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Solution of overdetermined systems

Consider an overdetermined linear system:

Ax = b,

where A ∈ Rm×n, m ≥ n, and b ∈ Rm. We assume that A has a full
column rank, rank(A) = n. In this setting, the system is usually
inconsistent (has no solution) and a common approach for finding an
approximate solution is to

(LS) : min
x∈Rn

‖Ax− b‖2,
or equivalently, to

(LS) : min
x∈Rn

{
f (x) := x>(A>A)x− 2(A>b)>x + ‖b‖2

}
.

Since A is of full column rank, ∇2f (x) = 2A>A � 0, ∀ x ∈ Rn.
Therefore, (by Lemma 2.41), the unique stationary point

xLS = (A>A)−1A>b

is the optimal solution of problem (LS), and xLS is called the least
squares solution of the system Ax = b.
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The normal system

It is quite common not to write the explicit expression for xLS
but instead to write the associated system of equations that
defines it:

(A>A)xLS = A>b.
The above system of equations is called the normal system.

If m = n and A is of full column rank, then A is nonsingular. In
this case, the least squares solution is actually the solution of the
linear system Ax = b, since

xLS = (A>A)−1A>b = A−1A−>A>b = A−1b = x.
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Example

Consider the inconsistent linear system

Ax =

1 2
2 1
3 2

 [x1
x2

]
=

0
1
1

 = b.

The least squares problem can be explicitly written as

min
(x1,x2)>∈R2

{
(x1 + 2x2)

2 + (2x1 + x2 − 1)2 + (3x1 + 2x2 − 1)2
}

.

We will solve the normal equations:1 2
2 1
3 2

> 1 2
2 1
3 2

 [x1
x2

]
=

1 2
2 1
3 2

> 0
1
1

 ,

which are the same as [
14 10
10 9

] [
x1
x2

]
=

[
5
3

]
.
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Example (cont’d)

The solution of the above system is the least squares estimate

xLS =

[
15/26
−8/26

]
.

The residual vector is given by

r := AxLS − b =

−0.038
−0.154
0.115

 ,

and ‖r‖2
2 = (−0.038)2 + (−0.154)2 + (0.115)2 ≈ 0.038.

To find the least squares solution in MATLAB:
———————–
>> A = [1, 2; 2, 1; 3, 2];
>> b = [0; 1; 1];
>> format rational;
>> A\b
ans =
15/26

-4/13
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Data fitting: linear fitting

Suppose that we are given a set of data points (si, ti), i = 1, 2, · · · , m,
si ∈ Rn and ti ∈ R, and assume that a linear relation of the form

ti = s>i x, i = 1, 2, · · · , m,

approximately holds. The objective is to find the parameters vector
x ∈ Rn. The least squares approach is to

min
x∈Rn

m

∑
i=1

(s>i x− ti)
2.

We can alternatively write the problem as

min
x∈Rn

‖Sx− t‖2,

where

S =


s>1
s>2
...

s>m

 , t =


t1
t2
...

tm

 .
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Example

Consider 30 points in R2, xi = (i− 1)/29, yi = 2xi + 1 + εi, for
i = 1, 2, · · · , 30, where εi is randomly generated from a standard
normal distribution N (0, (0.1)2). The objective is to find a line of the
form y = ax + b that best fits them. The corresponding linear system
that needs to be “solved” is

x1 1
x2 1
...

...
x30 1


︸ ︷︷ ︸

X

[
a
b

]
=


y1
y2
...

y30


︸ ︷︷ ︸

y

.

The least squares solution is (a, b)> = (X>X)−1X>y.
———————–
randn(’seed’, 319);
d = linspace(0, 1, 30)’;
e = 2*d + 1 + 0.1*randn(30, 1);
plot(d, e, ’*’)
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Example (cont’d)

>> u = [d, ones(30, 1)]\e;
>> a = u(1), b = u(2)
a =

2.0616
b =

0.9725

———————–
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Figure 3.1. Left image: 30 points in the plane. Right image: the points and the corresponding
least squares line.

>> u=[d,ones(30,1)]\e;
>> a=u(1),b=u(2)
a =

2.0616
b =

0.9725

Note that the obtained estimates of a and b are very close to the “true” a and b (2 and 1,
respectively) that were used to generate the data. The least squares line as well as the 30
points is described in the right image of Figure 3.1.

