MA 5037：Optimization Methods and Applications Chapter 1：Mathematical Preliminaries

Suh－Yuh Yang（楊肅暟）

Department of Mathematics，National Central University Jhongli District，Taoyuan City 32001，Taiwan
syyang＠math．ncu．edu．tw
http：／／www．math．ncu．edu．tw／～syyang／

Vector space \mathbb{R}^{n}

－Vector space \mathbb{R}^{n} ：the set of n－dimensional column vectors with real components endowed with the following component－wise addition operator and the scalar－vector product，

$$
\begin{aligned}
\boldsymbol{x}+\boldsymbol{y}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]+\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]:=\left[\begin{array}{c}
x_{1}+y_{1} \\
x_{2}+y_{2} \\
\vdots \\
x_{n}+y_{n}
\end{array}\right], \quad \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}, \\
\lambda \boldsymbol{x}=\lambda\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]:=\left[\begin{array}{c}
\lambda x_{1} \\
\lambda x_{2} \\
\vdots \\
\lambda x_{n}
\end{array}\right], \quad \forall \boldsymbol{x} \in \mathbb{R}^{n}, \lambda \in \mathbb{R} .
\end{aligned}
$$

－Standard／canonical basis of $\mathbb{R}^{n}:\left\{e_{1}, e_{2}, \cdots, e_{n}\right\}$ ，where $\boldsymbol{e}_{i}:=(0, \cdots, 0, \underbrace{1}_{i \text { th }}, 0, \cdots, 0)^{\top}$ for $i=1,2, \cdots, n$ ．
－$e:=(1,1, \cdots, 1)^{\top}$ and $\mathbf{0}:=(0,0, \cdots, 0)^{\top}$ are all ones and all zeros column vectors，respectively．

Important subsets of \mathbb{R}^{n}

－Nonnegative orthant

$$
\mathbb{R}_{+}^{n}:=\left\{\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{\top}: x_{i} \geq 0 \forall i\right\}
$$

－Positive orthant

$$
\mathbb{R}_{++}^{n}:=\left\{\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{\top}: x_{i}>0 \forall i\right\} .
$$

－Closed line segment：let $x, y \in \mathbb{R}^{n}$ ，

$$
[x, y]:=\{(1-\alpha) x+\alpha y: \alpha \in[0,1]\} .
$$

Note：$[x, x]=\{x\}$ ．
－Open line segment：let $x, y \in \mathbb{R}^{n}$ ，

$$
(x, y):=\{(1-\alpha) x+\alpha y: \alpha \in(0,1)\} .
$$

Note：$(x, x)=\varnothing$ ．
－Unit－simplex

$$
\Delta_{n}:=\left\{\boldsymbol{x}=\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{\top} \in \mathbb{R}^{n}: x_{1}, x_{2}, \cdots, x_{n} \geq 0, e^{\top} x=1\right\} .
$$

Vector space $\mathbb{R}^{m \times n}$

－The set of all real－valued matrices of order $m \times n$ is denoted by $\mathbb{R}^{m \times n}$ ．
－The $n \times n$ identity matrix is denoted by \boldsymbol{I}_{n} ．
－The $m \times n$ zero matrix is denoted by $\mathbf{0}_{m \times n}$ ．
－We will frequently omit the subscripts of these matrices when the dimensions will be clear from the context．

Inner product on \mathbb{R}^{n}

－Definition：An inner product on \mathbb{R}^{n} is a map $\langle\cdot, \cdot\rangle: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow$ \mathbb{R} with the following properties：
（1）symmetry：$\langle\boldsymbol{x}, \boldsymbol{y}\rangle=\langle\boldsymbol{y}, \boldsymbol{x}\rangle, \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$ ．
（2）additivity：$\langle\boldsymbol{x}, \boldsymbol{y}+\boldsymbol{z}\rangle=\langle\boldsymbol{x}, \boldsymbol{y}\rangle+\langle\boldsymbol{x}, \boldsymbol{z}\rangle, \forall x, y, z \in \mathbb{R}^{n}$ ．
（3）homogeneity：$\langle\lambda \boldsymbol{x}, \boldsymbol{y}\rangle=\lambda\langle\boldsymbol{x}, \boldsymbol{y}\rangle, \forall \lambda \in \mathbb{R}$ and $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$ ．
（4）positive definiteness：$\langle\boldsymbol{x}, \boldsymbol{x}\rangle \geq 0, \forall x \in \mathbb{R}^{n}$ ， and $\langle\boldsymbol{x}, \boldsymbol{x}\rangle=0$ if and only if $\boldsymbol{x}=\mathbf{0}$ ．
－Example 1：（dot product）The standard inner product is defined by

