MA 5037：Optimization Methods and Applications Chapter 3：Least Squares

Suh－Yuh Yang（楊肅暟）
Department of Mathematics，National Central University Jhongli District，Taoyuan City 32001，Taiwan
syyang＠math．ncu．edu．tw
http：／／www．math．ncu．edu．tw／～syyang／

Solution of overdetermined systems

Consider an overdetermined linear system：

$$
A x=b,
$$

where $\boldsymbol{A} \in \mathbb{R}^{m \times n}, m \geq n$ ，and $\boldsymbol{b} \in \mathbb{R}^{m}$ ．We assume that \boldsymbol{A} has a full column $\operatorname{rank}, \operatorname{rank}(\boldsymbol{A})=n$ ．In this setting，the system is usually inconsistent（has no solution）and a common approach for finding an approximate solution is to
or equivalently，to

$$
(L S): \quad \min _{x \in \mathbb{R}^{n}}\|A \boldsymbol{x}-\boldsymbol{b}\|^{2}
$$

$$
(L S): \min _{\boldsymbol{x} \in \mathbb{R}^{n}}\left\{f(\boldsymbol{x}):=\boldsymbol{x}^{\top}\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right) \boldsymbol{x}-2\left(\boldsymbol{A}^{\top} \boldsymbol{b}\right)^{\top} \boldsymbol{x}+\|\boldsymbol{b}\|^{2}\right\} .
$$

Since A is of full column rank，$\nabla^{2} f(x)=2 A^{\top} A \succ 0, \forall x \in \mathbb{R}^{n}$ ． Therefore，（by Lemma 2．41），the unique stationary point

$$
x_{L S}=\left(A^{\top} \boldsymbol{A}\right)^{-1} A^{\top} b
$$

is the optimal solution of problem（LS），and $x_{L S}$ is called the least squares solution of the system $A x=b$ ．

The normal system

－It is quite common not to write the explicit expression for $x_{L S}$ but instead to write the associated system of equations that defines it：

$$
\left(A^{\top} A\right) x_{L S}=A^{\top} b
$$

The above system of equations is called the normal system．
－If $m=n$ and A is of full column rank，then A is nonsingular．In this case，the least squares solution is actually the solution of the linear system $A x=b$ ，since

$$
x_{L S}=\left(A^{\top} A\right)^{-1} A^{\top} b=A^{-1} A^{-\top} A^{\top} b=A^{-1} b=x .
$$

Example

Consider the inconsistent linear system

$$
A \boldsymbol{x}=\left[\begin{array}{ll}
1 & 2 \\
2 & 1 \\
3 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]=\boldsymbol{b}
$$

The least squares problem can be explicitly written as

$$
\min _{\left(x_{1}, x_{2}\right)^{\top} \in \mathbb{R}^{2}}\left\{\left(x_{1}+2 x_{2}\right)^{2}+\left(2 x_{1}+x_{2}-1\right)^{2}+\left(3 x_{1}+2 x_{2}-1\right)^{2}\right\} .
$$

We will solve the normal equations：

$$
\left[\begin{array}{ll}
1 & 2 \\
2 & 1 \\
3 & 2
\end{array}\right]^{\top}\left[\begin{array}{ll}
1 & 2 \\
2 & 1 \\
3 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
2 & 1 \\
3 & 2
\end{array}\right]^{\top}\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right],
$$

which are the same as

$$
\left[\begin{array}{cc}
14 & 10 \\
10 & 9
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
5 \\
3
\end{array}\right] .
$$

Example（cont＇d）

The solution of the above system is the least squares estimate

$$
x_{L S}=\left[\begin{array}{l}
15 / 26 \\
-8 / 26
\end{array}\right] .
$$

The residual vector is given by

$$
r:=A x_{L S}-b=\left[\begin{array}{c}
-0.038 \\
-0.154 \\
0.115
\end{array}\right],
$$

and $\|r\|_{2}^{2}=(-0.038)^{2}+(-0.154)^{2}+(0.115)^{2} \approx 0.038$ ．
To find the least squares solution in MATLAB：

```
>>A=[1, 2; 2, 1; 3, 2];
>> b = [0; 1; 1];
>> format rational;
>>A\b
ans=
15/26
-4/13
```


