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Global minimum and global maximum

Definition: Let f : S — R be a real-valued function defined on a
nonempty set S C R".

(1) x* € Sis called a global minimum point (minimizer) of f over S if

f(x*) <f(x),VxeS.

(2) x* € Sis called a strict global minimum point (minimizer) of f over
Siff(x*) <f(x), Vx* #x€S.

(8) x* € Sis called a global maximum point (maximizer) of f over S if

flx) <f(x*),VxeS.

(4) x* € Sis called a strict global maximum point (maximizer) of f over

Siff(x) < f(x*), Vx* #x €8S.

(5) The set S on which the optimization of f is performed is called
the feasible set, and any point x € S is called a feasible solution.

Note: We will frequently omit the adjective “global”.
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Minimal value and maximal value of f over S

Definition: Let f : S — R be a real-valued function defined on a
nonempty set S C R".

(1) x* € Sis called a global optimum of f over S if it is either a global
minimizer or a global maximizer.

(2) The minimal value of f over S := inf{f(x) : x € S}. Ifx* € Sisa
global minimum of f over S, then inf{f(x) : x € S} = f(x").

(3) The maximal value of f over S := sup{f(x) : x € S}. If x* € Sisa
global maximum of f over S, then sup{f(x) : x € S} = f(x").

(4) The set of all global minimizers of f over S is denoted by
argmin{f(x) : x € S}.
The set of all global maximizers of f over S is denoted by

argmax{f(x) :x € S}.
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Example 1

Find the global minimum and maximum points of f(x,y) = x + y over
S=B[0,1]={(x,y) " : 22 +y> <1}.

@ By the Cauchy-Schwarz inequality, for any (x,y) " € S, we have
x+y= [} V2 +H2V12 412 < V2.
Therefore, the maximal value of f over S is upper bounded by
/2. Note that (\[ \[) €s andf( ) V2 and this is the
only point that attains this value. Thus, ( el %) is the strict
global maximum point of f over S, and the maximal value is /2.
@ Similarly, we can show that —(x +y) < V2 = x+ y> —2.
Thus, (\_/—%, \_/—%) is the strict global minimum point of f over S,

and the minimal value is —v/2.
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Example 2

Consider the following 2-D function defined over the entire space:

_ Xty
fey) = apt

The contour and surface plots of the function are given below:

@ The global maximizer = (%, %), the maximal value = %

N

-1

@ The global minimizer = ( ), the minimal value =

5

=1 -1
V2 V2
The proof of these facts will be given later.
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Local minimum and local maximum

Definition: Let f : S — R be a real-valued function defined on a
nonempty set S C R".

(1) x* € Sis called a local minimum point of f over Sif 3r > 0s.t.
f(x*) <f(x),Vxe SNB(x*r).

(2) x* € Sis called a strict local minimum point of f over Sif 3r > 0
st f(x*) <f(x), Vx* #x € SNB(x*,r).

(3) x* € Sis called a local maximum point of f over Sif 3r > O s.t.
flx) <f(x*),Vx e SNB(x*r).

(4) x* € Sis called a strict local maximum point of f over Sif 3r > 0
s.t. f(x) < f(x*), Vx* #x € SNB(x*,r).
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Example

Consider the following 1-D function defined over [—1, 8]:

(x—1)2+2, -1<x<1,
2, 1<x<2,
—(x—2)2+2, 2<x<25,
f(x) =14 (x—3)2+15, 25<x<4,
—(x=5)2+35  4<x<6,
—2x 4+ 14.5, 6 <x<6.5,
2x — 11.5, 6.5 <x<8.

Classify each of the points x = —1,1,2,3,5,6.5,8 as strict/nonstrict,
global/local, minimum/maximum points.

x
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First order optimality condition for local optimum points

Theorem: Let f : U — R be a function defined on a set & # U C R".
Assume that x* € int(U) is a local optimum point and that all the partial
derivatives of f exist at x*. Then Vf(x*) = 0. (Fermat’s theorem in 1D)
Proof: Given 1 < i < n, we define the function g;(t) := f(x* + te;).
Then g; is differentiable at t = 0 and g/(0) = Vf(x*) - e; = %(x*).
Since x* is a local optimum point of f, it follows that t = 0 is a local

optimum of g;. By Fermat’s theorem, we have g/(0) = 0, which
implies that Vf(x*) =0. O

Note: First order optimality condition is only a necessary condition.
The points that gradient vanishes deserve an explicit definition.