$$
\langle\boldsymbol{x}, \boldsymbol{y}\rangle:=\boldsymbol{x}^{\top} \boldsymbol{y}=\sum_{i=1}^{n} x_{i} y_{i}, \quad \forall x, y \in \mathbb{R}^{n}
$$

－Example 2：（weighted dot product）Let $\boldsymbol{w} \in \mathbb{R}_{++}^{n}$ ．Then the following weighted dot product is also an inner product：

$$
\langle\boldsymbol{x}, \boldsymbol{y}\rangle_{\boldsymbol{w}}:=\sum_{i=1}^{n} w_{i} x_{i} y_{i}, \quad \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}
$$

Vector norms

－Definition：A norm $\|\cdot\|$ on \mathbb{R}^{n} is a function $\|\cdot\|: \mathbb{R}^{n} \rightarrow \mathbb{R}$ satisfying the following：
（1）nonnegativity：$\|x\| \geq 0, \forall x \in \mathbb{R}^{n}$ ，and

$$
\|x\|=0 \text { if and only if } \boldsymbol{x}=\mathbf{0}
$$

（2）positive homogeneity：$\|\lambda x\|=|\lambda|\|x\|, \forall \lambda \in \mathbb{R}$ and $x \in \mathbb{R}^{n}$ ．
（3）triangle inequality：$\|\boldsymbol{x}+\boldsymbol{y}\| \leq\|\boldsymbol{x}\|+\|\boldsymbol{y}\|, \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$ ．
－The associated norm with an inner product：One natural way to generate a norm on \mathbb{R}^{n} is to take any inner product $\langle\cdot, \cdot\rangle$ on \mathbb{R}^{n} and define the associated norm

$$
\|x\|:=\sqrt{\langle x, x\rangle}, \quad \forall x \in \mathbb{R}^{n}
$$

If the inner product is the dot product（i．e．，the standard inner product），then the associated norm is the so－called Euclidean norm or ℓ_{2}－norm：

$$
\|x\|_{2}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}, \quad \forall x \in \mathbb{R}^{n}
$$

By default，the underlying norm on \mathbb{R}^{n} is $\|\cdot\|_{2}$ and the subscript 2 will be frequently omitted．
－The ℓ_{p}－norm，$p \geq 1$ ，is defined by

$$
\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}, \forall x \in \mathbb{R}^{n}
$$

Note：explain why $\|\cdot\|_{\frac{1}{2}}$ is not a norm！
－The ℓ_{∞}－norm is defined by

$$
\|x\|_{\infty}=\max _{i=1,2, \cdots, n}\left|x_{i}\right|, \forall x \in \mathbb{R}^{n}
$$

and unsurprisingly，it can be shown that

$$
\|x\|_{\infty}=\lim _{p \rightarrow \infty}\|x\|_{p} .
$$

－The Cauchy－Schwarz inequality：For any $x, y \in \mathbb{R}^{n}$ ，we have

$$
|\langle x, y\rangle|\left(=\left|x^{\top} y\right|\right) \leq\|x\|_{2}\|y\|_{2} .
$$

Equality is satisfied if and only if x and y are linearly dependent．

Matrix norms

－Definition：A norm $\|\cdot\|$ on $\mathbb{R}^{m \times n}$ is a function $\|\cdot\|: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ satisfying the following：
（1）nonnegativity：$\|A\| \geq 0, \forall A \in \mathbb{R}^{m \times n}$ ，and
$\|\boldsymbol{A}\|=0$ if and only if $\boldsymbol{A}=\mathbf{0}$ ．
（2）positive homogeneity：$\|\lambda A\|=|\lambda|\|A\|, \forall \lambda \in \mathbb{R}$ and

