MA 5037：Optimization Methods and Applications Chapter 2：Unconstrained Optimization

Suh－Yuh Yang（楊肅暟）

Department of Mathematics，National Central University Jhongli District，Taoyuan City 32001，Taiwan
syyang＠math．ncu．edu．tw
http：／／www．math．ncu．edu．tw／～syyang／

Global minimum and global maximum

Definition：Let $f: S \rightarrow \mathbb{R}$ be a real－valued function defined on a nonempty set $S \subseteq \mathbb{R}^{n}$ ．
（1）$x^{*} \in S$ is called a global minimum point（minimizer）of f over S if $f\left(x^{*}\right) \leq f(x), \forall x \in S$ ．
（2）$x^{*} \in S$ is called a strict global minimum point（minimizer）of f over S if $f\left(x^{*}\right)<f(x), \forall x^{*} \neq x \in S$ ．
（3）$x^{*} \in S$ is called a global maximum point（maximizer）of f over S if $f(x) \leq f\left(x^{*}\right), \forall x \in S$ ．
（4）$x^{*} \in S$ is called a strict global maximum point（maximizer）of f over S if $f(x)<f\left(x^{*}\right), \forall x^{*} \neq x \in S$ ．
（5）The set S on which the optimization of f is performed is called the feasible set，and any point $x \in S$ is called a feasible solution．

Note：We will frequently omit the adjective＂global＂．

Minimal value and maximal value of f over S

Definition：Let $f: S \rightarrow \mathbb{R}$ be a real－valued function defined on a nonempty set $S \subseteq \mathbb{R}^{n}$ ．
（1）$x^{*} \in S$ is called a global optimum of f over S if it is either a global minimizer or a global maximizer．
（2）The minimal value of f over $S:=\inf \{f(x): x \in S\}$ ．If $x^{*} \in S$ is a global minimum of f over S ，then $\inf \{f(x): x \in S\}=f\left(x^{*}\right)$ ．
（3）The maximal value of f over $S:=\sup \{f(x): x \in S\}$ ．If $x^{*} \in S$ is a global maximum of f over S ，then $\sup \{f(x): x \in S\}=f\left(x^{*}\right)$ ．
（4）The set of all global minimizers of f over S is denoted by

$$
\operatorname{argmin}\{f(x): x \in S\} .
$$

The set of all global maximizers of f over S is denoted by

$$
\operatorname{argmax}\{f(x): x \in S\} .
$$

Example 1

Find the global minimum and maximum points of $f(x, y)=x+y$ over $S=B[\mathbf{0}, 1]=\left\{(x, y)^{\top}: x^{2}+y^{2} \leq 1\right\}$ ．
－By the Cauchy－Schwarz inequality，for any $(x, y)^{\top} \in S$ ，we have

$$
x+y=(x, y)\left[\begin{array}{l}
1 \\
1
\end{array}\right] \leq \sqrt{x^{2}+y^{2}} \sqrt{1^{2}+1^{2}} \leq \sqrt{2} .
$$

Therefore，the maximal value of f over S is upper bounded by $\sqrt{2}$ ．Note that $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \in S$ and $f\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)=\sqrt{2}$ and this is the only point that attains this value．Thus，$\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ is the strict global maximum point of f over S ，and the maximal value is $\sqrt{2}$ ．
－Similarly，we can show that $-(x+y) \leq \sqrt{2} \Longrightarrow x+y \geq-\sqrt{2}$ ． Thus，$\left(\frac{-1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right)$ is the strict global minimum point of f over S ， and the minimal value is $-\sqrt{2}$ ．

Example 2

Consider the following 2－D function defined over the entire space：

$$
f(x, y)=\frac{x+y}{x^{2}+y^{2}+1} .
$$

The contour and surface plots of the function are given below：

－ The global maximizer $=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ ，the maximal value $=\frac{1}{\sqrt{2}}$ ．
－The global minimizer $=\left(\frac{-1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right)$ ，the minimal value $=\frac{-1}{\sqrt{2}}$ ． The proof of these facts will be given later．

Definition：Let $f: S \rightarrow \mathbb{R}$ be a real－valued function defined on a nonempty set $S \subseteq \mathbb{R}^{n}$ ．
（1）$x^{*} \in S$ is called a local minimum point of f over S if $\exists r>0$ s．t． $f\left(x^{*}\right) \leq f(x), \forall x \in S \cap B\left(x^{*}, r\right)$ ．
（2）$x^{*} \in S$ is called a strict local minimum point of f over S if $\exists r>0$ s．t．$f\left(x^{*}\right)<f(x), \forall x^{*} \neq \boldsymbol{x} \in S \cap B\left(x^{*}, r\right)$ ．
（3）$x^{*} \in S$ is called a local maximum point of f over S if $\exists r>0$ s．t． $f(x) \leq f\left(x^{*}\right), \forall x \in S \cap B\left(x^{*}, r\right)$ ．
（4）$x^{*} \in S$ is called a strict local maximum point of f over S if $\exists r>0$ s．t．$f(x)<f\left(x^{*}\right), \forall x^{*} \neq x \in S \cap B\left(x^{*}, r\right)$ ．

Example

Consider the following 1－D function defined over $[-1,8]$ ：

$$
f(x)= \begin{cases}(x-1)^{2}+2, & -1 \leq x \leq 1 \\ 2, & 1 \leq x \leq 2 \\ -(x-2)^{2}+2, & 2 \leq x \leq 2.5 \\ (x-3)^{2}+1.5, & 2.5 \leq x \leq 4 \\ -(x-5)^{2}+3.5, & 4 \leq x \leq 6 \\ -2 x+14.5, & 6 \leq x \leq 6.5 \\ 2 x-11.5, & 6.5 \leq x \leq 8\end{cases}
$$

Classify each of the points $x=-1,1,2,3,5,6.5,8$ as strict／nonstrict， global／local，minimum／maximum points．