Definition: Lef f : U — R be a function defined on a set @ # U C R".
Assume that x* € int(U) and all the partial derivatives of f exist over some
neighborhood of x*. If Vf (x*) = 0, then x* is called a stationary point of f.

Suh-Yuh Yang ( 1BiiE), Math. Dept., NCU, Taiwan MA 5037 /Chapter 2: Unconstrained Optimization — 8/30



Positive definiteness

@ Definition: A symmetric matrix A € R"*" is called positive
semidefinite, denoted by A = 0, if x' Ax > 0,V x € R".

@ Definition: A symmetric matrix A € R"*" is called positive definite,
denoted by A > 0, ifxTAx >0,V0#xeR"

@ Example: Let A := [_21 _11]. Vx=(x1,x)" € R? wehave
2 -1 |x
x Ax = [x1, x2] [1 1] [x;]

= 2 —2xmo + x5 =234 (x —x)2 > 0.

Since x% +(x1 —x2)?> = 0iff x; = x, = 0, we have A > 0.

; ﬂ . One can show that A is not positive

definite. Hint: consider x = (1,—1)"

@ Example: Let A := [
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The diagonal components of a positive definite matrix

@ Let A € R""and A >~ 0. Then the diagonal elements of A are
positive. Proof: A;; = e Ae; >0, Vi. [

@ Let A € R and A > 0. Then the diagonal elements of A are
nonnegative.

@ Definition: A < 0 (negative semidefinite) iff —A > 0.

A < 0 (negative definite) iff —A > 0.

@ Definition: A symmetric matrix A € R"*" is called indefinite if

Jx,y € R"s.t. x"Ax > 0and y' Ay < 0.

@ Let A € R and A < 0. Then the diagonal elements of A are
negative.

@ Let A€ R""and A =< 0. Then the diagonal elements of A are
nonpositive.

@ Let A € R"*" be a symmetric matrix. If there exist positive and
negative elements in the diagonal of A, then A is indefinite.
Proof: Let i and j be the indices such that A;; > 0 and Aj;; < 0.
Then elTAei = A;; > 0and e]TAej =A;<0. 0O
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Eigenvalue characterization theorem

Let A € R"*" be a symmetric matrix. Then

@ A > 0if and only if all its eigenvalues are positive.

Proof: By the spectral decomposition theorem, there exist an orthogonal matrix U
and a diagonal matrix D = diag(d,, - - - ,d,) whose diagonal elements are the
eigenvalues of A, for which U'" AU = D. For any 0 #x € R", lety = U lx. Then
n
x Ax = yT LITALIy = yTDy = Zd,y%.
i=1
Therefore, x" Ax > 0 for any x # 0 if and only if Y-, d;y? > 0 for any y # 0.
(1) For any given i, let y = e;, we have d; > 0, i.e., all eigenvalues are positive.
(2)Ifd; >0V i then Y ; diy? > Oforany y # 0,ie,x" Ax > 0 forany x # 0. O

@ A > 0ifand only if all its eigenvalues are nonnegative.
® A < 0ifand only if all its eigenvalues are negative.
@ A = 0ifand only if all its eigenvalues are nonpositive.

@ A is indefinite if and only if it has at least one positive eigenvalue and
at least one negative eigenvalue.
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Trace and determinant

@ IfA > 0(> 0), then Tr(A) > (>)0 and det(A) > (>)0.
Key of the proof: The trace and determinant of a symmetric matrix are the sum
and product of its eigenvalues respectively. [

@ Above two conditions are necessary and sufficient for 2 x 2 matrix A.

Key of the proof: For any two real number a,b € R, one has a,b > (>)0 if and only
ifa+b>(>)0andab> (>)0. O

@ Example: Consider the matrices

1 1 1
A= E El,’], B:=1]1 1 1
1 1 01

(1) A > 0since Tr(A) =7 > 0 and det(A) = 11 > 0.

(2) As for the matrix B, Tr(B) = 2.1 > 0 and det(B) = 0. Even so,
we cannot conclude that the matrix B is positive semidefinite. In
fact, B is indefinite since

e Bey =1>0, (ex—e3) Bley—e3)=—09<0.
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Positive semidefinite square root

GivenA = 0,let A = UDU " be the spectral decomposition, where U
is an orthogonal matrix, D = diag(dy,d,, - - - ,dy) is a diagonal matrix
whose diagonal elements are the eigenvalues of A. Since A = 0, we
havedq,dy, -+ ,d, > 0. We define

A2 = UEU", E =diag(\/di,\/ds, - ,\/dy).

