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Global minimum and global maximum

Definition: Let f : S→ R be a real-valued function defined on a
nonempty set S ⊆ Rn.

(1) x∗ ∈ S is called a global minimum point (minimizer) of f over S if
f (x∗) ≤ f (x), ∀ x ∈ S.

(2) x∗ ∈ S is called a strict global minimum point (minimizer) of f over
S if f (x∗) < f (x), ∀ x∗ 6= x ∈ S.

(3) x∗ ∈ S is called a global maximum point (maximizer) of f over S if
f (x) ≤ f (x∗), ∀ x ∈ S.

(4) x∗ ∈ S is called a strict global maximum point (maximizer) of f over
S if f (x) < f (x∗), ∀ x∗ 6= x ∈ S.

(5) The set S on which the optimization of f is performed is called
the feasible set, and any point x ∈ S is called a feasible solution.

Note: We will frequently omit the adjective “global”.
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Minimal value and maximal value of f over S

Definition: Let f : S→ R be a real-valued function defined on a
nonempty set S ⊆ Rn.

(1) x∗ ∈ S is called a global optimum of f over S if it is either a global
minimizer or a global maximizer.

(2) The minimal value of f over S := inf{f (x) : x ∈ S}. If x∗ ∈ S is a
global minimum of f over S, then inf{f (x) : x ∈ S} = f (x∗).

(3) The maximal value of f over S := sup{f (x) : x ∈ S}. If x∗ ∈ S is a
global maximum of f over S, then sup{f (x) : x ∈ S} = f (x∗).

(4) The set of all global minimizers of f over S is denoted by

argmin{f (x) : x ∈ S}.
The set of all global maximizers of f over S is denoted by

argmax{f (x) : x ∈ S}.
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Example 1

Find the global minimum and maximum points of f (x, y) = x + y over
S = B[0, 1] = {(x, y)> : x2 + y2 ≤ 1}.

By the Cauchy-Schwarz inequality, for any (x, y)> ∈ S, we have

x + y = (x, y)
[

1
1

]
≤
√

x2 + y2
√

12 + 12 ≤
√

2.

Therefore, the maximal value of f over S is upper bounded by√
2. Note that ( 1√

2
, 1√

2
) ∈ S and f ( 1√

2
, 1√

2
) =
√

2 and this is the

only point that attains this value. Thus, ( 1√
2

, 1√
2
) is the strict

global maximum point of f over S, and the maximal value is
√

2.

Similarly, we can show that −(x + y) ≤
√

2 =⇒ x + y ≥ −
√

2.
Thus, (−1√

2
, −1√

2
) is the strict global minimum point of f over S,

and the minimal value is −
√

2.
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Example 2

Consider the following 2-D function defined over the entire space:

f (x, y) =
x + y

x2 + y2 + 1
.

The contour and surface plots of the function are given below:
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Figure 2.1. Contour and surface plots of f (x, y) = x+y
x2+y2+1

.

Definition 2.4 (local minima and maxima). Let f : S → � be defined on a set S ⊆ �n .
Then

1. x∗ ∈ S is called a local minimum point of f over S if there exists r > 0 for which
f (x∗)≤ f (x) for any x ∈ S ∩B(x∗, r ),

2. x∗ ∈ S is called a strict local minimum point of f over S if there exists r > 0 for
which f (x∗)< f (x) for any x∗ �= x ∈ S ∩B(x∗, r ),

3. x∗ ∈ S is called a local maximum point of f over S if there exists r > 0 for which
f (x∗)≥ f (x) for any x ∈ S ∩B(x∗, r ),

4. x∗ ∈ S is called a strict local maximum point of f over S if there exists r > 0 for
which f (x∗)> f (x) for any x∗ �= x ∈ S ∩B(x∗, r ).

Of course, a global minimum (maximum) point is also a local minimum (maximum)
point. As with global minimum and maximum points, we will also use the terminology
local minimizer and local maximizer for local minimum and maximum points, respec-
tively.

Example 2.5. Consider the one-dimensional function

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x− 1)2+ 2, −1≤ x ≤ 1,
2, 1≤ x ≤ 2,

−(x − 2)2+ 2, 2≤ x ≤ 2.5,
(x − 3)2+ 1.5, 2.5≤ x ≤ 4,
−(x − 5)2+ 3.5, 4≤ x ≤ 6,
−2x + 14.5, 6≤ x ≤ 6.5,
2x− 11.5, 6.5≤ x ≤ 8,

described in Figure 2.2 and defined over the interval [−1,8]. The point x =−1 is a strict
global maximum point. The point x = 1 is a nonstrict local minimum point. All the
points in the interval (1,2) are nonstrict local minimum points as well as nonstrict local
maximum points. The point x = 2 is a local maximum point. The point x = 3 is a strict

The global maximizer = ( 1√
2

, 1√
2
), the maximal value = 1√

2
.