$$
A \in \mathbb{R}^{m \times n} .
$$

（3）triangle inequality：$\|\boldsymbol{A}+\boldsymbol{B}\| \leq\|\boldsymbol{A}\|+\|\boldsymbol{B}\|, \forall \boldsymbol{A}, \boldsymbol{B} \in \mathbb{R}^{m \times n}$ ．
－Induced norms：Given a matrix $A \in \mathbb{R}^{m \times n}$ and two norms $\|\cdot\|_{a}$ and $\|\cdot\|_{b}$ on \mathbb{R}^{n} and \mathbb{R}^{m} ，respectively，the induced matrix norm $\|A\|_{a, b}$ is defined by

$$
\|A\|_{a, b}:=\max \left\{\|A x\|_{b}: x \in \mathbb{R}^{n} \text { and }\|x\|_{a} \leq 1\right\}
$$

An induced norm is a norm．
－It can be shown that for any $x \in \mathbb{R}^{n}$ ，we have

$$
\|A x\|_{b} \leq\|A\|_{a, b}\|x\|_{a}
$$

－We refer to the matrix－norm $\|\cdot\|_{a, b}$ as the (a, b)－norm．When $a=b$ ，we will simply refer to it as an a－norm．

Matrix norms（cont＇d）

－spectral norm or ℓ_{2}－norm：If $\|\cdot\|_{a}=\|\cdot\|_{b}=\|\cdot\|_{2}$ ，the induced $(2,2)$－norm of a matrix $\boldsymbol{A}=\left(A_{i j}\right) \in \mathbb{R}^{m \times n}$ is the maximum singular value of A ，

$$
\|A\|_{2}=\|A\|_{2,2}:=\sqrt{\lambda_{\max }\left(\boldsymbol{A}^{\top} A\right)}=: \sigma_{\max }(\boldsymbol{A})
$$

This norm is called the spectral norm or ℓ_{2}－norm．Note that the eigenvalues $\lambda_{i}(i=1,2, \cdots, n)$ of $\boldsymbol{A}^{\top} \boldsymbol{A}$ are real and nonnegative．
－ℓ_{1}－norm：If $\|\cdot\|_{a}=\|\cdot\|_{b}=\|\cdot\|_{1}$ ，the induced（1，1）－norm of $A=\left(A_{i j}\right) \in \mathbb{R}^{m \times n}$ is given by

$$
\|\boldsymbol{A}\|_{1}=\|\boldsymbol{A}\|_{1,1}:=\max _{j=1,2, \cdots, n} \sum_{i=1}^{m}\left|A_{i j}\right| .
$$

－ℓ_{∞}－norm：If $\|\cdot\|_{a}=\|\cdot\|_{b}=\|\cdot\|_{\infty}$ ，the induced (∞, ∞)－norm of $A=\left(A_{i j}\right) \in \mathbb{R}^{m \times n}$ is given by

$$
\|\boldsymbol{A}\|_{\infty}=\|\boldsymbol{A}\|_{\infty, \infty}:=\max _{i=1,2, \cdots, m} \sum_{j=1}^{n}\left|A_{i j}\right| .
$$

－Frobenius norm：A non－induced norm is defined by

$$
\|A\|_{F}:=\left(\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j}^{2}\right)^{1 / 2}, \quad \forall A=\left(A_{i j}\right) \in \mathbb{R}^{m \times n}
$$

Eigenvalues and eigenvectors

－Definition：Let $A \in \mathbb{R}^{n \times n}$ ．Then a nonzero vector $v \in \mathbb{C}^{n}$ is called an eigenvector of \boldsymbol{A} if there exists a $\lambda \in \mathbb{C}$（the complex field）for which $A v=\lambda v$ ．The scalar λ is called the eigenvalue corresponding to the eigenvector v ．
Note：$\exists \mathbf{0} \neq v \in \mathbb{C}^{n}$ s．t．$A v=\lambda v \Rightarrow A v-\lambda I v=(A-\lambda I) v=\mathbf{0}$ ． $\Rightarrow \operatorname{det}(A-\lambda I)=0$ ．
－$f_{A}(\lambda):=\operatorname{det}(\boldsymbol{A}-\lambda I)$ is called the characteristic polynomial of \boldsymbol{A} ．

$$
f_{\boldsymbol{A}}(\lambda)=(-1)^{n} \lambda^{n}+(-1)^{n-1} \underbrace{\left(a_{11}+\cdots+a_{n n}\right)}_{:=\operatorname{trace}(\boldsymbol{A})} \lambda^{n-1}+\cdots+\operatorname{det}(\boldsymbol{A}) .
$$

