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Vector space Rn

Vector space Rn: the set of n-dimensional column vectors with
real components endowed with the following component-wise
addition operator and the scalar-vector product,

x + y =


x1
x2
...

xn

+


y1
y2
...

yn

 :=


x1 + y1
x2 + y2

...
xn + yn

 , ∀ x, y ∈ Rn,

λx = λ


x1
x2
...

xn

 :=


λx1
λx2

...
λxn

 , ∀ x ∈ Rn, λ ∈ R.

Standard/canonical basis of Rn: {e1, e2, · · · , en}, where
ei := (0, · · · , 0, 1︸︷︷︸

ith

, 0, · · · , 0)> for i = 1, 2, · · · , n.

e := (1, 1, · · · , 1)> and 0 := (0, 0, · · · , 0)> are all ones and all
zeros column vectors, respectively.
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Important subsets of Rn

Nonnegative orthant

Rn
+ := {(x1, x2, · · · , xn)

> : xi ≥ 0 ∀ i}.

Positive orthant

Rn
++ := {(x1, x2, · · · , xn)

> : xi > 0 ∀ i}.

Closed line segment: let x, y ∈ Rn,

[x, y] := {(1− α)x + αy : α ∈ [0, 1]}.
Note: [x, x] = {x}.
Open line segment: let x, y ∈ Rn,

(x, y) := {(1− α)x + αy : α ∈ (0, 1)}.
Note: (x, x) = ∅.

Unit-simplex

∆n := {x = (x1, x2, · · · , xn)
> ∈ Rn : x1, x2, · · · , xn ≥ 0, e>x = 1}.
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Vector space Rm×n

The set of all real-valued matrices of order m× n is denoted by
Rm×n.

The n× n identity matrix is denoted by In.

The m× n zero matrix is denoted by 0m×n.

We will frequently omit the subscripts of these matrices when
the dimensions will be clear from the context.
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Inner product on Rn

Definition: An inner product on Rn is a map 〈·, ·〉 : Rn ×Rn →
R with the following properties:
(1) symmetry: 〈x, y〉 = 〈y, x〉, ∀ x, y ∈ Rn.
(2) additivity: 〈x, y + z〉 = 〈x, y〉+ 〈x, z〉, ∀ x, y, z ∈ Rn.
(3) homogeneity: 〈λx, y〉 = λ〈x, y〉, ∀ λ ∈ R and x, y ∈ Rn.
(4) positive definiteness: 〈x, x〉 ≥ 0, ∀ x ∈ Rn,

and 〈x, x〉 = 0 if and only if x = 0.

Example 1: (dot product) The standard inner product is defined by

〈x, y〉 := x>y =
n

∑
i=1

xiyi, ∀ x, y ∈ Rn.

Example 2: (weighted dot product) Let w ∈ Rn
++. Then the

following weighted dot product is also an inner product:

〈x, y〉w :=
n

∑
i=1

wixiyi, ∀ x, y ∈ Rn.
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Vector norms

Definition: A norm ‖ · ‖ on Rn is a function ‖ · ‖ : Rn → R

satisfying the following:
(1) nonnegativity: ‖x‖ ≥ 0, ∀ x ∈ Rn, and
‖x‖ = 0 if and only if x = 0.

(2) positive homogeneity: ‖λx‖ = |λ|‖x‖, ∀ λ ∈ R and x ∈ Rn.
(3) triangle inequality: ‖x + y‖ ≤ ‖x‖+ ‖y‖, ∀ x, y ∈ Rn.

The associated norm with an inner product: One natural way
to generate a norm on Rn is to take any inner product 〈·, ·〉 on
Rn and define the associated norm

‖x‖ :=
√
〈x, x〉, ∀ x ∈ Rn.

If the inner product is the dot product (i.e., the standard inner
product), then the associated norm is the so-called Euclidean
norm or `2-norm:

‖x‖2 =

√
n

∑
i=1

x2
i , ∀ x ∈ Rn.

By default, the underlying norm on Rn is ‖ · ‖2 and the subscript 2
will be frequently omitted.

Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan MA 5037/Chapter 1: Mathematical Preliminaries – 6/20



`p-norms: p ≥ 1

The `p-norm, p ≥ 1, is defined by

‖x‖p =

(
n

∑
i=1
|xi|p

)1/p

, ∀ x ∈ Rn.

Note: explain why ‖ · ‖ 1
2

is not a norm!

The `∞-norm is defined by

‖x‖∞ = max
i=1,2,··· ,n

|xi|, ∀ x ∈ Rn,

and unsurprisingly, it can be shown that

‖x‖∞ = lim
p→∞
‖x‖p.