Obviously,
= UEU'UEU' =UEEU' =uDU' = A

N\H

AZA

The matrix A? is called the positive semidefinite square root.
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Principal minors criterion

@ Definition: Given an n x n matrix, the determinant of the upper left
k x k submatrix is called the kth principal minor, denoted by Dy(A).

@ Example: The principal minors of the k x k matrix
ap;;p M2 413
A= |ay axp a3
431 a3 433
are D1(A) = ay,

D3(A) =det |ax1 axn a3

D»(A) = det [“” 12
as1 asp ass

a1 a2 M3
a1 azz]'

@ Principal minors criterion: Let A € R™*" be a symmetric matrix.
Then A > 0 if and only if D1(A) > 0, Da(A) >0, - -+, Dy(A) > 0.

Note: It cannot be used for detecting positive semidefiniteness!
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Diagonally dominant matrices

@ Definition: Let A € R™™" be a symmetric matrix. Then

(1) A'is called diagonally dominant if |A;;| > Y |Ayl, Vi.

(2) Ais called strictly diagonally dominant if |A;;| > Y.; [Ay, Vi.
@ Positive semidefiniteness: Let A € R"*" be a symmetric matrix.

(1) If A is a diagonally dominant matrix whose diagonal elements are
nonnegative. Then A = 0.

(2) If Ais a strictly diagonally dominant matrix whose diagonal
elements are positive. Then A - 0.

Proof: (1) Suppose 3 A < 0 an eigenvalue of A. Let u = (uy,--- ,u,) " bea
corresponding eigenvector. Let |u;| = max{|u1], - -, [ux| }. Then by Au = Au,

i = Allil = L Age] < (S 1451) Il < Al
i i
implying |A;; — A| < |Aj;|. This is a contradiction.

(2) From (1), we know that A > 0. Thus, all we need to show is that A has no
zero eigenvalues. Suppose 3 eigenvalue A = 0, u # 0s.t. Au = 0. Similar to part

(1), we obtain
|Aji||u;] = ‘EAz]u]‘ < ( ‘A1]|)|Mz| < |Aji|uil.

This is obviously a contradiction. [
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Necessary second order optimality condition

Theorem: Let f : U — R be a function defined on an open set U C R".
Assume that f is twice continuously differentiable over U and that x* is a
stationary point. Then the following hold:

(1) Ifx* is a local minimum point of f over U, then V2f(x*) =

0.
(2) Ifx* is a local maximum point of f over U, then V2f(x*) < 0.
Proof: (1) Since x* is a local minimum point, 3 B(x*,r) C U for which ( *) < f (x),
Vx € B(x*,r).Let0 #d € R". Forany 0 < & < m,wehavex; :=x* +ad € B(x*,r)
and f(x%) > f(x*). By the linear approximation theorem, 3 z, € (x*,x}) s.t.
* * * * 1 * * 0(2
Fl) —f@) = V(') (= x%) + 5 (x5 —2) TV (20) (4 — ) = 54 V2f(z0)d.
——
0
Thus, dTVZf(zk)d >0,Vae (0, HdH) Using the fact that z, — x* as« — 0%, and the

continuity of the Hessian, we obtain d ' V2f (x*)d > 0. We conclude that V2 (x*) >
(2) Employing the result of part (1) on the function —f, we obtain (2). O
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Sufficient second order optimality condition

Theorem: Let f : U — R be a function defined on an open set U C R".
Assume that f is twice continuously differentiable over U and that x* is a
stationary point. Then the following hold:

(1) If V*f(x*) = 0, then x* is a strict local minimum point of f over U.
(2) If V*f(x*) < 0, then x* is a strict local maximum point of f over U.

Proof: (1) Since the Hessian is continuous, it follows that there exists a ball B(x*,r) C U
s.t. V2f(x) = 0,V x € B(x*,r) (using the principal minors criterion on page 14). By the
linear approximation theorem, it follows that for any x € B(x*,r), 3 zx € (x*,x) (hence
zx € B(x*,r)) s.t.

flx) =f(x") = %(x =) V2 f () (x = x7).
Since V2f(zx) > 0, it follows that
flx)—f(x*) >0, forx#x"
That is, x* is a strict local minimum point of f over U.