The global minimizer = (−1√
2

, −1√
2
), the minimal value = −1√

2
.

The proof of these facts will be given later.

Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan MA 5037/Chapter 2: Unconstrained Optimization – 5/30



Local minimum and local maximum

Definition: Let f : S→ R be a real-valued function defined on a
nonempty set S ⊆ Rn.

(1) x∗ ∈ S is called a local minimum point of f over S if ∃ r > 0 s.t.
f (x∗) ≤ f (x), ∀ x ∈ S∩ B(x∗, r).

(2) x∗ ∈ S is called a strict local minimum point of f over S if ∃ r > 0
s.t. f (x∗) < f (x), ∀ x∗ 6= x ∈ S∩ B(x∗, r).

(3) x∗ ∈ S is called a local maximum point of f over S if ∃ r > 0 s.t.
f (x) ≤ f (x∗), ∀ x ∈ S∩ B(x∗, r).

(4) x∗ ∈ S is called a strict local maximum point of f over S if ∃ r > 0
s.t. f (x) < f (x∗), ∀ x∗ 6= x ∈ S∩ B(x∗, r).
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Example

Consider the following 1-D function defined over [−1, 8]:

f (x) =



(x− 1)2 + 2, −1 ≤ x ≤ 1,
2, 1 ≤ x ≤ 2,
−(x− 2)2 + 2, 2 ≤ x ≤ 2.5,
(x− 3)2 + 1.5, 2.5 ≤ x ≤ 4,
−(x− 5)2 + 3.5, 4 ≤ x ≤ 6,
−2x + 14.5, 6 ≤ x ≤ 6.5,
2x− 11.5, 6.5 ≤ x ≤ 8.

Classify each of the points x = −1, 1, 2, 3, 5, 6.5, 8 as strict/nonstrict,
global/local, minimum/maximum points.
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local minimum, and a non-strict global minimum point. The point x = 5 is a strict local
maximum and x = 6.5 is a strict local minimum, which is a nonstrict global minimum
point. Finally, x = 8 is a strict local maximum point. Note that, as already mentioned,
x = 3 and x = 6.5 are both global minimum points of the function, and despite the fact
that they are strict local minima, they are nonstrict global minimum points.
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Figure 2.2. Local and global optimum points of a one-dimensional function.

First Order Optimality Condition

A well-known result is that for a one-dimensional function f defined and differentiable
over an interval (a, b ), if a point x∗ ∈ (a, b ) is a local maximum or minimum, then
f ′(x∗) = 0. This is also known as Fermat’s theorem. The multidimensional extension
of this result states that the gradient is zero at local optimum points. We refer to such
an optimality condition as a first order optimality condition, as it is expressed in terms of
the first order derivatives. In what follows, we will also discuss second order optimality
conditions that use in addition information on the second order (partial) derivatives.

Theorem 2.6 (first order optimality condition for local optima points). Let f : U →�
be a function defined on a set U ⊆ �n . Suppose that x∗ ∈ int(U ) is a local optimum point
and that all the partial derivatives of f exist at x∗. Then∇ f (x∗) = 0.

Proof. Let i ∈ {1,2, . . . , n} and consider the one-dimensional function g (t ) = f (x∗+ tei ).
Note that g is differentiable at t = 0 and that g ′(0) = ∂ f

∂ xi
(x∗). Since x∗ is a local optimum

point of f , it follows that t = 0 is a local optimum of g , which immediately implies that
g ′(0) = 0. The latter equality is exactly the same as ∂ f

∂ xi
(x∗) = 0. Since this is true for any

i ∈ {1,2, . . . , n}, the result ∇ f (x∗) = 0 follows.

Note that the proof of the first order optimality conditions for multivariate functions
strongly relies on the first order optimality conditions for one-dimensional functions.
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First order optimality condition for local optimum points

Theorem: Let f : U→ R be a function defined on a set ∅ 6= U ⊆ Rn.
Assume that x∗ ∈ int(U) is a local optimum point and that all the partial
derivatives of f exist at x∗. Then ∇f (x∗) = 0. (Fermat’s theorem in 1D)

Proof: Given 1 ≤ i ≤ n, we define the function gi(t) := f (x∗ + tei).
Then gi is differentiable at t = 0 and g′i(0) = ∇f (x∗) · ei =

∂f
∂xi

(x∗).
Since x∗ is a local optimum point of f , it follows that t = 0 is a local
optimum of gi. By Fermat’s theorem, we have g′i(0) = 0, which
implies that ∇f (x∗) = 0. �

Note: First order optimality condition is only a necessary condition.
The points that gradient vanishes deserve an explicit definition.