First order optimality condition for local optimum points

Theorem：Let $f: U \rightarrow \mathbb{R}$ be a function defined on a set $\varnothing \neq U \subseteq \mathbb{R}^{n}$ ． Assume that $x^{*} \in \operatorname{int}(U)$ is a local optimum point and that all the partial derivatives of f exist at x^{*} ．Then $\nabla f\left(x^{*}\right)=\mathbf{0}$ ．（Fermat＇s theorem in 1D） Proof：Given $1 \leq i \leq n$ ，we define the function $g_{i}(t):=f\left(\boldsymbol{x}^{*}+t \boldsymbol{e}_{i}\right)$ ． Then g_{i} is differentiable at $t=0$ and $g_{i}^{\prime}(0)=\nabla f\left(x^{*}\right) \cdot \boldsymbol{e}_{i}=\frac{\partial f}{\partial x_{i}}\left(x^{*}\right)$ ． Since x^{*} is a local optimum point of f ，it follows that $t=0$ is a local optimum of g_{i} ．By Fermat＇s theorem，we have $g_{i}^{\prime}(0)=0$ ，which implies that $\nabla f\left(x^{*}\right)=\mathbf{0}$ ．

Note：First order optimality condition is only a necessary condition． The points that gradient vanishes deserve an explicit definition．

Definition：Let $f: U \rightarrow \mathbb{R}$ be a function defined on a set $\varnothing \neq U \subseteq \mathbb{R}^{n}$ ． Assume that $x^{*} \in \operatorname{int}(U)$ and all the partial derivatives off exist over some neighborhood of x^{*} ．If $\nabla f\left(x^{*}\right)=\mathbf{0}$ ，then \boldsymbol{x}^{*} is called a stationary point of f ．

Positive definiteness

－Definition：A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is called positive semidefinite，denoted by $A \succeq 0$ ，if $x^{\top} A x \geq 0, \forall x \in \mathbb{R}^{n}$ ．
－Definition：A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is called positive definite， denoted by $A \succ 0$ ，if $x^{\top} A x>0, \forall 0 \neq x \in \mathbb{R}^{n}$ ．
－Example：Let $A:=\left[\begin{array}{cc}2 & -1 \\ -1 & 1\end{array}\right] . \forall x=\left(x_{1}, x_{2}\right)^{\top} \in \mathbb{R}^{2}$ ，we have

$$
\begin{aligned}
\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x} & =\left[x_{1}, x_{2}\right]\left[\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
& =2 x_{1}^{2}-2 x_{1} x_{2}+x_{2}^{2}=x_{1}^{2}+\left(x_{1}-x_{2}\right)^{2} \geq 0 .
\end{aligned}
$$

Since $x_{1}^{2}+\left(x_{1}-x_{2}\right)^{2}=0$ iff $x_{1}=x_{2}=0$ ，we have $\boldsymbol{A} \succ \mathbf{0}$ ．
－Example：Let $A:=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$ ．One can show that A is not positive definite．Hint：consider $\boldsymbol{x}=(1,-1)^{\top}$

The diagonal components of a positive definite matrix

－Let $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ and $\boldsymbol{A} \succ \mathbf{0}$ ．Then the diagonal elements of \boldsymbol{A} are positive．Proof：$A_{i i}=\boldsymbol{e}_{i}^{\top} \boldsymbol{A} \boldsymbol{e}_{i}>0, \forall i . \quad \square$
－Let $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ and $\boldsymbol{A} \succeq \mathbf{0}$ ．Then the diagonal elements of \boldsymbol{A} are nonnegative．
－Definition：$A \preceq 0$（negative semidefinite）iff $-\boldsymbol{A} \succeq 0$ ．
$A \prec \mathbf{0}$（negative definite）iff $-\boldsymbol{A} \succ \mathbf{0}$ ．
－Definition：A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is called indefinite if $\exists x, y \in \mathbb{R}^{n}$ s．t．$x^{\top} A x>0$ and $y^{\top} A y<0$ ．
－Let $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ and $\boldsymbol{A} \prec \mathbf{0}$ ．Then the diagonal elements of \boldsymbol{A} are negative．
－Let $A \in \mathbb{R}^{n \times n}$ and $\boldsymbol{A} \preceq \mathbf{0}$ ．Then the diagonal elements of \boldsymbol{A} are nonpositive．
－Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix．If there exist positive and negative elements in the diagonal of A ，then A is indefinite． Proof：Let i and j be the indices such that $A_{i i}>0$ and $A_{j j}<0$ ． Then $\boldsymbol{e}_{i}^{\top} \boldsymbol{A} \boldsymbol{e}_{i}=A_{i i}>0$ and $\boldsymbol{e}_{j}^{\top} \boldsymbol{A} \boldsymbol{e}_{j}=A_{j j}<0$ ．

Eigenvalue characterization theorem

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix．Then
－$A \succ \mathbf{0}$ if and only if all its eigenvalues are positive．
Proof：By the spectral decomposition theorem，there exist an orthogonal matrix U and a diagonal matrix $\boldsymbol{D}=\operatorname{diag}\left(d_{1}, \cdots, d_{n}\right)$ whose diagonal elements are the eigenvalues of \boldsymbol{A} ，for which $\boldsymbol{U}^{\top} \boldsymbol{A} \boldsymbol{U}=\boldsymbol{D}$ ．For any $\mathbf{0} \neq \boldsymbol{x} \in \mathbb{R}^{n}$ ，let $\boldsymbol{y}=\boldsymbol{U}^{-1} \boldsymbol{x}$ ．Then

$$
\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{y}^{\top} \boldsymbol{U}^{\top} \boldsymbol{A} \boldsymbol{U} \boldsymbol{y}=\boldsymbol{y}^{\top} \boldsymbol{D} \boldsymbol{y}=\sum_{i=1}^{n} d_{i} y_{i}^{2}
$$