－In general，real－valued matrices can have complex eigenvalues， but it is well known that all the eigenvalues of symmetric matrices are real．The eigenvalues of a symmetric matrix $A \in \mathbb{R}^{n \times n}$ are denoted by

$$
\underbrace{\lambda_{1}(\boldsymbol{A})}_{:=\lambda_{\max }(\boldsymbol{A})} \geq \lambda_{2}(\boldsymbol{A}) \geq \cdots \geq \lambda_{n-1}(\boldsymbol{A}) \geq \underbrace{\lambda_{n}(\boldsymbol{A})}_{:=\lambda_{\min }(\boldsymbol{A})}
$$

The spectral decomposition（factorization）theorem

The spectral decomposition theorem：Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix．Then there exists an orthogonal matrix $\boldsymbol{U} \in \mathbb{R}^{n \times n}, \boldsymbol{U}^{\top} \boldsymbol{U}=\boldsymbol{U} \boldsymbol{U}^{\top}$ $=\boldsymbol{I}$ ，and a diagonal matrix $\boldsymbol{D}=\operatorname{diag}\left(d_{1}, d_{2}, \cdots, d_{n}\right)$ for which

$$
U^{\top} A U=D .
$$

－The columns of the matrix \boldsymbol{U} in the factorization constitute an orthonormal basis comprised of eigenvectors of A and the diagonal elements of \boldsymbol{D} are the corresponding eigenvalues．
－A direct result is that the trace and the determinant of A can be expressed via its eigenvalues：

$$
\operatorname{trace} A=\sum_{i=1}^{n} \lambda_{i}(A) \quad \text { and } \quad \operatorname{det} A=\prod_{i=1}^{n} \lambda_{i}(A)
$$

Hint：$\quad f_{\boldsymbol{D}}(\lambda)=\operatorname{det}(\boldsymbol{D}-\lambda \boldsymbol{I})=\operatorname{det}\left(\boldsymbol{U}^{\top}(\boldsymbol{A}-\lambda \boldsymbol{I}) \boldsymbol{U}\right)$
$=\operatorname{det}\left(\boldsymbol{U}^{\top}\right) \operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I}) \operatorname{det}(\boldsymbol{U})=\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I})=f_{\boldsymbol{A}}(\lambda)$ ．

Rayleigh quotient

－Definition：For a symmetric matrix $A \in \mathbb{R}^{n \times n}$ ，the Rayleigh quotient is defined by

$$
R_{A}(x):=\frac{x^{\top} A x}{\|x\|^{2}}, \quad \forall x \neq 0
$$

－Lower and upper bounds on the Rayleigh quotient：
Let $A \in \mathbb{R}^{n \times n}$ be symmetric．Then

$$
\lambda_{\min }(\boldsymbol{A}) \leq R_{\boldsymbol{A}}(\boldsymbol{x}) \leq \lambda_{\max }(\boldsymbol{A}), \quad \forall \boldsymbol{x} \neq \mathbf{0} .
$$

Proof．
（i）By the spectral decomposition theorem，\exists an orthogonal $\boldsymbol{U} \in \mathbb{R}^{n \times n}$ such that $\boldsymbol{U}^{\top} \boldsymbol{A} \boldsymbol{U}=\boldsymbol{D}, \boldsymbol{D}=\operatorname{diag}\left(d_{1}, d_{2}, \cdots, d_{n}\right)$ ， and $\lambda_{\text {max }}(\boldsymbol{A})=d_{1} \geq d_{2} \geq \cdots \geq d_{n}=\lambda_{\text {min }}(\boldsymbol{A})$ ．
（ii）Making the change of variables $x=U y$ ，we have