Definition: Let f : U→ R be a function defined on a set ∅ 6= U ⊆ Rn.
Assume that x∗ ∈ int(U) and all the partial derivatives of f exist over some
neighborhood of x∗. If ∇f (x∗) = 0, then x∗ is called a stationary point of f .
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Positive definiteness

Definition: A symmetric matrix A ∈ Rn×n is called positive
semidefinite, denoted by A � 0, if x>Ax ≥ 0, ∀ x ∈ Rn.

Definition: A symmetric matrix A ∈ Rn×n is called positive definite,
denoted by A � 0, if x>Ax > 0, ∀ 0 6= x ∈ Rn.

Example: Let A :=
[

2 −1
−1 1

]
. ∀ x = (x1, x2)

> ∈ R2, we have

x>Ax = [x1, x2]

[
2 −1
−1 1

] [
x1
x2

]
= 2x2

1 − 2x1x2 + x2
2 = x2

1 + (x1 − x2)
2 ≥ 0.

Since x2
1 + (x1 − x2)

2 = 0 iff x1 = x2 = 0, we have A � 0.

Example: Let A :=
[

1 2
2 1

]
. One can show that A is not positive

definite. Hint: consider x = (1,−1)>
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The diagonal components of a positive definite matrix

Let A ∈ Rn×n and A � 0. Then the diagonal elements of A are
positive. Proof: Aii = e>i Aei > 0, ∀ i. �

Let A ∈ Rn×n and A � 0. Then the diagonal elements of A are
nonnegative.

Definition: A � 0 (negative semidefinite) iff −A � 0.
A ≺ 0 (negative definite) iff −A � 0.

Definition: A symmetric matrix A ∈ Rn×n is called indefinite if
∃ x, y ∈ Rn s.t. x>Ax > 0 and y>Ay < 0.

Let A ∈ Rn×n and A ≺ 0. Then the diagonal elements of A are
negative.

Let A ∈ Rn×n and A � 0. Then the diagonal elements of A are
nonpositive.

Let A ∈ Rn×n be a symmetric matrix. If there exist positive and
negative elements in the diagonal of A, then A is indefinite.
Proof: Let i and j be the indices such that Aii > 0 and Ajj < 0.
Then e>i Aei = Aii > 0 and e>j Aej = Ajj < 0. �
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Eigenvalue characterization theorem

Let A ∈ Rn×n be a symmetric matrix. Then

A � 0 if and only if all its eigenvalues are positive.
Proof: By the spectral decomposition theorem, there exist an orthogonal matrix U
and a diagonal matrix D = diag(d1, · · · , dn) whose diagonal elements are the
eigenvalues of A, for which U>AU = D. For any 0 6= x ∈ Rn, let y = U−1x. Then

x>Ax = y>U>AUy = y>Dy =
n

∑
i=1

diy2
i .

Therefore, x>Ax > 0 for any x 6= 0 if and only if ∑n
i=1 diy2

i > 0 for any y 6= 0.
(1) For any given i, let y = ei, we have di > 0, i.e., all eigenvalues are positive.
(2) If di > 0 ∀ i, then ∑n

i=1 diy2
i > 0 for any y 6= 0, i.e., x>Ax > 0 for any x 6= 0. �

A � 0 if and only if all its eigenvalues are nonnegative.

A ≺ 0 if and only if all its eigenvalues are negative.

A � 0 if and only if all its eigenvalues are nonpositive.

A is indefinite if and only if it has at least one positive eigenvalue and
at least one negative eigenvalue.
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Trace and determinant

If A � 0(� 0), then Tr(A) > (≥)0 and det(A) > (≥)0.
Key of the proof: The trace and determinant of a symmetric matrix are the sum
and product of its eigenvalues respectively. �

Above two conditions are necessary and sufficient for 2× 2 matrix A.
Key of the proof: For any two real number a, b ∈ R, one has a, b > (≥)0 if and only
if a + b > (≥)0 and ab > (≥)0. �

Example: Consider the matrices

A :=
[

4 1
1 3

]
, B :=

1 1 1
1 1 1
1 1 0.1

 .

(1) A � 0 since Tr(A) = 7 > 0 and det(A) = 11 > 0.
(2) As for the matrix B, Tr(B) = 2.1 > 0 and det(B) = 0. Even so,
we cannot conclude that the matrix B is positive semidefinite. In
fact, B is indefinite since

e>1 Be1 = 1 > 0, (e2 − e3)
>B(e2 − e3) = −0.9 < 0.
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Positive semidefinite square root

Given A � 0, let A = UDU> be the spectral decomposition, where U
is an orthogonal matrix, D = diag(d1, d2, · · · , dn) is a diagonal matrix
whose diagonal elements are the eigenvalues of A. Since A � 0, we
have d1, d2, · · · , dn ≥ 0. We define

A
1
2 = UEU>, E = diag(

√
d1,
√

d2, · · · ,
√

dn).

