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Vector space R”

@ Vector space R": the set of n-dimensional column vectors with
real components endowed with the following component-wise
addition operator and the scalar-vector product,

X1 [y ] [x1 + 11
X2 Y2 X2 + Y2
x+y=|.|+|.| = . , VxyeR",
Xn | Yn | [ Xn + Yn
[x1] [Axy
X2 )\Xz
Ax=A | . = |, VxeR,AeR
| X | | Axy

@ Standard/canonical basis of R": {e1,e;,-- - ,e,}, where
e :=(0,--- ,O,\l/_/O,'- -,0)" fori=1,2,--- ,n.
ith
@e:=(1,1,---,1)Tand 0:= (0,0,--- ,0) " are all ones and all
zeros column vectors, respectively.
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Important subsets of R"

@ Nonnegative orthant
R = {(x1,x2,- - ,xn)T cx;p > 0Vi}.
@ Positive orthant
R, = {(xy, %0, %) x>0V i}
@ Closed line segment: let x,y € R”,
oyl ={(1-a)x+ay:ac]01]}.
Note: [x,x] = {x}.
@ Open line segment: let x,y € R”,
(xvy) ={1—-a)x+ay:aec(0,1)}.
Note: (x,x) = @.
@ Unit-simplex

Ay = {x=(x1,x, - ,xn)T ER":x1,xp,-++ ,xp > 0,e x = 1}.
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Vector space R"*"

@ The set of all real-valued matrices of order m X n is denoted by
Rm Xn .

@ The n X n identity matrix is denoted by I,,.
@ The m X n zero matrix is denoted by 0, x5.

@ We will frequently omit the subscripts of these matrices when
the dimensions will be clear from the context.
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Inner product on R"

@ Definition: An inner product on R” isamap (-,-) : R” x R" —
R with the following properties:
(1) symmetry: (x,y) = (y,x),Vx,y € R"
(2) additivity: (x,y +z) = (x,y) + (x,z),Vx,y,z € R".
(3) homogeneity: (Ax,y) = A{x,y), VA € Rand x,y € R™.
(4) positive definiteness: (x,x) > 0,V x € R",
and (x,x) = 0if and only if x = 0.

@ Example 1: (dot product) The standard inner product is defined by
n
(x,y) = xTy = in}/i/ VxyeR
i=1

@ Example 2: (weighted dot product) Let w € R" , . Then the
following weighted dot product is also an inner product:

n
(X Y)g = Zwixiyi, VxyeR
i=1

1
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Vector norms

@ Definition: A norm || - || on R" is a function || - || : R” -+ R
satisfying the following:
(1) nonnegativity: ||x|| >0,V x € R", and
||lx|| = 0if and only if x = 0.
(2) positive homogeneity: ||Ax| = |Al||x]|, V A € R and x € R".
(3) triangle inequality: ||x +yl|| < ||x|| + |ly]l, ¥ x,y € R™.

@ The associated norm with an inner product: One natural way
to generate a norm on R” is to take any inner product (-, -) on
R" and define the associated norm

x|l := 1/ (x,x), VxeR"

If the inner product is the dot product (i.e., the standard inner
product), then the associated norm is the so-called Euclidean

norm or £y-norm: -
||x]]2 = Hinz, VxeR"
i=1

By default, the underlying norn on R” is I - |2 and the subscript 2
will be frequently omitted.
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{,-norms: p > 1

@ The {y)-norm, p > 1, is defined by
n 1/p
Il = (.Z; xiw)  VxeR"
i=
Note: explain why || - || 1 is not a norm!
@ The /-norm is defined by
|¥]|[0 = max |x;, Vx € R",
i=1,2,---,n
and unsurprisingly, it can be shown that

lelleo = Tl

@ The Cauchy-Schwarz inequality: For any x,y € R", we have

[ y)I(= "y < llxll2lly 2.
Equality is satisfied if and only if x and y are linearly dependent.
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Matrix norms

@ Definition: A norm || - || on R"*" is a function || - || : R"*" — R
satisfying the following:
(1) nonnegativity: ||A|| >0,V A € R™*", and
|A|| = 0if and only if A = 0.
(2) positive homogeneity: ||AA|| = |A]||A]l, ¥V A € R and
A € R™",
(3) triangle inequality: ||[A + B|| < ||A]| + ||B||, VA, B € R™*".
@ Induced norms: Given a matrix A € R"™*" and two norms || - |4
and | - ||, on R"” and R™, respectively, the induced matrix norm
|Al|p is defined by

|Allzp := max{||Ax||, : x € R" and ||x||, < 1}.
An induced norm is a norm.
@ It can be shown that for any x € R", we have

[Ax]ly < [|Allapll%]a-

@ We refer to the matrix-norm || - |, as the (a,b)-norm. When
a = b, we will simply refer to it as an a-norm.
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Matrix norms (cont’d)

@ spectral norm or {;-norm: If || - || = || - ||, = || - ||2, the induced
(2,2)-norm of a matrix A = (4;) € R™*" is the maximum
singular value of A,