(2) This part follows from part (1) by considering the function —f. [
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Sufficient condition for a saddle point

@ Definition: Let f : U — IR be a function defined on an open set
U C R". Assume that f is continuously differentiable over U. A
stationary point x* is called a saddle point of f over U if it is neither a
local minimum point nor a local maximum point of f over U.

@ Sufficient condition for a saddle point: Let f : U — R bea
function defined on an open set U C IR". Assume that f is twice
continuously differentiable over U and that x* is a stationary point. If
V2f(x*) is an indefinite matrix, then x* is a saddle point of f over U.
Proof: Let A > 0 be an eigenvalue of V2f(x*) with a normalized eigenvector v.

Since U is open, 37 > 0s.t. x* +av € U,V a € (0, 7). By the quadratic
approximation theorem and Vf(x*) = 0, we have

2
fx" +av) = f(x*)+£0TV2f(x*)v+0(0fZIIVH2)

76 + 22 ol o olP) = £x°) + 2 4 o(a?)
Since ( ) —0asa — 01,3 & e (0,7) s.t. o(a?) > —%a2, YV € (0,¢1).

Hence, f (x +av) > f(x*). This shows that x* cannot be a local maximum point
of f over U. Similarly, we can show that x* cannot be a local minimum point of f
over U. Therefore, x* is a saddle point of f over U. [
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Weierstrass theorem

@ Weierstrass Theorem: Lef f : @ # C C R" — R be a continuous
function and C is a compact set. Then there exist a global minimum
point of f over C and a global maximum point of f over C.

@ Definition: Let f : R" — IR be a continuous function defined over
R". The function f is called coercive if | lﬁm f(x) = oo.
X||—o0

@ Attainment under coerciveness: Letf f : R" — IR be a continuous
and coercive function and let S C IR" be a nonempty closed set. Then f
has a global minimum point over S.

Proof:

(1) Letxp € S. Since f is coercive, IM > 0s.t. f(x) > f(xp), Vx € R" and
[x] > M.

(2) Since any global minimizer x* of f over S satisfies f(x*) < f(xp), it follows
that the set of global minimizers of f over S is the same as the set of global
minimizers of f over S N B[0, M].

(3) The set SN B[0, M] is compact and nonempty, by the Weierstrass theorem,
there exists a global minimizer of f over S N B[0, M] and hence also over S.

O
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Example 1

Consider the continuous function f(x1, x2) = x7 + x5 over the set
C={(x,x) € R? : 11 < —1}.

@ Since C is not bounded, the Weierstrass theorem does not
guarantee the existence of global minimizer and maximizer of f
over C. Obviously, f has no global maximizer over C.

@ f is coercive and C is closed, f has a global minimizer over C.

@ In the interior of C: Vf(xq,x2) = 0= (x1,x2) = (0,0) € C.

At the boundary of C: {(x,x2) :x1 +xp = =1} = x1 = —xp — 1.
8(0) :==f(—x2—1Lx2) = (—x2 — 1) + 23

) =2(1+x)+20=>¢(x)=0=xn=—1=x =—1.
Thus, (x1,%2) = (—4, 1) is the only candidate for a global

minimum point. Therefore, (x1,%2) = (—%, —1) is the global
minimum point of f over C.
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Example 2

Consider the function f(x,xp) = 2x3 + 3x3 + 3x2x, — 24x; over R2.

. 6x% +6x1%0 | . .
® Vf(x1,x) = { 6xy+ 302 — 24| 0. Then the stationary points
of the function f are (x1,x2) = (0,4), (4, —4), (-2,2).

2x1 + x2 xl}

@ The Hessian of f is given by V2f(x;,x2) = 6 [ . 1
1

4 0
01

It is not a global minimum point since f(x1,0) = 2x3 — —o0 as
X1 — —oQ.
4 4

2004 _4) —
V2f(4,—4) = 6 [4 1],
matrix. .. (4, —4) is a saddle point.