Obviously,

A
1
2 A

1
2 = UEU>UEU> = UEEU> = UDU> = A.

The matrix A
1
2 is called the positive semidefinite square root.
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Principal minors criterion

Definition: Given an n× n matrix, the determinant of the upper left
k× k submatrix is called the kth principal minor, denoted by Dk(A).

Example: The principal minors of the k× k matrix

A :=

a11 a12 a13
a21 a22 a23
a31 a32 a33


are D1(A) = a11,

D2(A) = det
[

a11 a12
a21 a22

]
, D3(A) = det

a11 a12 a13
a21 a22 a23
a31 a32 a33

 .

Principal minors criterion: Let A ∈ Rn×n be a symmetric matrix.
Then A � 0 if and only if D1(A) > 0, D2(A) > 0, · · · , Dn(A) > 0.

Note: It cannot be used for detecting positive semidefiniteness!
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Diagonally dominant matrices

Definition: Let A ∈ Rn×n be a symmetric matrix. Then
(1) A is called diagonally dominant if |Aii| ≥ ∑j 6=i |Aij|, ∀ i.
(2) A is called strictly diagonally dominant if |Aii| > ∑j 6=i |Aij|, ∀ i.

Positive semidefiniteness: Let A ∈ Rn×n be a symmetric matrix.
(1) If A is a diagonally dominant matrix whose diagonal elements are

nonnegative. Then A � 0.
(2) If A is a strictly diagonally dominant matrix whose diagonal

elements are positive. Then A � 0.
Proof: (1) Suppose ∃ λ < 0 an eigenvalue of A. Let u = (u1, · · · , un)> be a
corresponding eigenvector. Let |ui| = max{|u1|, · · · , |un|}. Then by Au = λu,

|Aii − λ||ui| =
∣∣∣∑
j 6=i

Aijuj

∣∣∣ ≤ (∑
j 6=i
|Aij|

)
|ui| ≤ |Aii||ui|,

implying |Aii − λ| ≤ |Aii|. This is a contradiction.
(2) From (1), we know that A � 0. Thus, all we need to show is that A has no
zero eigenvalues. Suppose ∃ eigenvalue λ = 0, u 6= 0 s.t. Au = 0. Similar to part
(1), we obtain

|Aii||ui| =
∣∣∣∑
j 6=i

Aijuj

∣∣∣ ≤ (∑
j 6=i
|Aij|

)
|ui| < |Aii||ui|.

This is obviously a contradiction. �
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Necessary second order optimality condition

Theorem: Let f : U→ R be a function defined on an open set U ⊆ Rn.
Assume that f is twice continuously differentiable over U and that x∗ is a
stationary point. Then the following hold:

(1) If x∗ is a local minimum point of f over U, then ∇2f (x∗) � 0.

(2) If x∗ is a local maximum point of f over U, then ∇2f (x∗) � 0.

Proof: (1) Since x∗ is a local minimum point, ∃ B(x∗, r) ⊆ U for which f (x∗) ≤ f (x),
∀ x ∈ B(x∗, r). Let 0 6= d ∈ Rn. For any 0 < α < r

‖d‖ , we have x∗α := x∗ + αd ∈ B(x∗, r)

and f (x∗α) ≥ f (x∗). By the linear approximation theorem, ∃ zα ∈ (x∗, x∗α) s.t.

f (x∗α)− f (x∗) = ∇f (x∗)>︸ ︷︷ ︸
0

(x∗α − x∗) +
1
2
(x∗α − x∗)>∇2f (zα)(x∗α − x∗) =

α2

2
d>∇2f (zα)d.

Thus, d>∇2f (zα)d ≥ 0, ∀ α ∈ (0, r
‖d‖ ). Using the fact that zα → x∗ as α→ 0+, and the

continuity of the Hessian, we obtain d>∇2f (x∗)d ≥ 0. We conclude that ∇2f (x∗) � 0.
(2) Employing the result of part (1) on the function −f , we obtain (2). �

Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan MA 5037/Chapter 2: Unconstrained Optimization – 16/30



Sufficient second order optimality condition

Theorem: Let f : U→ R be a function defined on an open set U ⊆ Rn.
Assume that f is twice continuously differentiable over U and that x∗ is a
stationary point. Then the following hold:

(1) If ∇2f (x∗) � 0, then x∗ is a strict local minimum point of f over U.