Therefore， $\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x}>0$ for any $\boldsymbol{x} \neq \mathbf{0}$ if and only if $\sum_{i=1}^{n} d_{i} y_{i}^{2}>0$ for any $\boldsymbol{y} \neq \mathbf{0}$ ．
（1）For any given i ，let $\boldsymbol{y}=\boldsymbol{e}_{i}$ ，we have $d_{i}>0$ ，i．e．，all eigenvalues are positive．
（2）If $d_{i}>0 \forall i$ ，then $\sum_{i=1}^{n} d_{i} y_{i}^{2}>0$ for any $\boldsymbol{y} \neq \mathbf{0}$ ，i．e．， $\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x}>0$ for any $\boldsymbol{x} \neq \mathbf{0}$ ．
－$A \succeq \mathbf{0}$ if and only if all its eigenvalues are nonnegative．
－$A \prec 0$ if and only if all its eigenvalues are negative．
－ $\mathbf{A} \preceq \mathbf{0}$ if and only if all its eigenvalues are nonpositive．
－A is indefinite if and only if it has at least one positive eigenvalue and at least one negative eigenvalue．

Trace and determinant

－If $A \succ \mathbf{0}(\succeq \mathbf{0})$ ，then $\operatorname{Tr}(A)>(\geq) 0$ and $\operatorname{det}(A)>(\geq) 0$ ．
Key of the proof：The trace and determinant of a symmetric matrix are the sum and product of its eigenvalues respectively．
－Above two conditions are necessary and sufficient for 2×2 matrix A ．
Key of the proof：For any two real number $a, b \in \mathbb{R}$ ，one has $a, b>(\geq) 0$ if and only if $a+b>(\geq) 0$ and $a b>(\geq) 0$ ．
－Example：Consider the matrices

$$
A:=\left[\begin{array}{ll}
4 & 1 \\
1 & 3
\end{array}\right], \quad B:=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 0.1
\end{array}\right]
$$

（1） $\boldsymbol{A} \succ \mathbf{0}$ since $\operatorname{Tr}(\boldsymbol{A})=7>0$ and $\operatorname{det}(\boldsymbol{A})=11>0$ ．
（2）As for the matrix $\boldsymbol{B}, \operatorname{Tr}(\boldsymbol{B})=2.1>0$ and $\operatorname{det}(\boldsymbol{B})=0$ ．Even so， we cannot conclude that the matrix \boldsymbol{B} is positive semidefinite．In fact， \boldsymbol{B} is indefinite since

$$
\boldsymbol{e}_{1}^{\top} \boldsymbol{B} \boldsymbol{e}_{1}=1>0, \quad\left(\boldsymbol{e}_{2}-\boldsymbol{e}_{3}\right)^{\top} \boldsymbol{B}\left(\boldsymbol{e}_{2}-\boldsymbol{e}_{3}\right)=-0.9<0
$$

Positive semidefinite square root

Given $\boldsymbol{A} \succeq \mathbf{0}$ ，let $\boldsymbol{A}=\boldsymbol{U D} \boldsymbol{U}^{\top}$ be the spectral decomposition，where \boldsymbol{U} is an orthogonal matrix， $\boldsymbol{D}=\operatorname{diag}\left(d_{1}, d_{2}, \cdots, d_{n}\right)$ is a diagonal matrix whose diagonal elements are the eigenvalues of A ．Since $\boldsymbol{A} \succeq 0$ ，we have $d_{1}, d_{2}, \cdots, d_{n} \geq 0$ ．We define

$$
\boldsymbol{A}^{\frac{1}{2}}=\boldsymbol{U E} \boldsymbol{U}^{\top}, \quad \boldsymbol{E}=\operatorname{diag}\left(\sqrt{d_{1}}, \sqrt{d_{2}}, \cdots, \sqrt{d_{n}}\right)
$$

Obviously，

$$
A^{\frac{1}{2}} A^{\frac{1}{2}}=U E U^{\top} U E U^{\top}=U E E U^{\top}=U D U^{\top}=A
$$

The matrix $A^{\frac{1}{2}}$ is called the positive semidefinite square root．

Principal minors criterion

－Definition：Given an $n \times n$ matrix，the determinant of the upper left $k \times k$ submatrix is called the k th principal minor，denoted by $D_{k}(\boldsymbol{A})$ ．
－Example：The principal minors of the $k \times k$ matrix

$$
A:=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

are $D_{1}(A)=a_{11}$,

$$
D_{2}(\boldsymbol{A})=\operatorname{det}\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right], D_{3}(\boldsymbol{A})=\operatorname{det}\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] .
$$

－Principal minors criterion：Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix． Then $\boldsymbol{A} \succ \mathbf{0}$ if and only if $D_{1}(\boldsymbol{A})>0, D_{2}(\boldsymbol{A})>0, \cdots, D_{n}(\boldsymbol{A})>0$ ．

Note：It cannot be used for detecting positive semidefiniteness！

Diagonally dominant matrices

－Definition：Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix．Then
（1）A is called diagonally dominant if $\left|A_{i i}\right| \geq \sum_{j \neq i}\left|A_{i j}\right|, \forall i$ ．
（2）A is called strictly diagonally dominant if $\left|A_{i i}\right|>\sum_{j \neq i}\left|A_{i j}\right|, \forall i$ ．
－Positive semidefiniteness：Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix．
（1）If A is a diagonally dominant matrix whose diagonal elements are nonnegative．Then $\mathbf{A} \succeq \mathbf{0}$ ．
（2）If A is a strictly diagonally dominant matrix whose diagonal elements are positive．Then $\boldsymbol{A} \succ \mathbf{0}$ ．
Proof：（1）Suppose $\exists \lambda<0$ an eigenvalue of \boldsymbol{A} ．Let $\boldsymbol{u}=\left(u_{1}, \cdots, u_{n}\right)^{\top}$ be a corresponding eigenvector．Let $\left|u_{i}\right|=\max \left\{\left|u_{1}\right|, \cdots,\left|u_{n}\right|\right\}$ ．Then by $\boldsymbol{A} \boldsymbol{u}=\lambda \boldsymbol{u}$ ，

$$
\left|A_{i i}-\lambda\right|\left|u_{i}\right|=\left|\sum_{j \neq i} A_{i j} u_{j}\right| \leq\left(\sum_{j \neq i}\left|A_{i j}\right|\right)\left|u_{i}\right| \leq\left|A_{i i}\right|\left|u_{i}\right|
$$