Data fitting：linear fitting

Suppose that we are given a set of data points $\left(s_{i}, t_{i}\right), i=1,2, \cdots, m$ ， $s_{i} \in \mathbb{R}^{n}$ and $t_{i} \in \mathbb{R}$ ，and assume that a linear relation of the form

$$
t_{i}=s_{i}^{\top} x, \quad i=1,2, \cdots, m,
$$

approximately holds．The objective is to find the parameters vector $x \in \mathbb{R}^{n}$ ．The least squares approach is to

$$
\min _{\boldsymbol{x} \in \mathbb{R}^{n}} \sum_{i=1}^{m}\left(s_{i}^{\top} x-t_{i}\right)^{2}
$$

We can alternatively write the problem as

$$
\min _{x \in \mathbb{R}^{n}}\|S x-t\|^{2}
$$

where

$$
\boldsymbol{S}=\left[\begin{array}{c}
s_{1}^{\top} \\
s_{2}^{\top} \\
\vdots \\
s_{m}^{\top}
\end{array}\right], \quad \boldsymbol{t}=\left[\begin{array}{c}
t_{1} \\
t_{2} \\
\vdots \\
t_{m}
\end{array}\right]
$$

Example

Consider 30 points in $\mathbb{R}^{2}, x_{i}=(i-1) / 29, y_{i}=2 x_{i}+1+\varepsilon_{i}$ ，for $i=1,2, \cdots, 30$ ，where ε_{i} is randomly generated from a standard normal distribution $\mathcal{N}\left(0,(0.1)^{2}\right)$ ．The objective is to find a line of the form $y=a x+b$ that best fits them．The corresponding linear system that needs to be＂solved＂is

$$
\underbrace{\left[\begin{array}{cc}
x_{1} & 1 \\
x_{2} & 1 \\
\vdots & \vdots \\
x_{30} & 1
\end{array}\right]}_{\boldsymbol{X}}\left[\begin{array}{c}
a \\
b
\end{array}\right]=\underbrace{\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{30}
\end{array}\right]}_{\boldsymbol{y}} .
$$

The least squares solution is $(a, b)^{\top}=\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}$ ．

```
randn('seed', 319);
d = linspace(0, 1, 30)';
e = 2*d + 1 + 0.1*randn (30, 1);
plot(d, e, '*')
```


Example（cont＇d）

```
>> u = [d, ones(30, 1)]\e;
>> a = u(1), b = u(2)
a =
    2.0616
b =
    0.9725
```


Nonlinear fitting

Suppose that we are given a set of points in $\mathbb{R}^{2},\left(u_{i}, y_{i}\right), 1 \leq i \leq m$ ， $u_{i} \neq u_{j}$ for $i \neq j$ ，and that we know a priori that these points are approximately related via a polynomial of degree at most d and $m \geq d+1$ ，i．e．，$\exists a_{0}, a_{1}, \cdots, a_{d}$ such that

$$
\sum_{j=0}^{d} a_{j} u_{i}^{j} \approx y_{i}, \quad i=1,2, \cdots, m
$$

The least squares approach to this problem seeks $a_{0}, a_{1}, \cdots, a_{d}$ that are the least squares solution to the linear system

$$
\underbrace{\left[\begin{array}{ccccc}
1 & u_{1} & u_{1}^{2} & \cdots & u_{1}^{d} \\
1 & u_{2} & u_{2}^{2} & \cdots & u_{2}^{d} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & u_{m} & u_{m}^{2} & \cdots & u_{m}^{d}
\end{array}\right]_{m \times(d+1)}}_{:=\boldsymbol{U}_{d+1}}\left[\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{d}
\end{array}\right]=\left[\begin{array}{c}
y_{0} \\
y_{1} \\
\vdots \\
y_{m}
\end{array}\right]
$$