$$
\begin{aligned}
& \max _{\boldsymbol{x} \neq \mathbf{0}} \frac{\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x}}{\|\boldsymbol{x}\|^{2}}=\max _{\boldsymbol{y} \neq \boldsymbol{0}} \frac{\boldsymbol{y}^{\top} \boldsymbol{U}^{\top} \boldsymbol{A} \boldsymbol{U} \boldsymbol{y}}{\|\boldsymbol{U} \boldsymbol{y}\|^{2}}=\max _{\boldsymbol{y} \neq \mathbf{0}} \frac{\boldsymbol{y}^{\top} \boldsymbol{D} \boldsymbol{y}}{\boldsymbol{y}^{\top} \underbrace{\boldsymbol{U}^{\top} \boldsymbol{U} \boldsymbol{y}}}=\max _{\boldsymbol{y} \neq \mathbf{0}} \frac{\sum_{i} d_{i} y_{i}^{2}}{\sum_{i} y_{i}^{2}} . \\
& \text { Since } d_{i} \leq d_{1} \forall i, R_{\boldsymbol{A}}(\boldsymbol{x}) \leq \frac{d_{1}\left(\sum_{i} y_{i}^{2}\right)}{\sum_{i} y_{i}^{2}}=d_{1}=\lambda_{\max }(\boldsymbol{A}) .
\end{aligned}
$$

The minimal and maximal eigenvalues

Let $A \in \mathbb{R}^{n \times n}$ be symmetric．Then
－ $\min R_{A}(x)=\lambda_{\min }(A)$ ，and the eigenvectors of A corresponding to $x \neq 0$
the minimal eigenvalue are minimizers．
Proof：Let v be an eigenvector corresponding to the minimal eigenvalue of A ． Then

$$
R_{A}(\boldsymbol{v})=\frac{\boldsymbol{v}^{\top} \boldsymbol{A} \boldsymbol{v}}{\|\boldsymbol{v}\|^{2}}=\frac{\lambda_{\min }(\boldsymbol{A})\|\boldsymbol{v}\|^{2}}{\|\boldsymbol{v}\|^{2}}=\lambda_{\min }(\boldsymbol{A})
$$

which combined with the lower bound on the Rayleigh quotient lead to the desired result．
－ $\max _{\boldsymbol{x} \neq \boldsymbol{0}} R_{\boldsymbol{A}}(\boldsymbol{x})=\lambda_{\max }(\boldsymbol{A})$ ，and the eigenvectors of \boldsymbol{A} corresponding to
the maximal eigenvalue are maximizers．
Proof：Let w be an eigenvector corresponding to the maximal eigenvalue of A ． Then

$$
R_{\boldsymbol{A}}(\boldsymbol{w})=\frac{\boldsymbol{w}^{\top} \boldsymbol{A} \boldsymbol{w}}{\|\boldsymbol{w}\|^{2}}=\frac{\lambda_{\max }(\boldsymbol{A})\|\boldsymbol{w}\|^{2}}{\|\boldsymbol{w}\|^{2}}=\lambda_{\max }(\boldsymbol{A})
$$

which combined with the upper bound on the Rayleigh quotient lead to the desired result．

Basic topological concepts

－Open ball：The open ball with center $\boldsymbol{c} \in \mathbb{R}^{n}$ and radius $r>0$ is defined by

$$
B(\boldsymbol{c}, r):=\left\{\boldsymbol{x} \in \mathbb{R}^{n}:\|\boldsymbol{x}-\boldsymbol{c}\|<r\right\} .
$$

The open ball $B(c, r)$ is also referred to as a neighborhood of c ．
－Close ball：The close ball with center $\boldsymbol{c} \in \mathbb{R}^{n}$ and radius $r>0$ is defined by

$$
B[\boldsymbol{c}, r]:=\left\{\boldsymbol{x} \in \mathbb{R}^{n}:\|\boldsymbol{x}-\boldsymbol{c}\| \leq r\right\} .
$$

－Interior point：Given a set $U \subseteq \mathbb{R}^{n}$ ，a point $\boldsymbol{c} \in U$ is an interior point of U if there exists $r>0$ for which $B(c, r) \subseteq U$ ．
－Interior：The set of all interior points of a given set U is called the interior of the set and is denoted by $\operatorname{int}(U)$ ，i．e．，

$$
\operatorname{int}(U):=\{x \in U: B(x, r) \subseteq U \text { for some } r>0\}
$$

Examples：
$\operatorname{int}\left(\mathbb{R}_{+}^{n}\right)=\mathbb{R}_{++}^{n}$.
$\operatorname{int}(B[c, r])=B(c, r)$ ，for $c \in \mathbb{R}^{n}$ and $r \in \mathbb{R}_{++}$.