V3(-2,2) =6 [:; _12] is indefinite, since it has both positive

e V3(0,4)=6 [ ] = 0= (0,4) is a strict local minimum point.

tr(A) > 0 but det(A) < 0, an indefinite

and negative elements on its diagonal. .. (—2,2) is a saddle point.
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Example 3

Consider the function f(x1,x2) = (x3 +x3 — 1) + (x3 — 1) over R%.
_ (3 +x3—1)x L
@ Vf(x1,x) =4 {(x% B m 4 (21 T 0. Then the
stationary points are (0,0), (1,0), (—1,0),(0,1), (0, —1).
@ The Hessian of the gunct2ion is
V2 (x1,x2) = 4 [3"1 Fn-l an ]

2x1Xn x% =+ 6x§ -2
e V?/(0,0) =4 {01 _02} < 0. .. (0,0) is a strict local maximum

point (not global, - f(x1,0) = (x3 —1)2 +1 — o)
V2£(1,0) = V2F(~1,0) = 4 B Ol
. (1,0),(—1,0) saddle points

V2(0,1) = V2f(0,~1) = 4 {8 .

" f(0,1) =£(0,—1) = 0 and f is bounded below by 0
. (0,1), (0, —1) are global minimum points

indefinite matrix.

] > 0, no conclusion!
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Contour and surface plots of Example 3

5 —1 —-05 O 0.5 1 1.5

Figure 2.3. Contour and surface plots of f(x,,x,) = (x] + x3 — 1)? + (x7 — 1)%. The five
stationary points (0,0),(0,1),(0,—1),(1,0),(—1,0) are denoted by asterisks. The points (0,—1),(0,1)
are strict local minimum points as well as global minimum points, (0,0) is a local maximum point, and
(—1,0),(1,0) are saddle points.

ezsurfc(/ (x"2 + y*2 -1)"2 + (y"2 - 1)"2’, [-2 2 -1.5 1.5])
colorbar
view (=30, 30)
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Example 4

x+y

Consider the function f(x,y) = Tipi over R?.
B 1 (P +y*+1) —2(x+y)x] _
° Vf(xy) = m P+ +1)—20x+y)y| 0. =
2 —2xy+y?P = —1,x°> —2xy —y* = —1
= xy = 1/2 (adding), x> = y? (subtracting)
= stationary points are (%, %), (\_7%, \_7%)
@ Forany (x,y) " € R?, from the Cauchy-Schwarz inequality,
(5970, NCEY: t_2
= < < —.
fGy) x2+y2+1 SV A SV P S
(t=1)2>0=2+1>2t
° f(%, %) = % . (%’ %) is the global maximum point.
i (—x—y'- QD" _ V2 —V2
.. < Yz . > _ V-
Similarly, . 2P+ 1 S5 floy) = ]
f(fl \‘[1) _5[ : (’\[1 \f) is the global minimum point.
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Example 5

Consider the function f(x1,x2) = —2x3 + x1x3 + 4x] over R2.
| —4x + x% + 16x:i" L
@ Vf(x1,x2) = { 221, =0.

= stationary points are (0,0),(1/2,0),(—1/2,0).

—4 +48x2 2x2}

@ The Hessian of the function is sz (x1,%0) = [ 2% 2y
2 1

e V?f(1/2,0) = B (1)

point (not global, f(—1,xy) =2 — x3 — —00, X — 0)

V3(-1/2,0) = {g _01], indefinite. .. (—1/2,0) saddle point

} = 0. .. (1/2,0) is a strict local minimum

V3£(0,0) = [0
ot a) = ab(—242 +1+4al%) >0

—at,a) =ab(—24% —1+4a'0) < 0for0<a < 1
0,0) is a saddle point of f

0 . s .
O] , a negative semidefinite matrix.
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Contour and surface plots of Example 5

—1 —0.5 (o] 0.5 1

Figure 2.4. Contour and surface plots of f(x,,x,) = —2x]+x,x] +4x}. The three stationary
point (0,0),(0.5,0),(—0.5,0) are denoted by asterisks. The point (0. 5 Q)isa slrlct local minimum, while
(0,0) and (—0.5,0) are saddle points.

ezsurfc(/-2+xx"2 + xxy"2 + 4%x~4’, [-1 1 -1 17])
colorbar
view (-45, 30)
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Global optimality conditions

@ Theorem: Let f : R" — IR be a twice continuously differentiable
function. Assume that V2f(x) = 0,V x € R". Let x* € R" bea
stationary point of f. Then x* is a global minimum point of f.