The matrix \boldsymbol{U}_{d+1} is of a full column rank since it consists of the first $d+1$ columns of the so－called $m \times m$ Vandermonde matrix which is nonsingular， $\operatorname{det}\left(\boldsymbol{U}_{m}\right)=\Pi_{1 \leq i<j \leq m}\left(u_{j}-u_{i}\right) \neq 0$ ．

Regularized least squares

The regularized least squares（RLS）problem has the form

$$
(R L S): \min _{x \in \mathbb{R}^{n}}\left\{\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|^{2}+\lambda R(\boldsymbol{x})\right\} .
$$

The positive constant λ is the regularization parameter．In many cases，the regularization is taken to be quadratic．In particular， $R(\boldsymbol{x})=\|\boldsymbol{D} \boldsymbol{x}\|^{2}$ ，where $\boldsymbol{D} \in \mathbb{R}^{p \times n}$ is a given matrix．Then we have

$$
\min _{\boldsymbol{x} \in \mathbb{R}^{n}}\left\{f_{R L S}(\boldsymbol{x}):=\boldsymbol{x}^{\top}\left(\boldsymbol{A}^{\top} \boldsymbol{A}+\lambda \boldsymbol{D}^{\top} \boldsymbol{D}\right) \boldsymbol{x}-2\left(\boldsymbol{A}^{\top} \boldsymbol{b}\right)^{\top} \boldsymbol{x}+\|\boldsymbol{b}\|^{2}\right\} .
$$

Since the Hessian of the objective function is

$$
\nabla^{2} f_{R L S}(\boldsymbol{x})=2\left(\boldsymbol{A}^{\top} \boldsymbol{A}+\lambda \boldsymbol{D}^{\top} \boldsymbol{D}\right) \succeq \mathbf{0},
$$

any stationary point is a global minimum point（cf．Theorem 2．38）． The stationary points are those satisfying $\nabla f(x)=0$ ，that is

$$
\left(\boldsymbol{A}^{\top} A+\lambda D^{\top} D\right) x=A^{\top} b
$$

Therefore，if $\boldsymbol{A}^{\top} \boldsymbol{A}+\lambda \boldsymbol{D}^{\top} \boldsymbol{D} \succ \mathbf{0}$ then then the RLS solution is given by

$$
\boldsymbol{x}_{R L S}=\left(\boldsymbol{A}^{\top} \boldsymbol{A}+\lambda \boldsymbol{D}^{\top} \boldsymbol{D}\right)^{-1} \boldsymbol{A}^{\top} \boldsymbol{b}
$$

Example of regularized least squares solution

Let $A \in \mathbb{R}^{3 \times 3}$ be given by

$$
A=\left[\begin{array}{ccc}
2+10^{-3} & 3 & 4 \\
3 & 5+10^{-3} & 7 \\
4 & 7 & 10+10^{-3}
\end{array}\right]
$$

```
B = [1, 1, 1; 1, 2, 3];
A=B'*B + 0.001*eye (3); % cond (A)\approx16000 is rather large!
```

The＂true＂vector was chosen to be $\boldsymbol{x}_{\text {true }}=(1,2,3)^{\top}$ ，and \boldsymbol{b} is a noisy measurement of $A x_{\text {true }}$ ：

```
>> x_true = [1; 2; 3];
>> randn('seed', 315);
>> b = A*x_true + 0.01*randn(3, 1)
b =
    20.0019
    34.0004
    48.0202
```

The relative perturbation on the RHS $\boldsymbol{b}_{\text {true }}\left(:=A x_{\text {true }}\right)$ is not too small！

Example of regularized least squares solution（cont＇d）

The matrix \boldsymbol{A} is in fact of a full column rank since its eigenvalues are all positive（eig（A））．The least squares solution $x_{L S}$ is given by

```
>> A\b
ans =
    4.5446
    -5.1295
    6.5742
```