The least squares approach can be used also in nonlinear fitting. Suppose, for example,
that we are given a set of points in �2: (ui , yi ), i = 1,2, . . . , m, and that we know a priori
that these points are approximately related via a polynomial of degree at most d ; i.e., there
exists a0, . . . ,ad such that

d∑
j=0

aj u j
i ≈ yi , i = 1, . . . , m.

The least squares approach to this problem seeks a0,a1, . . . ,ad that are the least squares
solution to the linear system

⎛
⎜⎜⎜⎜⎝

1 u1 u2
1 · · · ud

1

1 u2 u2
2 · · · ud

2
...

...
...

...
1 um u2

m · · · ud
m

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
U

⎛
⎜⎜⎜⎝

a0
a1
...

ad

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝

y0
y1
...

ym

⎞
⎟⎟⎟⎠ .

The least squares solution is of course well-defined if the m × (d + 1) matrix is of a full
column rank. This of course suggests in particular that m ≥ d+1. The matrix U consists
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Nonlinear fitting

Suppose that we are given a set of points in R2, (ui, yi), 1 ≤ i ≤ m,
ui 6= uj for i 6= j, and that we know a priori that these points are
approximately related via a polynomial of degree at most d and
m ≥ d + 1, i.e., ∃ a0, a1, · · · , ad such that

d

∑
j=0

aju
j
i ≈ yi, i = 1, 2, · · · , m.

The least squares approach to this problem seeks a0, a1, · · · , ad that
are the least squares solution to the linear system

1 u1 u2
1 · · · ud

1
1 u2 u2

2 · · · ud
2

...
...

...
...

1 um u2
m · · · ud

m


m×(d+1)︸ ︷︷ ︸

:=Ud+1


a0
a1
...

ad

 =


y0
y1
...

ym

 .

The matrix Ud+1 is of a full column rank since it consists of the first d + 1
columns of the so-called m×m Vandermonde matrix which is nonsingular,
det(Um) = Π1≤i<j≤m(uj − ui) 6= 0.
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Regularized least squares

The regularized least squares (RLS) problem has the form

(RLS) : min
x∈Rn

{
‖Ax− b‖2 + λR(x)

}
.

The positive constant λ is the regularization parameter. In many
cases, the regularization is taken to be quadratic. In particular,
R(x) = ‖Dx‖2, where D ∈ Rp×n is a given matrix. Then we have

min
x∈Rn

{
fRLS(x) := x>(A>A + λD>D)x− 2(A>b)>x + ‖b‖2

}
.

Since the Hessian of the objective function is

∇2fRLS(x) = 2(A>A + λD>D) � 0,
any stationary point is a global minimum point (cf. Theorem 2.38).
The stationary points are those satisfying ∇f (x) = 0, that is

(A>A + λD>D)x = A>b.
Therefore, if A>A + λD>D � 0 then then the RLS solution is given by

xRLS = (A>A + λD>D)−1A>b.
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Example of regularized least squares solution

Let A ∈ R3×3 be given by

A =

2 + 10−3 3 4
3 5 + 10−3 7
4 7 10 + 10−3

 .

———————–
B = [1, 1, 1; 1, 2, 3];
A=B’*B + 0.001*eye(3); % cond(A) ≈ 16000 is rather large!
———————–
The “true” vector was chosen to be xtrue = (1, 2, 3)>, and b is a noisy
measurement of Axtrue:
———————–
>> x true = [1; 2; 3];
>> randn(’seed’, 315);
>> b = A*x true + 0.01*randn(3, 1)
b =
20.0019
34.0004

48.0202

The relative perturbation on the RHS btrue(:= Axtrue) is not too small!
Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan MA 5037/Chapter 3: Least Squares – 11/20



Example of regularized least squares solution (cont’d)

The matrix A is in fact of a full column rank since its eigenvalues are
all positive (eig(A)). The least squares solution xLS is given by
———————–
>> A\b
ans =

4.5446
-5.1295

6.5742———————–
Note that xLS is rather far from the true vector xtrue. We will add the
quadratic regularization function ‖Ix‖2. The regularized solution is

xRLS = (A>A + λI)−1A>b. (we take λ = 1 below)
———————–
>> x rls = (A’*A + eye(3))\(A’*b)
x rls =
1.1763
2.0318

2.8872———————–
which is a much better estimate for xtrue than xLS.
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Denoising

Suppose that a noisy measurement of a signal x ∈ Rn is given
b = x + w,

where x is an unknown signal, w is an unknown noise vector, and b is
the known measurement vector. The denoising problem is to find a
“good” estimate of x. The associated least squares problem is

min
x∈Rn

‖x− b‖2.