(2) If ∇2f (x∗) ≺ 0, then x∗ is a strict local maximum point of f over U.

Proof: (1) Since the Hessian is continuous, it follows that there exists a ball B(x∗, r) ⊆ U
s.t. ∇2f (x) � 0, ∀ x ∈ B(x∗, r) (using the principal minors criterion on page 14). By the
linear approximation theorem, it follows that for any x ∈ B(x∗, r), ∃ zx ∈ (x∗, x) (hence
zx ∈ B(x∗, r)) s.t.

f (x)− f (x∗) =
1
2
(x− x∗)>∇2f (zx)(x− x∗).

Since ∇2f (zx) � 0, it follows that

f (x)− f (x∗) > 0, for x 6= x∗.

That is, x∗ is a strict local minimum point of f over U.

(2) This part follows from part (1) by considering the function −f . �
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Sufficient condition for a saddle point

Definition: Let f : U→ R be a function defined on an open set
U ⊆ Rn. Assume that f is continuously differentiable over U. A
stationary point x∗ is called a saddle point of f over U if it is neither a
local minimum point nor a local maximum point of f over U.

Sufficient condition for a saddle point: Let f : U→ R be a
function defined on an open set U ⊆ Rn. Assume that f is twice
continuously differentiable over U and that x∗ is a stationary point. If
∇2f (x∗) is an indefinite matrix, then x∗ is a saddle point of f over U.
Proof: Let λ > 0 be an eigenvalue of ∇2f (x∗) with a normalized eigenvector v.
Since U is open, ∃ r > 0 s.t. x∗ + αv ∈ U, ∀ α ∈ (0, r). By the quadratic
approximation theorem and ∇f (x∗) = 0, we have

f (x∗ + αv) = f (x∗) +
α2

2
v>∇2f (x∗)v + o(α2‖v‖2)

= f (x∗) +
λα2

2
‖v‖2 + o(α2‖v‖2) = f (x∗) +

λα2

2
+ o(α2).

Since o(α2)
α2 → 0 as α→ 0+, ∃ ε1 ∈ (0, r) s.t. o(α2) > − λ

2 α2, ∀ α ∈ (0, ε1).

Hence, f (x∗ + αv) > f (x∗). This shows that x∗ cannot be a local maximum point
of f over U. Similarly, we can show that x∗ cannot be a local minimum point of f
over U. Therefore, x∗ is a saddle point of f over U. �
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Weierstrass theorem

Weierstrass Theorem: Let f : ∅ 6= C ⊆ Rn → R be a continuous
function and C is a compact set. Then there exist a global minimum
point of f over C and a global maximum point of f over C.

Definition: Let f : Rn → R be a continuous function defined over
Rn. The function f is called coercive if lim

‖x‖→∞
f (x) = ∞.

Attainment under coerciveness: Let f : Rn → R be a continuous
and coercive function and let S ⊆ Rn be a nonempty closed set. Then f
has a global minimum point over S.
Proof:

(1) Let x0 ∈ S. Since f is coercive, ∃M > 0 s.t. f (x) > f (x0), ∀ x ∈ Rn and
‖x‖ > M.

(2) Since any global minimizer x∗ of f over S satisfies f (x∗) ≤ f (x0), it follows
that the set of global minimizers of f over S is the same as the set of global
minimizers of f over S∩ B[0, M].

(3) The set S∩ B[0, M] is compact and nonempty, by the Weierstrass theorem,
there exists a global minimizer of f over S∩ B[0, M] and hence also over S.

�
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Example 1

Consider the continuous function f (x1, x2) = x2
1 + x2

2 over the set
C = {(x1, x2) ∈ R2 : x1 + x2 ≤ −1}.

Since C is not bounded, the Weierstrass theorem does not
guarantee the existence of global minimizer and maximizer of f
over C. Obviously, f has no global maximizer over C.

f is coercive and C is closed, f has a global minimizer over C.

In the interior of C: ∇f (x1, x2) = 0⇒ (x1, x2) = (0, 0) 6∈ C.
At the boundary of C: {(x1, x2) : x1 + x2 = −1} ⇒ x1 = −x2 − 1.
g(x2) := f (−x2 − 1, x2) = (−x2 − 1)2 + x2

2

g′(x2) = 2(1 + x2) + 2x2 ⇒ g′(x2) = 0⇒ x2 = − 1
2 ⇒ x1 = − 1

2 .

Thus, (x1, x2) = (− 1
2 ,− 1

2 ) is the only candidate for a global
minimum point. Therefore, (x1, x2) = (− 1

2 ,− 1
2 ) is the global

minimum point of f over C.
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Example 2

Consider the function f (x1, x2) = 2x3
1 + 3x2

2 + 3x2
1x2 − 24x2 over R2.