HAH2 = = )\max(ATA) =: Umax(A)-
This norm is called the spectral norm or /»-norm. Note that the
eigenvalues A; i =1,2,--- ,n) of AT A are real and nonnegative.
@ /(1-norm: If || - |, = |- |lp = || - |1, the induced (1, 1)-norm of
A = (Aj) € R™" is given by
Al = A
H Hl | j %ax Z| 1]‘
@ lomorm: If || |la= |- |ls = || - ||co, the 1nduced (00, 00)-norm of

A = (Aj) € R™" is given by
Al = Al = _mox 314

@ Frobenius norm: A non-induced norm is defmed by

m n 1/2
HAHF = (Z ZA%) , VA= (Aij) e R™<",

i=1j=1
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Eigenvalues and eigenvectors

@ Definition: Let A € R™*". Then a nonzero vector v € C" is called an
eigenvector of A if there exists a A € C (the complex field) for which
Av = Av. The scalar A is called the eigenvalue corresponding to the
eigenvector v.

Note: 30 #v € C"s.t. Av = Av = Av— Ao = (A— Al)v = 0.
= det(A—AI) =0.

@ fA(A) := det(A — AI) is called the characteristic polynomial of A.
fA) = (=1)"A"+ (=1)"! (an + - - 4 @) A" - det(A).
:=trace(A)
@ In general, real-valued matrices can have complex eigenvalues,
but it is well known that all the eigenvalues of symmetric matrices

are real. The eigenvalues of a symmetric matrix A € R"*" are
denoted by

Al (A) > )\2(A> > > Aqul(A) > )\n(A)
N—— N———
::/\maX(A) ::/\min(A>
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The spectral decomposition (factorization) theorem

The spectral decomposition theorem: Let A € R™™" be a symmetric
matrix. Then there exists an orthogonal matrix U € R™", U'U = UU "
= I, and a diagonal matrix D = diag(dq,dy, - - - ,dy) for which

U'AU =D.

@ The columns of the matrix U in the factorization constitute an
orthonormal basis comprised of eigenvectors of A and the
diagonal elements of D are the corresponding eigenvalues.

@ A direct result is that the trace and the determinant of A can be
expressed via its eigenvalues:

n n
Ai(A) and detA =]]A;(A).

i=1 i=1

Hint: fp(A) = det(D — AI) = det(U (A — AI)U)

= det(U") det(A — AI) det(U) = det(A — AI) = f4 (7).

trace A =
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Rayleigh quotient

@ Definition: For a symmetric matrix A € R"*", the Rayleigh
quotient is defined by
x ' Ax
RA(X) = WI Vx#O
@ Lower and upper bounds on the Rayleigh quotient:
Let A € R™" be symmetric. Then

Amin(A) <Ry (x) < Amax(A), Vx #0.
Proof.

(i) By the spectral decomposition theorem, 3 an orthogonal
U € R™" such that U' AU = D, D = diag(dy,do, - - - ,dy),
and )\max(A) =dy>dy>--->dy = Amin(A)-

(if) Making the change of variables x = Uy, we have

x"Ax  y'u'Auy y' Dy i}

maX —— = max=————~ = = max ———— .
x20 (x> yr0 Uyl 120 yTuTUy V0 Ly
(Ez]/,)

i z

Sinced; < d; Vi, Ry (x) < =dy = Amax(4). O
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The minimal and maximal eigenvalues

Let A € R™*" be symmetric. Then
° ;n;g R (%) = Amin(A), and the eigenvectors of A corresponding to

the minimal eigenvalue are minimizers.

Proof: Let v be an eigenvector corresponding to the minimal eigenvalue of A.
Then . 5
v'Av  Amin(A) (9|
Rp(0) = = =55 = Amin(4),
A el o2 m

which combined with the lower bound on the Rayleigh quotient lead to the
desired result. [J

° max R4 (%) = Amax(A), and the eigenvectors of A corresponding to
x#

the maximal eigenvalue are maximizers.

Proof: Let w be an eigenvector corresponding to the maximal eigenvalue of A.
Then

w Aw  Amax(A)||w]?
Ry (w) = = = Amax(A),
I T T
which combined with the upper bound on the Rayleigh quotient lead to the

desired result. [

Suh-Yuh Yang ( % ), Math. Dept., NC 7 MA 5037/Chapter 1: Mathematical Preliminaries — 13/20



Basic topological concepts

@ Open ball: The open ball with center ¢ € R" and radius r > 0 is
defined by
B(e,r) =={x e R": ||x—c|| <r}.
The open ball B(c,r) is also referred to as a neighborhood of c.
@ Close ball: The close ball with center ¢ € R” and radius > 0 is

defined by
Ble,r] :={x e R" : [|[x —c|| <r}.
@ Interior point: Given a set U C R", a point ¢ € U is an interior
point of U if there exists r > 0 for which B(c,7) C U.
@ Interior: The set of all interior points of a given set U is called
the interior of the set and is denoted by int(U), i.e.,
int(U) := {x € U: B(x,r) C U for some r > 0}.
Examples:
int(R"%) =R ,.
int(B[c,r]) = B(c,r), forc € R"and r € R .
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Open set, closed set, and boundary point

@ Open set: U C R” is an open set if and only if for every x € U
there exists v > 0 such that B(x,r) C U.