Open set，closed set，and boundary point

－Open set：$U \subseteq \mathbb{R}^{n}$ is an open set if and only if for every $x \in U$ there exists $r>0$ such that $B(x, r) \subseteq U$ ．
Examples： \mathbb{R}^{n} ，open balls，positive orthant \mathbb{R}_{++}^{n} are open sets．
Note：（1）A union of any number of open sets is an open set．
（2）The intersection of a finite number of open sets is open．
－Closed set：A set $U \subseteq \mathbb{R}^{n}$ is said to be closed if for every sequence of points $\left\{x_{k}\right\} \subseteq U$ satisfying $x_{k} \rightarrow x^{*}$ as $k \rightarrow \infty$ ，it holds that $x^{*} \in U$ ．
Examples：closed ball $B[c, r]$ ，closed lines segments，nonnegative orthant \mathbb{R}_{+}^{n} ，unit simplex $\Delta_{n}, \mathbb{R}^{n}$ are closed sets．
－Proposition：Let f be a continuous function defined over a closed set $S \subseteq \mathbb{R}^{n}$ ．Then for any $\alpha \in \mathbb{R}$ the following sets are closed：

$$
\begin{aligned}
\operatorname{Lev}(f, \alpha) & :=\{x \in S: f(x) \leq \alpha\}, \\
\operatorname{Con}(f, \alpha) & :=\{x \in S: f(x)=\alpha\} .
\end{aligned}
$$

Boundedness and compactness

－Boundary point：Given a set $U \subseteq \mathbb{R}^{n}$ ，a boundary point of U is a point $x \in \mathbb{R}^{n}$ satisfying the following：any neighborhood of x contains at least one point in U and at least one point in U^{c} ， i．e．，$\forall r>0, B(x, r) \cap U \neq \varnothing$ and $B(x, r) \cap U^{c} \neq \varnothing$ ．
－Boundary of U ：The set of all boundary points of a set U is called the boundary of U and is denoted by $b d(U)$ ．
Examples：$b d(B(c, r))=b d(B[c, r])=\left\{\boldsymbol{x} \in \mathbb{R}^{n}:\|\boldsymbol{x}-\boldsymbol{c}\|=r\right\}$ ．
－Closure of U ：The closure of a set $U \subseteq \mathbb{R}^{n}$ is defined to be the smallest closed set containing U and denoted by $c l(U)$ ，i．e．，

$$
c l(U):=\cap\{T: U \subseteq T, T \text { is closed }\} .
$$

Notes：（1）The closure set is indeed a closed set as an intersection of closed sets．（2）$c l(U)=U \cup b d(U)$ ．
－Boundedness：A set $U \subseteq \mathbb{R}^{n}$ is called bounded if $\exists M>0$ s．t． $U \subseteq B(\mathbf{0}, M)$ ．
－Compactness：A set $U \subseteq \mathbb{R}^{n}$ is called compact if it is closed and bounded．

Differentiability

－Directional derivative：Let f be a real－valued function defined on a set $S \subseteq \mathbb{R}^{n}$ ．Let $\boldsymbol{x} \in \operatorname{int}(S)$ and let $\mathbf{0} \neq \boldsymbol{d} \in \mathbb{R}^{n}$ ．If

$$
\lim _{t \rightarrow 0} \frac{f(x+t d)-f(x)}{t}
$$

exists，then it is called the directional derivative of f at x along the direction d and is denoted by $f^{\prime}(x ; d)$ ．
Note that here we do not assume that \boldsymbol{d} is a unit vector $\|\boldsymbol{d}\|=1$ ．
－Partial derivatives：For $i=1,2, \cdots, n$ ，the directional derivative of f at x along the direction \boldsymbol{e}_{i} is called the i th partial derivative and is denoted by $\frac{\partial f}{\partial x_{i}}(x)$ ，i．e．，

$$
\frac{\partial f}{\partial x_{i}}(x)=\lim _{t \rightarrow 0} \frac{f\left(x+t e_{i}\right)-f(x)}{t} .
$$