implying $\left|A_{i i}-\lambda\right| \leq\left|A_{i i}\right|$ ．This is a contradiction．
（2）From（1），we know that $\boldsymbol{A} \succeq \mathbf{0}$ ．Thus，all we need to show is that \boldsymbol{A} has no zero eigenvalues．Suppose \exists eigenvalue $\lambda=0, \boldsymbol{u} \neq \mathbf{0}$ s．t． $\boldsymbol{A} \boldsymbol{u}=\mathbf{0}$ ．Similar to part （1），we obtain

$$
\left|A_{i i}\right|\left|u_{i}\right|=\left|\sum_{j \neq i} A_{i j} u_{j}\right| \leq\left(\sum_{j \neq i}\left|A_{i j}\right|\right)\left|u_{i}\right|<\left|A_{i i}\right|\left|u_{i}\right| .
$$

This is obviously a contradiction．

Necessary second order optimality condition

Theorem：Let $f: U \rightarrow \mathbb{R}$ be a function defined on an open set $U \subseteq \mathbb{R}^{n}$ ． Assume that f is twice continuously differentiable over U and that x^{*} is a stationary point．Then the following hold：
（1）If x^{*} is a local minimum point of f over U ，then $\nabla^{2} f\left(x^{*}\right) \succeq \mathbf{0}$ ．
（2）If x^{*} is a local maximum point of f over U ，then $\nabla^{2} f\left(x^{*}\right) \preceq \mathbf{0}$ ．
Proof：（1）Since x^{*} is a local minimum point，$\exists B\left(x^{*}, r\right) \subseteq U$ for which $f\left(x^{*}\right) \leq f(x)$ ， $\forall x \in B\left(x^{*}, r\right)$ ．Let $0 \neq \boldsymbol{d} \in \mathbb{R}^{n}$ ．For any $0<\alpha<\frac{r}{\|\boldsymbol{d}\|}$ ，we have $x_{\alpha}^{*}:=x^{*}+\alpha \boldsymbol{d} \in B\left(x^{*}, r\right)$ and $f\left(x_{\alpha}^{*}\right) \geq f\left(x^{*}\right)$ ．By the linear approximation theorem，$\exists \boldsymbol{z}_{\alpha} \in\left(x^{*}, x_{\alpha}^{*}\right)$ s．t．

$$
f\left(x_{\alpha}^{*}\right)-f\left(x^{*}\right)=\underbrace{\nabla f\left(x^{*}\right)^{\top}}_{0}\left(x_{\alpha}^{*}-x^{*}\right)+\frac{1}{2}\left(x_{\alpha}^{*}-x^{*}\right)^{\top} \nabla^{2} f\left(z_{\alpha}\right)\left(x_{\alpha}^{*}-x^{*}\right)=\frac{\alpha^{2}}{2} d^{\top} \nabla^{2} f\left(z_{\alpha}\right) d .
$$

Thus， $\boldsymbol{d}^{\top} \nabla^{2} f\left(z_{\alpha}\right) \boldsymbol{d} \geq 0, \forall \alpha \in\left(0, \frac{r}{\|\boldsymbol{d}\|}\right)$ ．Using the fact that $z_{\alpha} \rightarrow x^{*}$ as $\alpha \rightarrow 0^{+}$，and the continuity of the Hessian，we obtain $\boldsymbol{d}^{\top} \nabla^{2} f\left(x^{*}\right) \boldsymbol{d} \geq 0$ ．We conclude that $\nabla^{2} f\left(x^{*}\right) \succeq \mathbf{0}$ ． （2）Employing the result of part（1）on the function $-f$ ，we obtain（2）．

Sufficient second order optimality condition

Theorem：Let $f: U \rightarrow \mathbb{R}$ be a function defined on an open set $U \subseteq \mathbb{R}^{n}$ ． Assume that f is twice continuously differentiable over U and that x^{*} is a stationary point．Then the following hold：
（1）If $\nabla^{2} f\left(x^{*}\right) \succ 0$ ，then x^{*} is a strict local minimum point of f over U ．
（2）If $\nabla^{2} f\left(x^{*}\right) \prec 0$ ，then x^{*} is a strict local maximum point of f over U ．
Proof：（1）Since the Hessian is continuous，it follows that there exists a ball $B\left(x^{*}, r\right) \subseteq U$ s．t．$\nabla^{2} f(x) \succ \mathbf{0}, \forall x \in B\left(x^{*}, r\right)$（using the principal minors criterion on page 14 ）．By the linear approximation theorem，it follows that for any $x \in B\left(x^{*}, r\right), \exists z_{x} \in\left(x^{*}, x\right)$（hence $\left.z_{x} \in B\left(x^{*}, r\right)\right)$ s．t．

$$
f(x)-f\left(x^{*}\right)=\frac{1}{2}\left(x-x^{*}\right)^{\top} \nabla^{2} f(z x)\left(x-x^{*}\right) .
$$

Since $\nabla^{2} f(z x) \succ 0$ ，it follows that

$$
f(x)-f\left(x^{*}\right)>0, \quad \text { for } x \neq x^{*}
$$

That is，x^{*} is a strict local minimum point of f over U ．
（2）This part follows from part（1）by considering the function $-f$ ．