The optimal solution of this problem is obviously x = b, which is
meaningless. We will add a regularization term λ ∑n−1

i=1 (xi − xi+1)
2,

min
x∈Rn

{
‖Ix− b‖2 + λ‖Lx‖2

}
,

where parameter λ > 0 and L ∈ R(n−1)×n is given by

L :=


1 −1

1 −1
. . . . . .

1 −1

 .

The optimal solution is given by xRLS(λ) = (I + λL>L)−1b.
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Example

Consider the signal x ∈ R300 constructed by
———————–
t = linspace(0, 4, 300)’;
x = sin(t) + t.*(cos(t).̂ 2);
randn(’seed’, 314);
b = x + 0.05*randn(300, 1);
subplot(1, 2, 1);
plot(1:300, x, ’LineWidth’, 2);
subplot(1, 2, 2);
plot(1:300, b, ’LineWidth’, 2);

———————–
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Figure 3.2. A signal (left image) and its noisy version (right image).
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Figure 3.3. Four reconstructions of a noisy signal by RLS solutions.

smooth enough and is very close to the noisy signal b. For λ = 10 the RLS solution is a
rather good estimate of the original vector x. For λ= 100 we get a smoother RLS signal,
but evidently it is less accurate than xRLS(10), especially near the boundaries. The RLS
solution for λ= 1000 is very smooth, but it is a rather poor estimate of the original signal.
In any case, it is evident that the parameter λ is chosen via a trade off between data fidelity
(closeness of x to b) and smoothness (size of Lx). The four plots where produced by the
MATLAB commands

L=zeros(299,300);
for i=1:299

L(i,i)=1;
L(i,i+1)=-1;

end

x_rls=(eye(300)+1*L’*L)\b;
x_rls=[x_rls,(eye(300)+10*L’*L)\b];
x_rls=[x_rls,(eye(300)+100*L’*L)\b];
x_rls=[x_rls,(eye(300)+1000*L’*L)\b];
figure(2)
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Example (cont’d): λ = 1, 10, 100, 1000
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Figure 3.2. A signal (left image) and its noisy version (right image).
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Figure 3.3. Four reconstructions of a noisy signal by RLS solutions.

smooth enough and is very close to the noisy signal b. For λ = 10 the RLS solution is a
rather good estimate of the original vector x. For λ= 100 we get a smoother RLS signal,
but evidently it is less accurate than xRLS(10), especially near the boundaries. The RLS
solution for λ= 1000 is very smooth, but it is a rather poor estimate of the original signal.
In any case, it is evident that the parameter λ is chosen via a trade off between data fidelity
(closeness of x to b) and smoothness (size of Lx). The four plots where produced by the
MATLAB commands

L=zeros(299,300);
for i=1:299

L(i,i)=1;
L(i,i+1)=-1;

end

x_rls=(eye(300)+1*L’*L)\b;
x_rls=[x_rls,(eye(300)+10*L’*L)\b];
x_rls=[x_rls,(eye(300)+100*L’*L)\b];
x_rls=[x_rls,(eye(300)+1000*L’*L)\b];
figure(2)

signal x: marked with red dot
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Nonlinear least squares

Suppose that we are given a system of nonlinear equations:

fi(x) ≈ ci, i = 1, 2, · · · , m.

The nonlinear least squares (NLS) problem is formulated as

min
x∈Rn

m

∑
i=1

(
fi(x)− ci

)2.

The Gauss-Newton method is specifically devised to solve NLS problems of
the form, but the method is not guaranteed to converge to the global
optimal solution but rather to a stationary point (see §4.5).

Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan MA 5037/Chapter 3: Least Squares – 16/20



Circle fitting

Suppose that we are given m points a1, a2, · · · , am ∈ Rn. The circle
fitting problem seeks to find a circle with center x and radius r,

C(x, r) := {y ∈ Rn : ‖y− x‖ = r},
that best fits the m points. The nonlinear (approximate) equations
associated with the problem are

‖x− ai‖ ≈ r, i = 1, 2, · · · , m.

Since we wish to deal with differentiable functions, we will consider
the squared version

‖x− ai‖2 ≈ r2, i = 1, 2, · · · , m.

The NLS problem associated with these equations is

min
x∈Rn,r≥0

m

∑
i=1

(
‖x− ai‖2 − r2

)2
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Equivalent to a linear LS problem

The above NLS problem is the same as

min

{
m

∑
i=1

(
−2a>i x + ‖x‖2 − r2 + ‖ai‖2

)2
: x ∈ Rn, r ∈ R

}
.

Making the change of variables R := ‖x‖2 − r2, it reduces to

min
x∈Rn,R∈R

{
f (x, R) :=

m

∑
i=1

(
−2a>i x + R + ‖ai‖2

)2
: ‖x‖2 ≥ R

}
.

Indeed, any optimal solution (x̂, R̂) automatically satisfies ‖x̂‖2 ≥ R̂,
since otherwise, if ‖x̂‖2 < R̂, we would have for i = 1, 2, · · · , m,

−2a>i x̂ + R̂ + ‖ai‖2 > −2a>i x̂ + ‖x̂‖2 + ‖ai‖2 = ‖x̂− ai‖2 ≥ 0.

Squaring both sides and summing over i yield

f (x̂, R̂) =
m

∑
i=1

(
−2a>i x̂ + R̂ + ‖ai‖2

)2
>

m

∑
i=1

(
−2a>i x̂ + ‖x̂‖2 + ‖ai‖2

)2

= f (x̂, ‖x̂‖2).

This is a contradiction, since (x̂, R̂) is an optimal solution.
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Equivalent to a linear LS problem (cont’d)

Finally, we have the linear least squares problem:

min
y∈Rn+1

‖Ãy− b‖2,

where y = (x, R)> and

Ã =


2a>1 −1
2a>2 −1

...
...

2a>m −1

 , b =


‖a1‖2

‖a2‖2

...
‖am‖2

 .

If Ã is of full column rank, then the unique solution is

y = (Ã
>

Ã)−1Ã
>

b,

and the radius r is given by r =
√
‖x‖2 − R.
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Example: the best circle fitting of 10 points
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Figure 3.4. The best circle fit (the optimal solution of problem (3.6)) of 10 points denoted by asterisks.

The NLS problem associated with these equations is

min
x∈�n ,r∈�+

m∑
i=1

(‖x− ai‖2− r 2)2. (3.6)

From a first glance, problem (3.6) seems to be a standard NLS problem, but in this case
we can show that it is in fact equivalent to a linear least squares problem, and therefore
the global optimal solution can be easily obtained. We begin by noting that problem (3.6)
is the same as

min
x,r

+
m∑

i=1

(−2aT
i x+ ‖x‖2 − r 2+ ‖ai‖2)2 : x ∈�n , r ∈�

,
. (3.7)

Making the change of variables R= ‖x‖2− r 2, the above problem reduces to

min
x∈�n ,R∈�

+
f (x, R)≡

m∑
i=1

(−2aT
i x+R+ ‖ai‖2)2 : ‖x‖2 ≥ R

,
. (3.8)

Note that the change of variables imposed an additional relation between the variables
that is given by the constraint ‖x‖2 ≥ R. We will show that in fact this constraint can be
dropped; that is, problem (3.8) is equivalent to the linear least squares problem

min
x,R

+
m∑

i=1

(−2aT
i x+R+ ‖ai‖2)2 : x ∈�n , R ∈�

,
. (3.9)

Indeed, any optimal solution (x̂, R̂) of (3.9) automatically satisfies ‖x̂‖2 ≥ R̂ since other-
wise, if ‖x̂‖2 < R̂, we would have

−2aT
i x̂+ R̂+ ‖ai‖2 >−2aT

i x̂+ ‖x̂‖2+ ‖ai‖2 = ‖x̂− ai‖2 ≥ 0, i = 1, . . . , m.

The best circle fitting of 10 points denoted by asterisks
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