∇f (x1, x2) =

[
6x2

1 + 6x1x2
6x2 + 3x2

1 − 24

]
:= 0. Then the stationary points

of the function f are (x1, x2) = (0, 4), (4,−4), (−2, 2).

The Hessian of f is given by ∇2f (x1, x2) = 6
[

2x1 + x2 x1
x1 1

]
.

∇2f (0, 4) = 6
[

4 0
0 1

]
� 0⇒ (0, 4) is a strict local minimum point.

It is not a global minimum point since f (x1, 0) = 2x3
1 → −∞ as

x1 → −∞.

∇2f (4,−4) = 6
[

4 4
4 1

]
, tr(A) > 0 but det(A) < 0, an indefinite

matrix. ∴ (4,−4) is a saddle point.

∇2f (−2, 2) = 6
[
−2 −2
−2 1

]
is indefinite, since it has both positive

and negative elements on its diagonal. ∴ (−2, 2) is a saddle point.
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Example 3

Consider the function f (x1, x2) = (x2
1 + x2

2 − 1)2 + (x2
2 − 1)2 over R2.

∇f (x1, x2) = 4
[

(x2
1 + x2

2 − 1)x1
(x2

1 + x2
2 − 1)x2 + (x2

2 − 1)x2

]
:= 0. Then the

stationary points are (0, 0), (1, 0), (−1, 0), (0, 1), (0,−1).

The Hessian of the function is

∇2f (x1, x2) = 4
[

3x2
1 + x2

2 − 1 2x1x2
2x1x2 x2

1 + 6x2
2 − 2

]
.

∇2f (0, 0) = 4
[
−1 0
0 −2

]
≺ 0. ∴ (0, 0) is a strict local maximum

point (not global, ∵ f (x1, 0) = (x2
1 − 1)2 + 1→ ∞)

∇2f (1, 0) = ∇2f (−1, 0) = 4
[

2 0
0 −1

]
, indefinite matrix.

∴ (1, 0), (−1, 0) saddle points

∇2f (0, 1) = ∇2f (0,−1) = 4
[

0 0
0 4

]
� 0, no conclusion!

∵ f (0, 1) = f (0,−1) = 0 and f is bounded below by 0
∴ (0, 1), (0,−1) are global minimum points
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Contour and surface plots of Example 3
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which is an indefinite matrix and hence (1,0) and (−1,0) are saddle points. Finally,

∇2 f (0,1) =∇2 f (0,−1) = 4
�

0 0
0 4

�
� 0.

The fact that the Hessian matrices of f at (0,1) and (0,−1) are positive semidefinite is not
enough in order to conclude that these are local minimum points; they might be saddle
points. However, in this case it is not difficult to see that (0,1) and (0,−1) are in fact
global minimum points since f (0,1) = f (0,−1) = 0, and the function is lower bounded
by zero. Note that since there are two global minimum points, they are nonstrict global
minima, but they actually are strict local minimum points since each has a neighborhood
in which it is the unique minimizer. The contour and surface plots of the function are
plotted in Figure 2.3.
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Figure 2.3. Contour and surface plots of f (x1, x2) = (x
2
1 + x2

2 − 1)2 + (x2
2 − 1)2. The five

stationary points (0,0), (0,1), (0,−1), (1,0), (−1,0) are denoted by asterisks. The points (0,−1), (0,1)
are strict local minimum points as well as global minimum points, (0,0) is a local maximum point, and
(−1,0), (1,0) are saddle points.

Example 2.36. Returning to Example 2.3, we will now investigate the stationary points
of the function

f (x, y) =
x + y

x2+ y2+ 1
.

The gradient of the function is

∇ f (x, y) =
1

(x2+ y2+ 1)2

�
(x2+ y2+ 1)− 2(x + y)x
(x2+ y2+ 1)− 2(x + y)y

�
.

Therefore, the stationary points of the function are those satisfying

−x2− 2xy + y2 =−1,
x2− 2xy − y2 =−1.

———————————
ezsurfc(’(xˆ2 + yˆ2 -1)ˆ2 + (yˆ2 - 1)ˆ2’, [-2 2 -1.5 1.5])
colorbar
view(-30, 30)
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Example 4

Consider the function f (x, y) =
x + y

x2 + y2 + 1
over R2.