Sufficient condition for a saddle point

－Definition：Let $f: U \rightarrow \mathbb{R}$ be a function defined on an open set $U \subseteq \mathbb{R}^{n}$ ．Assume that f is continuously differentiable over U ．A stationary point x^{*} is called a saddle point off over U if it is neither a local minimum point nor a local maximum point of f over U ．
－Sufficient condition for a saddle point：Let $f: U \rightarrow \mathbb{R}$ be a function defined on an open set $U \subseteq \mathbb{R}^{n}$ ．Assume that f is twice continuously differentiable over U and that x^{*} is a stationary point．If $\nabla^{2} f\left(x^{*}\right)$ is an indefinite matrix，then x^{*} is a saddle point of f over U ． Proof：Let $\lambda>0$ be an eigenvalue of $\nabla^{2} f\left(x^{*}\right)$ with a normalized eigenvector v ． Since U is open，$\exists r>0$ s．t．$x^{*}+\alpha v \in U, \forall \alpha \in(0, r)$ ．By the quadratic approximation theorem and $\nabla f\left(x^{*}\right)=0$ ，we have

$$
\begin{aligned}
& \qquad \begin{aligned}
f\left(x^{*}+\alpha \boldsymbol{v}\right) & =f\left(x^{*}\right)+\frac{\alpha^{2}}{2} v^{\top} \nabla^{2} f\left(\boldsymbol{x}^{*}\right) \boldsymbol{v}+o\left(\alpha^{2}\|\boldsymbol{v}\|^{2}\right) \\
& =f\left(x^{*}\right)+\frac{\lambda \alpha^{2}}{2}\|\boldsymbol{v}\|^{2}+o\left(\alpha^{2}\|\boldsymbol{v}\|^{2}\right)=f\left(x^{*}\right)+\frac{\lambda \alpha^{2}}{2}+o\left(\alpha^{2}\right) .
\end{aligned} \\
& \text { Since } \frac{o\left(\alpha^{2}\right)}{\alpha^{2}} \rightarrow 0 \text { as } \alpha \rightarrow 0^{+}, \exists \varepsilon_{1} \in(0, r) \text { s.t. } o\left(\alpha^{2}\right)>-\frac{\lambda}{2} \alpha^{2}, \forall \alpha \in\left(0, \varepsilon_{1}\right) \text {. }
\end{aligned}
$$

Hence，$f\left(x^{*}+\alpha v\right)>f\left(x^{*}\right)$ ．This shows that x^{*} cannot be a local maximum point of f over U ．Similarly，we can show that x^{*} cannot be a local minimum point of f over U ．Therefore，x^{*} is a saddle point of f over U ．

Weierstrass theorem

－Weierstrass Theorem：Let $f: \varnothing \neq C \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a continuous function and C is a compact set．Then there exist a global minimum point of f over C and a global maximum point of f over C ．
－Definition：Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a continuous function defined over \mathbb{R}^{n} ．The function f is called coercive if $\lim _{\|\boldsymbol{x}\| \rightarrow \infty} f(\boldsymbol{x})=\infty$ ．
－Attainment under coerciveness：Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a continuous and coercive function and let $S \subseteq \mathbb{R}^{n}$ be a nonempty closed set．Then f has a global minimum point over S ．
Proof：
（1）Let $x_{0} \in S$ ．Since f is coercive，$\exists M>0$ s．t．$f(\boldsymbol{x})>f\left(x_{0}\right), \forall x \in \mathbb{R}^{n}$ and $\|x\|>M$ ．
（2）Since any global minimizer x^{*} of f over S satisfies $f\left(x^{*}\right) \leq f\left(x_{0}\right)$ ，it follows that the set of global minimizers of f over S is the same as the set of global minimizers of f over $S \cap B[0, M]$ ．
（3）The set $S \cap B[0, M]$ is compact and nonempty，by the Weierstrass theorem， there exists a global minimizer of f over $S \cap B[\mathbf{0}, M]$ and hence also over S ．

Example 1

Consider the continuous function $f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}$ over the set
$C=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}+x_{2} \leq-1\right\}$ ．
－Since C is not bounded，the Weierstrass theorem does not guarantee the existence of global minimizer and maximizer of f over C ．Obviously，f has no global maximizer over C ．
－f is coercive and C is closed，f has a global minimizer over C ．
－In the interior of $C: \nabla f\left(x_{1}, x_{2}\right)=\mathbf{0} \Rightarrow\left(x_{1}, x_{2}\right)=(0,0) \notin C$ ．
At the boundary of C ：$\left\{\left(x_{1}, x_{2}\right): x_{1}+x_{2}=-1\right\} \Rightarrow x_{1}=-x_{2}-1$ ． $g\left(x_{2}\right):=f\left(-x_{2}-1, x_{2}\right)=\left(-x_{2}-1\right)^{2}+x_{2}^{2}$ $g^{\prime}\left(x_{2}\right)=2\left(1+x_{2}\right)+2 x_{2} \Rightarrow g^{\prime}\left(x_{2}\right)=0 \Rightarrow x_{2}=-\frac{1}{2} \Rightarrow x_{1}=-\frac{1}{2}$ ．
Thus，$\left(x_{1}, x_{2}\right)=\left(-\frac{1}{2},-\frac{1}{2}\right)$ is the only candidate for a global minimum point．Therefore，$\left(x_{1}, x_{2}\right)=\left(-\frac{1}{2},-\frac{1}{2}\right)$ is the global minimum point of f over C ．

Example 2

Consider the function $f\left(x_{1}, x_{2}\right)=2 x_{1}^{3}+3 x_{2}^{2}+3 x_{1}^{2} x_{2}-24 x_{2}$ over \mathbb{R}^{2} ．
－$\nabla f\left(x_{1}, x_{2}\right)=\left[\begin{array}{c}6 x_{1}^{2}+6 x_{1} x_{2} \\ 6 x_{2}+3 x_{1}^{2}-24\end{array}\right]:=\mathbf{0}$ ．Then the stationary points of the function f are $\left(x_{1}, x_{2}\right)=(0,4),(4,-4),(-2,2)$ ．
－The Hessian of f is given by $\nabla^{2} f\left(x_{1}, x_{2}\right)=6\left[\begin{array}{cc}2 x_{1}+x_{2} & x_{1} \\ x_{1} & 1\end{array}\right]$ ．
－$\nabla^{2} f(0,4)=6\left[\begin{array}{ll}4 & 0 \\ 0 & 1\end{array}\right] \succ \mathbf{0} \Rightarrow(0,4)$ is a strict local minimum point．
It is not a global minimum point since $f\left(x_{1}, 0\right)=2 x_{1}^{3} \rightarrow-\infty$ as $x_{1} \rightarrow-\infty$ ．
$\nabla^{2} f(4,-4)=6\left[\begin{array}{ll}4 & 4 \\ 4 & 1\end{array}\right], \operatorname{tr}(\boldsymbol{A})>0$ but $\operatorname{det}(\boldsymbol{A})<0$ ，an indefinite matrix．$\therefore(4,-4)$ is a saddle point．
$\nabla^{2} f(-2,2)=6\left[\begin{array}{cc}-2 & -2 \\ -2 & 1\end{array}\right]$ is indefinite，since it has both positive and negative elements on its diagonal．$\therefore(-2,2)$ is a saddle point．