Proof: By the linear approximation theorem, V x € R", 3 zy € (x*,x) such that
* 1 * *
fo) —f(x') = 5 (e — ") ' V2f () (x — ).
Since V2f(zx) = 0, we have f(x) > f(x*). x* is a global minimum point of f. [J
@ Example:
Fx) =2 + 23+ 23 + x120 + 3123 + Xox3 + (32 + 2% +13)2.

2x1 + x4 x3 4 4x1 (¥3 + 23 +13)

2xp +x1 +x3 +4xo(xf +x3 +33) |

2x3 + x1 + X2 + 4x3(x§ + x5 + x3)

Obviously, (x1,x2,x3) = (0,0,0) is a stationary point.

The Hessian is V?f(x) = A + B(x) + C(x), where

2 1 1
A=|1 2 1
11 2

elements, B(x) = 4(x? +x3 +x3)I; = 0,and C(x) = 8xx ™ = 0.

o V3(x) =0 - x=(0,0,0)7 is a global minimum point of f over R3.

Vf(x) =

> 0, since it is diagnoally dominant with positive diagonal
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Quadratic functions

Quadratic functions are an important class of functions that are useful
in the modeling of many optimization problems.

@ Definition: A quadratic function over R" is a function of the form
flx) =xTAx+2b'x +¢,
where A € R"" is symmetric, b € R", and c € R.

@ The gradient and Hessian of the above quadratic function f (x):
Vf(x) = 2Ax +2b, V?f(x) = 2A.

@ Important properties of quadratic functions:
(1) «xis a stationary point of f iff Ax = —b.
(2) If A = 0, then x is a global minimum point of f iff Ax = —b.
Proof: see Theorem on page 27. [
(3) IfA = 0,x = —A~'b is a strict global minimum point of f.

Proof: If A = 0, then x = —A~1b is the unique solution to Ax = —b. Hence,
it is the unique global minimum point of f. [

Note: In (3), the minimal value of f is given by
f(x) = (A7) TA(~A"p) —2b"A Wb +c=c—b A"'b.
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Coerciveness of quadratic functions

Theorem: Lef f(x) = x"Ax+2b" x + ¢, where A € R"™" js symmetric,
b € R", and c € R. Then f is coercive if and only if A > 0.

Proof:
(=) Assume that A > 0. Then x " Ax > a||x||? with & = Apin(A) > 0. Thus,
b
£3) > a2 =20l el + ¢ =l (1ol =200 ) e oo, as ) > 0

Therefore, f is coercive.
(<) Assume that f is coercive. We need to prove that A >~ 0. We first show that there
does not exist a negative eigenvalue. Suppose 30 # v € R", A < 0s.t. Av = Av. Then
forany a € R,

f(av) = Al|o|?a® +2(b v)a +c — —c0  asa — co.
This is a contradiction. We now show that 0 cannot be an eigenvalue of A. Suppose
30 #v € R"s.t. Av = 0. Then forany & € R,

flav) =2(b v)a +c.

Ifb"v = 0then f(av) — casa — co. If b v > 0 then f(av) — —co as x — —oo.
Ifb"v < 0 then f(av) — —co as @ — co. All these contradict the coerciveness of f.  [J
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Characterization of the nonnegativity of quadratic functions

Theorem: Let f(x) = x| Ax +2b ' x + ¢, where A € R"™" is symmetric,
b € R", and c € R. Then the following two claims are equivalent:

(a) f(x) =x"Ax+2b"x+c>0,Vx € R"

A b
b = 0.
® [;r o =
Proof: Tra o
(b) = (a): Forany x € R", 0 < {ﬂ {bT c] {ﬂ =x"Ax+2b"x+c = (a).

(a) = (b): We begin by showing that A > 0.
Suppose not. 30 # v € R" and A < 0s.t. Av = Av. Thus, forany « € R,

f(av) = Al|v|?a® +2(b"v)a +¢c — —c0 asa — —oo,
contradicting the nonnegativity of f. Our objective is to prove (b). We want to show

A
that forany y € R" and f € R, {ﬂ Lj}r ﬂ {ﬂ > 0, which is equivalent to

y Ay +2tb Ty +ct? > 0. (%)

Ift =0theny Ay +2tb y+ct2 =y Ay > 0, since A = 0. We obtain ().
If t # 0 then 0 < 2f(y/t) = yT Ay +2tb 'y + ct2, we have (x). 0
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