Note that $x_{L S}$ is rather far from the true vector $x_{\text {true }}$ ．We will add the quadratic regularization function $\|\boldsymbol{I} \boldsymbol{x}\|^{2}$ ．The regularized solution is

$$
\boldsymbol{x}_{R L S}=\left(\boldsymbol{A}^{\top} \boldsymbol{A}+\lambda \boldsymbol{I}\right)^{-1} \boldsymbol{A}^{\top} \boldsymbol{b} . \quad \text { (we take } \lambda=1 \text { below) }
$$

```
>> x_rls = (A'*A + eye(3))\(A'*b)
x_rls =
    1.1763
    2.0318
2.8872
```

which is a much better estimate for $x_{\text {true }}$ than $x_{L S}$ ．

Denoising

Suppose that a noisy measurement of a signal $x \in \mathbb{R}^{n}$ is given

$$
b=x+w,
$$

where x is an unknown signal，w is an unknown noise vector，and \boldsymbol{b} is the known measurement vector．The denoising problem is to find a ＂good＂estimate of x ．The associated least squares problem is

$$
\min _{x \in \mathbb{R}^{n}}\|x-b\|^{2}
$$

The optimal solution of this problem is obviously $\boldsymbol{x}=\boldsymbol{b}$ ，which is meaningless．We will add a regularization term $\lambda \sum_{i=1}^{n-1}\left(x_{i}-x_{i+1}\right)^{2}$ ，

$$
\min _{x \in \mathbb{R}^{n}}\left\{\|\boldsymbol{I} x-\boldsymbol{b}\|^{2}+\lambda\|L x\|^{2}\right\}
$$

where parameter $\lambda>0$ and $L \in \mathbb{R}^{(n-1) \times n}$ is given by

$$
L:=\left[\begin{array}{ccccc}
1 & -1 & & & \\
& 1 & -1 & & \\
& & \ddots & \ddots & \\
& & & 1 & -1
\end{array}\right]
$$

The optimal solution is given by $x_{R L S}(\lambda)=\left(I+\lambda L^{\top} L\right)^{-1} b$ ．

Example

Consider the signal $x \in \mathbb{R}^{300}$ constructed by

```
t = linspace(0, 4, 300)';
x = sin(t) + t.* (cos(t).^2);
randn('seed', 314);
b = x + 0.05*randn (300, 1);
subplot(1, 2, 1);
plot(1:300, x, 'LineWidth', 2);
subplot(1, 2, 2);
plot(1:300, b, 'LineWidth', 2);
```


Figure 3．2．A signal（left image）and its noisy version（right image）．

Example（cont＇d）：$\lambda=1,10,100,1000$

$\operatorname{signal} x$ ：marked with red dot

Nonlinear least squares

Suppose that we are given a system of nonlinear equations：

$$
f_{i}(x) \approx c_{i}, \quad i=1,2, \cdots, m
$$

The nonlinear least squares（NLS）problem is formulated as

$$
\min _{x \in \mathbb{R}^{n}} \sum_{i=1}^{m}\left(f_{i}(x)-c_{i}\right)^{2} .
$$

The Gauss－Newton method is specifically devised to solve NLS problems of the form，but the method is not guaranteed to converge to the global optimal solution but rather to a stationary point（see §4．5）．

Circle fitting

Suppose that we are given m points $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \cdots, \boldsymbol{a}_{m} \in \mathbb{R}^{n}$ ．The circle fitting problem seeks to find a circle with center x and radius r ，

$$
C(x, r):=\left\{y \in \mathbb{R}^{n}:\|y-x\|=r\right\}
$$

that best fits the m points．The nonlinear（approximate）equations associated with the problem are

$$
\left\|x-\boldsymbol{a}_{i}\right\| \approx r, \quad i=1,2, \cdots, m
$$

Since we wish to deal with differentiable functions，we will consider the squared version

$$
\left\|x-\boldsymbol{a}_{i}\right\|^{2} \approx r^{2}, \quad i=1,2, \cdots, m .
$$