The Cauchy-Schwarz inequality: For any x, y ∈ Rn, we have

|〈x, y〉|(= |x>y|) ≤ ‖x‖2‖y‖2.

Equality is satisfied if and only if x and y are linearly dependent.
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Matrix norms

Definition: A norm ‖ · ‖ on Rm×n is a function ‖ · ‖ : Rm×n → R

satisfying the following:
(1) nonnegativity: ‖A‖ ≥ 0, ∀ A ∈ Rm×n, and
‖A‖ = 0 if and only if A = 0.

(2) positive homogeneity: ‖λA‖ = |λ|‖A‖, ∀ λ ∈ R and
A ∈ Rm×n.

(3) triangle inequality: ‖A + B‖ ≤ ‖A‖+ ‖B‖, ∀ A, B ∈ Rm×n.

Induced norms: Given a matrix A ∈ Rm×n and two norms ‖ · ‖a
and ‖ · ‖b on Rn and Rm, respectively, the induced matrix norm
‖A‖a,b is defined by

‖A‖a,b := max{‖Ax‖b : x ∈ Rn and ‖x‖a ≤ 1}.
An induced norm is a norm.

It can be shown that for any x ∈ Rn, we have

‖Ax‖b ≤ ‖A‖a,b‖x‖a.

We refer to the matrix-norm ‖ · ‖a,b as the (a, b)-norm. When
a = b, we will simply refer to it as an a-norm.
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Matrix norms (cont’d)

spectral norm or `2-norm: If ‖ · ‖a = ‖ · ‖b = ‖ · ‖2, the induced
(2, 2)-norm of a matrix A = (Aij) ∈ Rm×n is the maximum
singular value of A,

‖A‖2 = ‖A‖2,2 :=
√

λmax(A>A) =: σmax(A).
This norm is called the spectral norm or `2-norm. Note that the
eigenvalues λi (i = 1, 2, · · · , n) of A>A are real and nonnegative.

`1-norm: If ‖ · ‖a = ‖ · ‖b = ‖ · ‖1, the induced (1, 1)-norm of
A = (Aij) ∈ Rm×n is given by

‖A‖1 = ‖A‖1,1 := max
j=1,2,··· ,n

m

∑
i=1
|Aij|.

`∞-norm: If ‖ · ‖a = ‖ · ‖b = ‖ · ‖∞, the induced (∞, ∞)-norm of
A = (Aij) ∈ Rm×n is given by

‖A‖∞ = ‖A‖∞,∞ := max
i=1,2,··· ,m

n

∑
j=1
|Aij|.

Frobenius norm: A non-induced norm is defined by

‖A‖F :=
( m

∑
i=1

n

∑
j=1

A2
ij

)1/2
, ∀ A = (Aij) ∈ Rm×n.
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Eigenvalues and eigenvectors

Definition: Let A ∈ Rn×n. Then a nonzero vector v ∈ Cn is called an
eigenvector of A if there exists a λ ∈ C (the complex field) for which
Av = λv. The scalar λ is called the eigenvalue corresponding to the
eigenvector v.
Note: ∃ 0 6= v ∈ Cn s.t. Av = λv ⇒ Av− λIv = (A− λI)v = 0.
⇒ det(A− λI) = 0.

fA(λ) := det(A− λI) is called the characteristic polynomial of A.

fA(λ) = (−1)nλn +(−1)n−1 (a11 + · · ·+ ann)︸ ︷︷ ︸
:=trace(A)

λn−1 + · · ·+det(A).

In general, real-valued matrices can have complex eigenvalues,
but it is well known that all the eigenvalues of symmetric matrices
are real. The eigenvalues of a symmetric matrix A ∈ Rn×n are
denoted by

λ1(A)︸ ︷︷ ︸
:=λmax(A)

≥ λ2(A) ≥ · · · ≥ λn−1(A) ≥ λn(A)︸ ︷︷ ︸
:=λmin(A)
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The spectral decomposition (factorization) theorem

The spectral decomposition theorem: Let A ∈ Rn×n be a symmetric
matrix. Then there exists an orthogonal matrix U ∈ Rn×n, U>U = UU>

= I, and a diagonal matrix D = diag(d1, d2, · · · , dn) for which

U>AU = D.

The columns of the matrix U in the factorization constitute an
orthonormal basis comprised of eigenvectors of A and the
diagonal elements of D are the corresponding eigenvalues.