Example 3

Consider the function $f\left(x_{1}, x_{2}\right)=\left(x_{1}^{2}+x_{2}^{2}-1\right)^{2}+\left(x_{2}^{2}-1\right)^{2}$ over \mathbb{R}^{2} ．
－$\nabla f\left(x_{1}, x_{2}\right)=4\left[\begin{array}{c}\left(x_{1}^{2}+x_{2}^{2}-1\right) x_{1} \\ \left(x_{1}^{2}+x_{2}^{2}-1\right) x_{2}+\left(x_{2}^{2}-1\right) x_{2}\end{array}\right]:=\mathbf{0}$ ．Then the stationary points are $(0,0),(1,0),(-1,0),(0,1),(0,-1)$ ．
－The Hessian of the function is

$$
\nabla^{2} f\left(x_{1}, x_{2}\right)=4\left[\begin{array}{cc}
3 x_{1}^{2}+x_{2}^{2}-1 & 2 x_{1} x_{2} \\
2 x_{1} x_{2} & x_{1}^{2}+6 x_{2}^{2}-2
\end{array}\right] .
$$

－$\nabla^{2} f(0,0)=4\left[\begin{array}{cc}-1 & 0 \\ 0 & -2\end{array}\right] \prec \mathbf{0} . \quad \therefore(0,0)$ is a strict local maximum point（not global，$\left.\because f\left(x_{1}, 0\right)=\left(x_{1}^{2}-1\right)^{2}+1 \rightarrow \infty\right)$
$\nabla^{2} f(1,0)=\nabla^{2} f(-1,0)=4\left[\begin{array}{cc}2 & 0 \\ 0 & -1\end{array}\right]$ ，indefinite matrix．
$\therefore(1,0),(-1,0)$ saddle points
$\nabla^{2} f(0,1)=\nabla^{2} f(0,-1)=4\left[\begin{array}{ll}0 & 0 \\ 0 & 4\end{array}\right] \succeq \mathbf{0}$ ，no conclusion！
$\because f(0,1)=f(0,-1)=0$ and f is bounded below by 0
$\therefore(0,1),(0,-1)$ are global minimum points

Contour and surface plots of Example 3

Figure 2．3．Contour and surface plots of $f\left(x_{1}, x_{2}\right)=\left(x_{1}^{2}+x_{2}^{2}-1\right)^{2}+\left(x_{2}^{2}-1\right)^{2}$ ．The five stationary points $(0,0),(0,1),(0,-1),(1,0),(-1,0)$ are denoted by asterisks．The points $(0,-1),(0,1)$ are strict local minimum points as well as global minimum points，$(0,0)$ is a local maximum point，and $(-1,0),(1,0)$ are saddle points．

```
ezsurfc('(x^2 + y^2 -1)^2 + (y^2 - 1)^2', [-2 2 -1.5 1.5])
colorbar
view(-30, 30)
```


Example 4

Consider the function $f(x, y)=\frac{x+y}{x^{2}+y^{2}+1}$ over \mathbb{R}^{2} ．
－$\nabla f(x, y)=\frac{1}{\left(x^{2}+y^{2}+1\right)^{2}}\left[\begin{array}{l}\left(x^{2}+y^{2}+1\right)-2(x+y) x \\ \left(x^{2}+y^{2}+1\right)-2(x+y) y\end{array}\right]:=\mathbf{0} . \Rightarrow$
$-x^{2}-2 x y+y^{2}=-1, x^{2}-2 x y-y^{2}=-1$
$\Rightarrow x y=1 / 2$（adding），$x^{2}=y^{2}$（subtracting）
\Rightarrow stationary points are $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right),\left(\frac{-1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right)$
－For any $(x, y)^{\top} \in \mathbb{R}^{2}$ ，from the Cauchy－Schwarz inequality，

$$
\begin{aligned}
& f(x, y)=\frac{(x, y)^{\top} \cdot(1,1)^{\top}}{x^{2}+y^{2}+1} \leq \sqrt{2} \frac{\sqrt{x^{2}+y^{2}}}{x^{2}+y^{2}+1} \leq \sqrt{2} \max _{t \geq 0} \frac{t}{t^{2}+1} \leq \frac{\sqrt{2}}{2} . \\
& \because(t-1)^{2} \geq 0 \Rightarrow t^{2}+1 \geq 2 t
\end{aligned}
$$

－$\because f\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)=\frac{\sqrt{2}}{2} \quad \therefore\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ is the global maximum point． Similarly，$\because \frac{(-x,-y)^{\top} \cdot(1,1)^{\top}}{x^{2}+y^{2}+1} \leq \frac{\sqrt{2}}{2} \quad \therefore f(x, y) \geq \frac{-\sqrt{2}}{2}$
$\because f\left(\frac{-1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right)=\frac{-\sqrt{2}}{2} \quad \therefore\left(\frac{-1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right)$ is the global minimum point．