The NLS problem associated with these equations is

$$
\min _{x \in \mathbb{R}^{n}, r \geq 0} \sum_{i=1}^{m}\left(\left\|x-\boldsymbol{a}_{i}\right\|^{2}-r^{2}\right)^{2}
$$

Equivalent to a linear LS problem

The above NLS problem is the same as

$$
\min \left\{\sum_{i=1}^{m}\left(-2 \boldsymbol{a}_{i}^{\top} x+\|x\|^{2}-r^{2}+\left\|\boldsymbol{a}_{i}\right\|^{2}\right)^{2}: x \in \mathbb{R}^{n}, r \in \mathbb{R}\right\}
$$

Making the change of variables $R:=\|x\|^{2}-r^{2}$ ，it reduces to

$$
\min _{x \in \mathbb{R}^{n}, R \in \mathbb{R}}\left\{f(x, R):=\sum_{i=1}^{m}\left(-2 a_{i}^{\top} x+R+\left\|\boldsymbol{a}_{i}\right\|^{2}\right)^{2}:\|x\|^{2} \geq R\right\} .
$$

Indeed，any optimal solution (\hat{x}, \hat{R}) automatically satisfies $\|\hat{x}\|^{2} \geq \hat{R}$, since otherwise，if $\|\hat{x}\|^{2}<\hat{R}$ ，we would have for $i=1,2, \cdots, m$ ，

$$
-2 a_{i}^{\top} \hat{x}+\hat{R}+\left\|a_{i}\right\|^{2}>-2 a_{i}^{\top} \hat{x}+\|\hat{x}\|^{2}+\left\|a_{i}\right\|^{2}=\left\|\hat{x}-a_{i}\right\|^{2} \geq 0
$$

Squaring both sides and summing over i yield

$$
\begin{aligned}
f(\hat{x}, \hat{R}) & =\sum_{i=1}^{m}\left(-2 \boldsymbol{a}_{i}^{\top} \hat{x}+\hat{R}+\left\|\boldsymbol{a}_{i}\right\|^{2}\right)^{2}>\sum_{i=1}^{m}\left(-2 \boldsymbol{a}_{i}^{\top} \hat{x}+\|\hat{x}\|^{2}+\left\|\boldsymbol{a}_{i}\right\|^{2}\right)^{2} \\
& =f\left(\hat{x},\|\hat{x}\|^{2}\right) .
\end{aligned}
$$

This is a contradiction，since (\hat{x}, \hat{R}) is an optimal solution．

Equivalent to a linear LS problem（cont＇d）

Finally，we have the linear least squares problem：

$$
\min _{y \in \mathbb{R}^{n+1}}\|\widetilde{A} y-\boldsymbol{b}\|^{2}
$$

where $\boldsymbol{y}=(\boldsymbol{x}, R)^{\top}$ and

$$
\widetilde{A}=\left[\begin{array}{cc}
2 a_{1}^{\top} & -1 \\
2 a_{2}^{\top} & -1 \\
\vdots & \vdots \\
2 a_{m}^{\top} & -1
\end{array}\right], \quad \boldsymbol{b}=\left[\begin{array}{c}
\left\|a_{1}\right\|^{2} \\
\left\|a_{2}\right\|^{2} \\
\vdots \\
\left\|a_{m}\right\|^{2}
\end{array}\right] .
$$

If \widetilde{A} is of full column rank，then the unique solution is

$$
y=\left(\widetilde{A}^{\top} \widetilde{A}\right)^{-1} \widetilde{A}^{\top} b
$$

and the radius r is given by $r=\sqrt{\|x\|^{2}-R}$ ．

Example：the best circle fitting of 10 points

The best circle fitting of 10 points denoted by asterisks