A direct result is that the trace and the determinant of A can be
expressed via its eigenvalues:

trace A =
n

∑
i=1

λi(A) and det A =
n

∏
i=1

λi(A).

Hint: fD(λ) = det(D− λI) = det(U>(A− λI)U)

= det(U>)det(A− λI)det(U) = det(A− λI) = fA(λ).
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Rayleigh quotient

Definition: For a symmetric matrix A ∈ Rn×n, the Rayleigh
quotient is defined by

RA(x) :=
x>Ax
‖x‖2 , ∀ x 6= 0.

Lower and upper bounds on the Rayleigh quotient:
Let A ∈ Rn×n be symmetric. Then

λmin(A) ≤ RA(x) ≤ λmax(A), ∀ x 6= 0.
Proof.

(i) By the spectral decomposition theorem, ∃ an orthogonal
U ∈ Rn×n such that U>AU = D, D = diag(d1, d2, · · · , dn),
and λmax(A) = d1 ≥ d2 ≥ · · · ≥ dn = λmin(A).

(ii) Making the change of variables x = Uy, we have

max
x 6=0

x>Ax
‖x‖2 = max

y 6=0
y>U>AUy
‖Uy‖2 = max

y 6=0
y>Dy

y>U>U︸ ︷︷ ︸ y
= max

y 6=0
∑i diy2

i

∑i y2
i

.

Since di ≤ d1 ∀ i, RA(x) ≤
d1(∑i y2

i )

∑i y2
i

= d1 = λmax(A). �
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The minimal and maximal eigenvalues

Let A ∈ Rn×n be symmetric. Then

min
x 6=0

RA(x) = λmin(A), and the eigenvectors of A corresponding to

the minimal eigenvalue are minimizers.
Proof: Let v be an eigenvector corresponding to the minimal eigenvalue of A.
Then

RA(v) =
v>Av
‖v‖2 =

λmin(A)‖v‖2

‖v‖2 = λmin(A),

which combined with the lower bound on the Rayleigh quotient lead to the
desired result. �

max
x 6=0

RA(x) = λmax(A), and the eigenvectors of A corresponding to

the maximal eigenvalue are maximizers.
Proof: Let w be an eigenvector corresponding to the maximal eigenvalue of A.
Then

RA(w) =
w>Aw
‖w‖2 =

λmax(A)‖w‖2

‖w‖2 = λmax(A),

which combined with the upper bound on the Rayleigh quotient lead to the
desired result. �
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Basic topological concepts

Open ball: The open ball with center c ∈ Rn and radius r > 0 is
defined by

B(c, r) := {x ∈ Rn : ‖x− c‖ < r}.
The open ball B(c, r) is also referred to as a neighborhood of c.

Close ball: The close ball with center c ∈ Rn and radius r > 0 is
defined by

B[c, r] := {x ∈ Rn : ‖x− c‖ ≤ r}.
Interior point: Given a set U ⊆ Rn, a point c ∈ U is an interior
point of U if there exists r > 0 for which B(c, r) ⊆ U.

Interior: The set of all interior points of a given set U is called
the interior of the set and is denoted by int(U), i.e.,

int(U) := {x ∈ U : B(x, r) ⊆ U for some r > 0}.
Examples:
int(Rn

+) = Rn
++.

int(B[c, r]) = B(c, r), for c ∈ Rn and r ∈ R++.
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Open set, closed set, and boundary point

Open set: U ⊆ Rn is an open set if and only if for every x ∈ U
there exists r > 0 such that B(x, r) ⊆ U.
Examples: Rn, open balls, positive orthant Rn

++ are open sets.
Note: (1) A union of any number of open sets is an open set.

(2) The intersection of a finite number of open sets is open.

Closed set: A set U ⊆ Rn is said to be closed if for every
sequence of points {xk} ⊆ U satisfying xk → x∗ as k→ ∞, it
holds that x∗ ∈ U.
Examples: closed ball B[c, r], closed lines segments, nonnegative
orthant Rn

+, unit simplex ∆n, Rn are closed sets.

Proposition: Let f be a continuous function defined over a closed set
S ⊆ Rn. Then for any α ∈ R the following sets are closed:

Lev(f , α) := {x ∈ S : f (x) ≤ α},
Con(f , α) := {x ∈ S : f (x) = α}.
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Boundedness and compactness

Boundary point: Given a set U ⊆ Rn, a boundary point of U is a
point x ∈ Rn satisfying the following: any neighborhood of x
contains at least one point in U and at least one point in Uc,
i.e., ∀ r > 0, B(x, r) ∩U 6= ∅ and B(x, r) ∩Uc 6= ∅.