Examples: IR", open balls, positive orthant R”} , are open sets.
Note: (1) A union of any number of open sets is an open set.
(2) The intersection of a finite number of open sets is open.

@ Closed set: A set U C R" is said to be closed if for every
sequence of points {x;} C U satisfying x; — x* as k — oo, it
holds that x* € U.

Examples: closed ball B¢, 7], closed lines segments, nonnegative
orthant R" , unit simplex A, R" are closed sets.

@ Proposition: Let f be a continuous function defined over a closed set
S C IR™. Then for any a € R the following sets are closed:

Lev(f,a) = {xe€S:f(x) <a},
Con(f,a) = {xeS:f(x)=a}l.
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Boundedness and compactness

@ Boundary point: Given a set U C R", a boundary point of U is a
point x € R” satisfying the following: any neighborhood of x
contains at least one point in U and at least one point in U°,

ie,Vr>0,B(x,r)NU# @and B(x,r) N U° # 2.
@ Boundary of U: The set of all boundary points of a set U is
called the boundary of U and is denoted by bd(U).
Examples: bd(B(c,r)) = bd(B[c,7]) = {x e R" : ||x — ¢|| = r}.
@ Closure of U: The closure of a set U C IR" is defined to be the
smallest closed set containing U and denoted by cl(U), i.e.,
cd(U) :==n{T:UCT, Tisclosed}.
Notes: (1) The closure set is indeed a closed set as an intersection of
closed sets. (2) cl(U) = UUbd(U).
@ Boundedness: A set U C R" is called bounded if 3 M > 0 s.t.
U C B(0,M).

@ Compactness: A set U C R" is called compact if it is closed and
bounded.
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Differentiability

@ Directional derivative: Let f be a real-valued function defined
onasetS C R". Letx € int(S) and let 0 # d € R". If

LSl )~ f(2)
t—0 t

exists, then it is called the directional derivative of f at x along
the direction d and is denoted by f'(x; d).

Note that here we do not assume that d is a unit vector ||d|| = 1.

@ Partial derivatives: Fori =1,2,-- - ,n, the directional derivative
of f at x along the direction e; is called the ith partial derivative

Y (x)

and is denoted by T x),1.e.,
O ) i F 1) ),
ax; t—0 t
@ The gradient of f at x is defined as

Vi) = (L, L), L)

oxq dx7 " Oxy,
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Continuous differentiability

@ Definition: A function f defined on an open set U C IR” is called
continuously differentiable over U if all the partial derivatives
exist and are continuous on U.

@ Definition: A function f is said to be continuously differentiable
over a set C if there exists an open set U containing C on which
the function is also defined and continuously differentiable.

@ Let f be continuously differentiable over U. Then we have
fllx;d) =Vf(x)'d, VxelU, dcR"
@ Proposition: Let f : U — R be defined on an open set U C R™.
Assume that f is continuously differentiable over U. Then
_ _ T
oo FO0d) () — VF(x) T
d-0 14|

or equivalently,
fly) =f(x) + Vf(x) " (y —x) +o(lly — ),

where o(-) : Ry — R satisfies @ —0ast— 0F.

=0, Vxel,
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Twice continuous differentiability

@ Definition: A function f defined on an open set U C IR” is called
twice continuously differentiable over U if all the second order
partial derivatives exist and are continuous over U.

@ Proposition: Let f : U — R be defined on an open set U C R". If f is
twice continuously differentiable, then for any i # jand any x € U,

0%f 0%
ax,»ax/- X = axj-axi

@ The Hessian of f at a point x € U is the n X n matrix

(x).

Ci o P
a7 () 9x10%7 () - X1, (x)
2T ik O
sz(x) - 9201 (x) ax% (X) 9x20xy x)
ol o 2f
9x;,0x1 (x) 9x,,0x7 (x) - 912 (%)
If f is twice continuously differentiable over U, the Hessian matrix is

symmetric.
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Linear and quadratic approximation theorems

There are two main approximation results which are consequences of
Taylor’s approximation theorem:
@ Linear approximation theorem: Let f : U — R be a twice
continuously differentiable function over an open set U C IR", and let
x € U, r > 0satisfy B(x,r) C U. Then for any y € B(x,r), there
exists & € (x,y) such that

Fly) = £+ TF )Ty —x) + 5y~ x) V(@) (y ).

© Quadratic approximation theorem: Lef f : U — R be a twice
continuously differentiable function over an open set U C IR", and let
x € U, r > 0satisfy B(x,r) C U. Then for any y € B(x,r),

fy) =) +Vf(x) " (y—x) + %(y*X)TVZf(X)(y*x) +o([ly —x|?).
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