－The gradient of f at x is defined as

$$
\nabla f(x)=\left(\frac{\partial f}{\partial x_{1}}(x), \frac{\partial f}{\partial x_{2}}(x), \cdots, \frac{\partial f}{\partial x_{n}}(x)\right)^{\top} .
$$

Continuous differentiability

－Definition：A function f defined on an open set $U \subseteq \mathbb{R}^{n}$ is called continuously differentiable over U if all the partial derivatives exist and are continuous on U ．
－Definition：A function f is said to be continuously differentiable over a set C if there exists an open set U containing C on which the function is also defined and continuously differentiable．
－Let f be continuously differentiable over U ．Then we have

$$
f^{\prime}(x ; d)=\nabla f(x)^{\top} d, \quad \forall x \in U, d \in \mathbb{R}^{n} .
$$

－Proposition：Let $f: U \rightarrow \mathbb{R}$ be defined on an open set $U \subseteq \mathbb{R}^{n}$ ． Assume that f is continuously differentiable over U ．Then

$$
\lim _{\boldsymbol{d} \rightarrow \mathbf{0}} \frac{f(\boldsymbol{x}+\boldsymbol{d})-f(\boldsymbol{x})-\nabla f(\boldsymbol{x})^{\top} \boldsymbol{d}}{\|\boldsymbol{d}\|}=0, \quad \forall x \in U
$$

or equivalently，

$$
f(y)=f(x)+\nabla f(x)^{\top}(y-x)+o(\|y-x\|)
$$

where $o(\cdot): \mathbb{R}_{+} \rightarrow \mathbb{R}$ satisfies $\frac{o(t)}{t} \rightarrow 0$ as $t \rightarrow 0^{+}$．

Twice continuous differentiability

－Definition：A function f defined on an open set $U \subseteq \mathbb{R}^{n}$ is called twice continuously differentiable over U if all the second order partial derivatives exist and are continuous over U ．
－Proposition：Let $f: U \rightarrow \mathbb{R}$ be defined on an open set $U \subseteq \mathbb{R}^{n}$ ．If f is twice continuously differentiable，then for any $i \neq j$ and any $x \in U$ ，

$$
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x)=\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}(x) .
$$

－The Hessian of f at a point $x \in U$ is the $n \times n$ matrix

$$
\nabla^{2} f(x)=\left[\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x^{2}}(x) & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}(x) & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}}(x) \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}(x) & \frac{\partial^{2} f}{\partial x_{2}^{2}}(x) & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}}(x) \\
\vdots & \vdots & \cdots & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}}(x) & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}}(x) & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}(x)
\end{array}\right] .
$$

Iff is twice continuously differentiable over U ，the Hessian matrix is symmetric．

Linear and quadratic approximation theorems

There are two main approximation results which are consequences of Taylor＇s approximation theorem：
（1）Linear approximation theorem：Let $f: U \rightarrow \mathbb{R}$ be a twice continuously differentiable function over an open set $U \subseteq \mathbb{R}^{n}$ ，and let $x \in U, r>0$ satisfy $B(x, r) \subseteq U$ ．Then for any $y \in B(x, r)$ ，there exists $\boldsymbol{\xi} \in(x, y)$ such that

$$
f(y)=f(x)+\nabla f(x)^{\top}(y-x)+\frac{1}{2}(y-x)^{\top} \nabla^{2} f(\xi)(y-x) .
$$

（2）Quadratic approximation theorem：Let $f: U \rightarrow \mathbb{R}$ be a twice continuously differentiable function over an open set $U \subseteq \mathbb{R}^{n}$ ，and let $x \in U, r>0$ satisfy $B(x, r) \subseteq U$ ．Then for any $y \in B(x, r)$ ， $f(y)=f(x)+\nabla f(x)^{\top}(y-x)+\frac{1}{2}(y-x)^{\top} \nabla^{2} f(x)(y-x)+o\left(\|y-x\|^{2}\right)$.