Boundary of U: The set of all boundary points of a set U is
called the boundary of U and is denoted by bd(U).
Examples: bd(B(c, r)) = bd(B[c, r]) = {x ∈ Rn : ‖x− c‖ = r}.
Closure of U: The closure of a set U ⊆ Rn is defined to be the
smallest closed set containing U and denoted by cl(U), i.e.,

cl(U) := ∩{T : U ⊆ T, T is closed}.
Notes: (1) The closure set is indeed a closed set as an intersection of
closed sets. (2) cl(U) = U ∪ bd(U).

Boundedness: A set U ⊆ Rn is called bounded if ∃M > 0 s.t.
U ⊆ B(0, M).

Compactness: A set U ⊆ Rn is called compact if it is closed and
bounded.
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Differentiability

Directional derivative: Let f be a real-valued function defined
on a set S ⊆ Rn. Let x ∈ int(S) and let 0 6= d ∈ Rn. If

lim
t→0

f (x + td)− f (x)
t

exists, then it is called the directional derivative of f at x along
the direction d and is denoted by f ′(x; d).
Note that here we do not assume that d is a unit vector ‖d‖ = 1.

Partial derivatives: For i = 1, 2, · · · , n, the directional derivative
of f at x along the direction ei is called the ith partial derivative

and is denoted by
∂f
∂xi

(x), i.e.,

∂f
∂xi

(x) = lim
t→0

f (x + tei)− f (x)
t

.

The gradient of f at x is defined as

∇f (x) =
( ∂f

∂x1
(x),

∂f
∂x2

(x), · · · ,
∂f

∂xn
(x)
)>

.
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Continuous differentiability

Definition: A function f defined on an open set U ⊆ Rn is called
continuously differentiable over U if all the partial derivatives
exist and are continuous on U.

Definition: A function f is said to be continuously differentiable
over a set C if there exists an open set U containing C on which
the function is also defined and continuously differentiable.

Let f be continuously differentiable over U. Then we have

f ′(x; d) = ∇f (x)>d, ∀ x ∈ U, d ∈ Rn.

Proposition: Let f : U→ R be defined on an open set U ⊆ Rn.
Assume that f is continuously differentiable over U. Then

lim
d→0

f (x + d)− f (x)−∇f (x)>d
‖d‖ = 0, ∀ x ∈ U,

or equivalently,
f (y) = f (x) +∇f (x)>(y− x) + o(‖y− x‖),

where o(·) : R+ → R satisfies o(t)
t → 0 as t→ 0+.
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Twice continuous differentiability

Definition: A function f defined on an open set U ⊆ Rn is called
twice continuously differentiable over U if all the second order
partial derivatives exist and are continuous over U.

Proposition: Let f : U→ R be defined on an open set U ⊆ Rn. If f is
twice continuously differentiable, then for any i 6= j and any x ∈ U,

∂2f
∂xi∂xj

(x) =
∂2f

∂xj∂xi
(x).

The Hessian of f at a point x ∈ U is the n× n matrix

∇2f (x) =



∂2f
∂x2

1
(x) ∂2f

∂x1∂x2
(x) · · · ∂2f

∂x1∂xn
(x)

∂2f
∂x2∂x1

(x) ∂2f
∂x2

2
(x) · · · ∂2f

∂x2∂xn
(x)

...
... · · ·

...
∂2f

∂xn∂x1
(x) ∂2f

∂xn∂x2
(x) · · · ∂2f

∂x2
n
(x)

 .

If f is twice continuously differentiable over U, the Hessian matrix is
symmetric.
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Linear and quadratic approximation theorems

There are two main approximation results which are consequences of
Taylor’s approximation theorem:

1 Linear approximation theorem: Let f : U→ R be a twice
continuously differentiable function over an open set U ⊆ Rn, and let
x ∈ U, r > 0 satisfy B(x, r) ⊆ U. Then for any y ∈ B(x, r), there
exists ξ ∈ (x, y) such that

f (y) = f (x)+∇f (x)>(y− x)+
1
2
(y− x)>∇2f (ξ)(y− x).

2 Quadratic approximation theorem: Let f : U→ R be a twice
continuously differentiable function over an open set U ⊆ Rn, and let
x ∈ U, r > 0 satisfy B(x, r) ⊆ U. Then for any y ∈ B(x, r),

f (y) = f (x)+∇f (x)>(y− x)+
1
2
(y− x)>∇2f (x)(y− x)+ o(‖y− x‖2).
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