left\{\begin{array}{l}
\omega_{1}=\omega_{2}=1 / 2 \\
\alpha=\beta=1 .
\end{array}\right.
$$

－Setting

$$
\left\{\begin{array}{l}
\omega_{1}=0 \\
\omega_{2}=1 \\
\alpha=\beta=1 / 2
\end{array}\right.
$$

we have

$$
u(t+k)=u(t)+k f\left(u+\frac{k}{2} f(u, t), t+\frac{1}{2} k\right)+O\left(k^{3}\right)
$$

Then we obtain the following modified Euler method：

$$
U^{n+1}=U^{n}+k F_{2}
$$

where $F_{1}=f\left(U^{n}, t_{n}\right)$ and $F_{2}=f\left(U^{n}+\frac{k}{2} F_{1}, t_{n}+\frac{1}{2} k\right)$ ．

Fourth－order RK methods

－The derivations of higher order RK methods are tedious．However，the formulas are rather elegant and easily programmed once they have been derived．
－The most popular 4th order RK is：

$$
U^{n+1}=U^{n}+\frac{k}{6}\left(F_{1}+2 F_{2}+2 F_{3}+F_{4}\right)
$$

where

$$
\left\{\begin{aligned}
F_{1} & =f\left(U^{n}, t_{n}\right) \\
F_{2} & =f\left(U^{n}+\frac{k}{2} F_{1}, t_{n}+\frac{k}{2}\right), \\
F_{3} & =f\left(U^{n}+\frac{k}{2} F_{2}, t_{n}+\frac{k}{2}\right), \\
F_{4} & =f\left(U^{n}+k F_{3}, t_{n}+k\right)
\end{aligned}\right.
$$