Example 5

Consider the function $f\left(x_{1}, x_{2}\right)=-2 x_{1}^{2}+x_{1} x_{2}^{2}+4 x_{1}^{4}$ over \mathbb{R}^{2} ．
－$\nabla f\left(x_{1}, x_{2}\right)=\left[\begin{array}{c}-4 x_{1}+x_{2}^{2}+16 x_{1}^{3} \\ 2 x_{1} x_{2}\end{array}\right]:=\mathbf{0}$ ．
\Rightarrow stationary points are $(0,0),(1 / 2,0),(-1 / 2,0)$ ．
－The Hessian of the function is $\nabla^{2} f\left(x_{1}, x_{2}\right)=\left[\begin{array}{cc}-4+48 x_{1}^{2} & 2 x_{2} \\ 2 x_{2} & 2 x_{1}\end{array}\right]$ ．
－$\nabla^{2} f(1 / 2,0)=\left[\begin{array}{ll}8 & 0 \\ 0 & 1\end{array}\right] \succ \mathbf{0} . \quad \therefore(1 / 2,0)$ is a strict local minimum point（not global，$f\left(-1, x_{2}\right)=2-x_{2}^{2} \rightarrow-\infty, x_{2} \rightarrow \infty$ ）
$\nabla^{2} f(-1 / 2,0)=\left[\begin{array}{cc}8 & 0 \\ 0 & -1\end{array}\right]$ ，indefinite．$\therefore(-1 / 2,0)$ saddle point
$\nabla^{2} f(0,0)=\left[\begin{array}{cc}-4 & 0 \\ 0 & 0\end{array}\right]$ ，a negative semidefinite matrix．
$\because f\left(\alpha^{4}, \alpha\right)=\alpha^{6}\left(-2 \alpha^{2}+1+4 \alpha^{10}\right)>0$ $f\left(-\alpha^{4}, \alpha\right)=\alpha^{6}\left(-2 \alpha^{2}-1+4 \alpha^{10}\right)<0$ for $0<\alpha \ll 1$
$\therefore(0,0)$ is a saddle point of f

Contour and surface plots of Example 5

Figure 2．4．Contour and surface plots of $f\left(x_{1}, x_{2}\right)=-2 x_{1}^{2}+x_{1} x_{2}^{2}+4 x_{1}^{4}$ ．The three stationary point $(0,0),(0.5,0),(-0.5,0)$ are denoted by asterisks．The point $(0.5,0)$ is a strict local minimum，while $(0,0)$ and $(-0.5,0)$ are saddle points．

```
ezsurfc('-2*x^2 + x*y`2 + 4*x^4', [l-1 1 -1 1])
colorbar
view(-45, 30)
```


Global optimality conditions

－Theorem：Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a twice continuously differentiable function．Assume that $\nabla^{2} f(x) \succeq 0, \forall x \in \mathbb{R}^{n}$ ．Let $x^{*} \in \mathbb{R}^{n}$ be a stationary point of f ．Then x^{*} is a global minimum point of f ．
Proof：By the linear approximation theorem，$\forall x \in \mathbb{R}^{n}, \exists z_{x} \in\left(x^{*}, x\right)$ such that

$$
f(x)-f\left(x^{*}\right)=\frac{1}{2}\left(x-x^{*}\right)^{\top} \nabla^{2} f\left(z_{x}\right)\left(x-x^{*}\right)
$$

Since $\nabla^{2} f\left(z_{x}\right) \succeq 0$ ，we have $f(x) \geq f\left(x^{*}\right) . x^{*}$ is a global minimum point of f ．
－Example：

$$
\begin{aligned}
& f(x):=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}+\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)^{2} . \\
& \nabla f(\boldsymbol{x})=\left[\begin{array}{l}
2 x_{1}+x_{2}+x_{3}+4 x_{1}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right) \\
2 x_{2}+x_{1}+x_{3}+4 x_{2}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right) \\
2 x_{3}+x_{1}+x_{2}+4 x_{3}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)
\end{array}\right] .
\end{aligned}
$$

Obviously，$\left(x_{1}, x_{2}, x_{3}\right)=(0,0,0)$ is a stationary point．
The Hessian is $\nabla^{2} f(\boldsymbol{x})=\boldsymbol{A}+\boldsymbol{B}(\boldsymbol{x})+\boldsymbol{C}(\boldsymbol{x})$ ，where
$A=\left[\begin{array}{lll}2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{array}\right] \succeq \mathbf{0}$ ，since it is diagnoally dominant with positive diagonal
elements， $\boldsymbol{B}(\boldsymbol{x})=4\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right) \boldsymbol{I}_{3} \succeq \mathbf{0}$ ，and $\boldsymbol{C}(\boldsymbol{x})=8 \boldsymbol{x} \boldsymbol{x}^{\top} \succeq \mathbf{0}$ ．
$\therefore \nabla^{2} f(x) \succeq \mathbf{0} \quad \therefore x=(0,0,0)^{\top}$ is a global minimum point of f over \mathbb{R}^{3} ．

Quadratic functions

Quadratic functions are an important class of functions that are useful in the modeling of many optimization problems．
－Definition：A quadratic function over \mathbb{R}^{n} is a function of the form

$$
f(x)=x^{\top} A x+2 b^{\top} x+c,
$$

where $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ is symmetric， $\boldsymbol{b} \in \mathbb{R}^{n}$ ，and $c \in \mathbb{R}$ ．
－The gradient and Hessian of the above quadratic function $f(\boldsymbol{x})$ ：

$$
\nabla f(x)=2 A x+2 b, \quad \nabla^{2} f(x)=2 A
$$

－Important properties of quadratic functions：
（1）x is a stationary point off iff $A x=-b$ ．
（2）If $\boldsymbol{A} \succeq 0$ ，then \boldsymbol{x} is a global minimum point off iff $\boldsymbol{A x}=-\boldsymbol{b}$ ．
Proof：see Theorem on page 27.
（3）If $A \succ 0, x=-A^{-1} b$ is a strict global minimum point of f ．
Proof：If $\boldsymbol{A} \succ \mathbf{0}$ ，then $\boldsymbol{x}=-\boldsymbol{A}^{-1} \boldsymbol{b}$ is the unique solution to $\boldsymbol{A x}=\boldsymbol{b}$ ．Hence， it is the unique global minimum point of f ．
Note：In（3），the minimal value of f is given by

$$
f(\boldsymbol{x})=\left(-\boldsymbol{A}^{-1} \boldsymbol{b}\right)^{\top} \boldsymbol{A}\left(-\boldsymbol{A}^{-1} \boldsymbol{b}\right)-2 \boldsymbol{b}^{\top} \boldsymbol{A}^{-1} \boldsymbol{b}+c=c-\boldsymbol{b}^{\top} \boldsymbol{A}^{-1} \boldsymbol{b} \text {. }
$$