∇f (x, y) =
1

(x2 + y2 + 1)2

[
(x2 + y2 + 1)− 2(x + y)x
(x2 + y2 + 1)− 2(x + y)y

]
:= 0. ⇒

−x2 − 2xy + y2 = −1, x2 − 2xy− y2 = −1
⇒ xy = 1/2 (adding), x2 = y2 (subtracting)
⇒ stationary points are ( 1√

2
, 1√

2
), (−1√

2
, −1√

2
)

For any (x, y)> ∈ R2, from the Cauchy-Schwarz inequality,

f (x, y) =
(x, y)> · (1, 1)>

x2 + y2 + 1
≤
√

2

√
x2 + y2

x2 + y2 + 1
≤
√

2 max
t≥0

t
t2 + 1

≤
√

2
2

.

∵ (t− 1)2 ≥ 0⇒ t2 + 1 ≥ 2t
∵ f ( 1√

2
, 1√

2
) =

√
2

2 ∴ ( 1√
2

, 1√
2
) is the global maximum point.

Similarly, ∵
(−x,−y)> · (1, 1)>

x2 + y2 + 1
≤
√

2
2

∴ f (x, y) ≥ −
√

2
2

∵ f (−1√
2

, −1√
2
) = −

√
2

2 ∴ (−1√
2

, −1√
2
) is the global minimum point.
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Example 5

Consider the function f (x1, x2) = −2x2
1 + x1x2

2 + 4x4
1 over R2.

∇f (x1, x2) =

[
−4x1 + x2

2 + 16x3
1

2x1x2

]
:= 0.

⇒ stationary points are (0, 0), (1/2, 0), (−1/2, 0).

The Hessian of the function is ∇2f (x1, x2) =

[
−4 + 48x2

1 2x2
2x2 2x1

]
.

∇2f (1/2, 0) =
[

8 0
0 1

]
� 0. ∴ (1/2, 0) is a strict local minimum

point (not global, f (−1, x2) = 2− x2
2 → −∞, x2 → ∞)

∇2f (−1/2, 0) =
[

8 0
0 −1

]
, indefinite. ∴ (−1/2, 0) saddle point

∇2f (0, 0) =
[
−4 0
0 0

]
, a negative semidefinite matrix.

∵ f (α4, α) = α6(−2α2 + 1 + 4α10) > 0
f (−α4, α) = α6(−2α2 − 1 + 4α10) < 0 for 0 < α� 1

∴ (0, 0) is a saddle point of f
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Contour and surface plots of Example 5
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and hence since the Hessian is indefinite, (−0.5,0) is a saddle point of f . Finally, the
Hessian of f at the stationary point (0,0) is

∇2 f (0,0) =
�−4 0

0 0

�
.

The fact that the Hessian is negative semidefinite implies that (0,0) is either a local maxi-
mum point or a saddle point of f . Note that

f (α4,α) =−2α8+α6+ 4α16 = α6(−2α2+ 1+ 4α10).

It is easy to see that for a small enough α > 0, the above expression is positive. Similarly,

f (−α4,α) =−2α8−α6 + 4α16 = α6(−2α2− 1+ 4α10),

and the above expression is negative for small enough α > 0. This means that (0,0) is a
saddle point since at any one of its neighborhoods, we can find points with smaller values
than f (0,0) = 0 and points with larger values than f (0,0) = 0. The surface and contour
plots of the function are given in Figure 2.4.
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Figure 2.4. Contour and surface plots of f (x1, x2) =−2x2
1+x1 x2

2+4x4
1 . The three stationary

point (0,0), (0.5,0), (−0.5,0) are denoted by asterisks. The point (0.5,0) is a strict local minimum, while
(0,0) and (−0.5,0) are saddle points.

2.4 Global Optimality Conditions
The conditions described in the last section can only guarantee—at best—local optimality
of stationary points since they exploit only local information: the values of the gradient
and the Hessian at a given point. Conditions that ensure global optimality of points must
use global information. For example, when the Hessian of the function is always positive
semidefinite, all the stationary points are also global minimum points. Later on, we will
refer to this property as convexity.

———————————
ezsurfc(’-2*xˆ2 + x*yˆ2 + 4*xˆ4’, [-1 1 -1 1])
colorbar
view(-45, 30)
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Global optimality conditions

Theorem: Let f : Rn → R be a twice continuously differentiable
function. Assume that ∇2f (x) � 0, ∀ x ∈ Rn. Let x∗ ∈ Rn be a
stationary point of f . Then x∗ is a global minimum point of f .
Proof: By the linear approximation theorem, ∀ x ∈ Rn, ∃ zx ∈ (x∗, x) such that

f (x)− f (x∗) =
1
2
(x− x∗)>∇2f (zx)(x− x∗).

Since∇2f (zx) � 0, we have f (x) ≥ f (x∗). x∗ is a global minimum point of f . �

Example:
f (x) := x2

1 + x2
2 + x2

3 + x1x2 + x1x3 + x2x3 + (x2
1 + x2

2 + x2
3)

2.