Coerciveness of quadratic functions

Theorem：Let $f(x)=x^{\top} A x+2 b^{\top} x+c$ ，where $A \in \mathbb{R}^{n \times n}$ is symmetric， $\boldsymbol{b} \in \mathbb{R}^{n}$ ，and $c \in \mathbb{R}$ ．Then f is coercive if and only if $\boldsymbol{A} \succ \mathbf{0}$ ．
Proof：
(\Rightarrow) Assume that $A \succ 0$ ．Then $x^{\top} A x \geq \alpha\|x\|^{2}$ with $\alpha=\lambda_{\min }(A)>0$ ．Thus，

$$
f(\boldsymbol{x}) \geq \alpha\|\boldsymbol{x}\|^{2}-2\|\boldsymbol{b}\|\|\boldsymbol{x}\|+c=\alpha\|x\|\left(\|\boldsymbol{x}\|-2 \frac{\|\boldsymbol{b}\|}{\alpha}\right)+c \rightarrow \infty, \quad \text { as }\|x\| \rightarrow \infty .
$$

Therefore，f is coercive．
（ \Leftarrow ）Assume that f is coercive．We need to prove that $\boldsymbol{A} \succ \mathbf{0}$ ．We first show that there does not exist a negative eigenvalue．Suppose $\exists \mathbf{0} \neq v \in \mathbb{R}^{n}, \lambda<0$ s．t．$A v=\lambda v$ ．Then for any $\alpha \in \mathbb{R}$ ，

$$
f(\alpha \boldsymbol{v})=\lambda\|\boldsymbol{v}\|^{2} \alpha^{2}+2\left(\boldsymbol{b}^{\top} \boldsymbol{v}\right) \alpha+c \rightarrow-\infty \quad \text { as } \alpha \rightarrow \infty .
$$

This is a contradiction．We now show that 0 cannot be an eigenvalue of \boldsymbol{A} ．Suppose $\exists \mathbf{0} \neq v \in \mathbb{R}^{n}$ s．t．$A v=\mathbf{0}$ ．Then for any $\alpha \in \mathbb{R}$ ，

$$
f(\alpha v)=2\left(\boldsymbol{b}^{\top} \boldsymbol{v}\right) \alpha+c
$$

If $\boldsymbol{b}^{\top} \boldsymbol{v}=0$ then $f(\alpha \boldsymbol{v}) \rightarrow c$ as $\alpha \rightarrow \infty$ ．If $\boldsymbol{b}^{\top} \boldsymbol{v}>0$ then $f(\alpha \boldsymbol{v}) \rightarrow-\infty$ as $\alpha \rightarrow-\infty$ ．
If $\boldsymbol{b}^{\top} \boldsymbol{v}<0$ then $f(\alpha \boldsymbol{v}) \rightarrow-\infty$ as $\alpha \rightarrow \infty$ ．All these contradict the coerciveness of f ．

Characterization of the nonnegativity of quadratic functions

Theorem：Let $f(x)=x^{\top} A x+2 b^{\top} x+c$ ，where $A \in \mathbb{R}^{n \times n}$ is symmetric， $b \in \mathbb{R}^{n}$ ，and $c \in \mathbb{R}$ ．Then the following two claims are equivalent：
（a）$f(x)=x^{\top} A \boldsymbol{x}+2 \boldsymbol{b}^{\top} x+c \geq 0, \forall x \in \mathbb{R}^{n}$ ．
（b）$\left[\begin{array}{cc}\boldsymbol{A} & \boldsymbol{b} \\ \boldsymbol{b}^{\top} & c\end{array}\right] \succeq \mathbf{0}$ ．

（a）\Rightarrow（b）：We begin by showing that $A \succeq \mathbf{0}$ ．
Suppose not．$\exists \mathbf{0} \neq v \in \mathbb{R}^{n}$ and $\lambda<0$ s．t．$A v=\lambda v$ ．Thus，for any $\alpha \in \mathbb{R}$ ，

$$
f(\alpha \boldsymbol{v})=\lambda\|\boldsymbol{v}\|^{2} \alpha^{2}+2\left(\boldsymbol{b}^{\top} \boldsymbol{v}\right) \alpha+c \rightarrow-\infty \quad \text { as } \alpha \rightarrow-\infty,
$$

contradicting the nonnegativity of f ．Our objective is to prove（b）．We want to show that for any $\boldsymbol{y} \in \mathbb{R}^{n}$ and $t \in \mathbb{R},\left[\begin{array}{l}\boldsymbol{y} \\ t\end{array}\right]^{\top}\left[\begin{array}{cc}A & \boldsymbol{b} \\ \boldsymbol{b}^{\top} & c\end{array}\right]\left[\begin{array}{l}\boldsymbol{y} \\ t\end{array}\right] \geq 0$ ，which is equivalent to

$$
\boldsymbol{y}^{\top} \boldsymbol{A} \boldsymbol{y}+2 t \boldsymbol{b}^{\top} \boldsymbol{y}+c t^{2} \geq 0 .
$$

If $t=0$ then $\boldsymbol{y}^{\top} \boldsymbol{A} \boldsymbol{y}+2 t \boldsymbol{b}^{\top} \boldsymbol{y}+c t^{2}=\boldsymbol{y}^{\top} \boldsymbol{A} \boldsymbol{y} \geq 0$ ，since $\boldsymbol{A} \succeq \mathbf{0}$ ．We obtain（ \star ）．
If $t \neq 0$ then $0 \leq t^{2} f(\boldsymbol{y} / t)=\boldsymbol{y}^{\top} \boldsymbol{A} \boldsymbol{y}+2 t \boldsymbol{b}^{\top} \boldsymbol{y}+c t^{2}$ ，we have (\star) ．