∇f (x) =

2x1 + x2 + x3 + 4x1(x2
1 + x2

2 + x2
3)

2x2 + x1 + x3 + 4x2(x2
1 + x2

2 + x2
3)

2x3 + x1 + x2 + 4x3(x2
1 + x2

2 + x2
3)

.

Obviously, (x1, x2, x3) = (0, 0, 0) is a stationary point.
The Hessian is ∇2f (x) = A + B(x) + C(x), where

A =

2 1 1
1 2 1
1 1 2

 � 0, since it is diagnoally dominant with positive diagonal

elements, B(x) = 4(x2
1 + x2

2 + x2
3)I3 � 0, and C(x) = 8xx> � 0.

∴ ∇2f (x) � 0 ∴ x = (0, 0, 0)> is a global minimum point of f over R3.
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Quadratic functions

Quadratic functions are an important class of functions that are useful
in the modeling of many optimization problems.

Definition: A quadratic function over Rn is a function of the form

f (x) = x>Ax + 2b>x + c,

where A ∈ Rn×n is symmetric, b ∈ Rn, and c ∈ R.

The gradient and Hessian of the above quadratic function f (x):

∇f (x) = 2Ax + 2b, ∇2f (x) = 2A.

Important properties of quadratic functions:
(1) x is a stationary point of f iff Ax = −b.
(2) If A � 0, then x is a global minimum point of f iff Ax = −b.

Proof: see Theorem on page 27. �

(3) If A � 0, x = −A−1b is a strict global minimum point of f .
Proof: If A � 0, then x = −A−1b is the unique solution to Ax = −b. Hence,
it is the unique global minimum point of f . �

Note: In (3), the minimal value of f is given by
f (x) = (−A−1b)>A(−A−1b)− 2b>A−1b + c = c− b>A−1b.
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Coerciveness of quadratic functions

Theorem: Let f (x) = x>Ax + 2b>x + c, where A ∈ Rn×n is symmetric,
b ∈ Rn, and c ∈ R. Then f is coercive if and only if A � 0.
Proof:
(⇒) Assume that A � 0. Then x>Ax ≥ α‖x‖2 with α = λmin(A) > 0. Thus,

f (x) ≥ α‖x‖2 − 2‖b‖‖x‖+ c = α‖x‖
(
‖x‖ − 2

‖b‖
α

)
+ c→ ∞, as ‖x‖ → ∞.

Therefore, f is coercive.
(⇐) Assume that f is coercive. We need to prove that A � 0. We first show that there
does not exist a negative eigenvalue. Suppose ∃ 0 6= v ∈ Rn, λ < 0 s.t. Av = λv. Then
for any α ∈ R,

f (αv) = λ‖v‖2α2 + 2(b>v)α + c→ −∞ as α→ ∞.

This is a contradiction. We now show that 0 cannot be an eigenvalue of A. Suppose
∃ 0 6= v ∈ Rn s.t. Av = 0. Then for any α ∈ R,

f (αv) = 2(b>v)α + c.

If b>v = 0 then f (αv)→ c as α→ ∞. If b>v > 0 then f (αv)→ −∞ as α→ −∞.
If b>v < 0 then f (αv)→ −∞ as α→ ∞. All these contradict the coerciveness of f . �
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Characterization of the nonnegativity of quadratic functions

Theorem: Let f (x) = x>Ax + 2b>x + c, where A ∈ Rn×n is symmetric,
b ∈ Rn, and c ∈ R. Then the following two claims are equivalent:

(a) f (x) = x>Ax + 2b>x + c ≥ 0, ∀ x ∈ Rn.

(b)
[

A b
b> c

]
� 0.

Proof:
(b)⇒ (a): For any x ∈ Rn, 0 ≤

[
x
1

]> [ A b
b> c

] [
x
1

]
= x>Ax + 2b>x + c⇒ (a).

(a)⇒ (b): We begin by showing that A � 0.
Suppose not. ∃ 0 6= v ∈ Rn and λ < 0 s.t. Av = λv. Thus, for any α ∈ R,

f (αv) = λ‖v‖2α2 + 2(b>v)α + c→ −∞ as α→ −∞,

contradicting the nonnegativity of f . Our objective is to prove (b). We want to show

that for any y ∈ Rn and t ∈ R,
[

y
t

]> [ A b
b> c

] [
y
t

]
≥ 0, which is equivalent to

y>Ay + 2tb>y + ct2 ≥ 0. (?)

If t = 0 then y>Ay + 2tb>y + ct2 = y>Ay ≥ 0, since A � 0. We obtain (?).
If t 6= 0 then 0 ≤ t2f (y/t) = y>Ay + 2tb>y + ct2, we have (?). �
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