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Newton’s method

We consider the unconstrained minimization problem:

min{f (x) : x ∈ Rn},
where the objective function f is twice continuously differentiable
over Rn. We will consider a second order method, namely a
method that uses, in addition to the information on function
values and gradients, evaluations of the Hessian matrices.

Main idea of Newton’s method: Given an iterate xk, the next
iterate xk+1 is chosen to minimize the quadratic approximation
of the function f around xk,

xk+1 = arg min
x∈Rn

{
f (xk) +∇f (xk)

>(x− xk)

+
1
2
(x− xk)

>∇2f (xk)(x− xk)
}

,

where we assume that ∇2f (xk) is positive definite, which implies
the well-definedness of the above problem (§2.5, Lemma 2.41).

Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan MA 5037/Chapter 5: Newton’s Method – 2/15



Newton directions

The unique minimizer of the above minimization problem is the
unique stationary point, which implies that

∇f (xk) +∇2f (xk)(xk+1 − xk) = 0,

or equivalently,

xk+1 = xk − (∇2f (xk))
−1∇f (xk).

The vector −(∇2f (xk))
−1∇f (xk) is called the Newton direction,

and the algorithm induced by the update formula is called the
pure Newton’s method.

Note that when ∇2f (xk) is positive definite for any k, pure Newton’s
method is essentially a scaled gradient method with tk = 1 for all k,
and Newton’s directions are descent directions since

f ′(xk; −(∇2f (xk))
−1∇f (xk)︸ ︷︷ ︸

Newton direction

) = −∇f (xk)
> (∇2f (xk))

−1︸ ︷︷ ︸
�0

∇f (xk) < 0.
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Pure Newton’s method

Input: ε > 0, tolerance parameter.

Initialization: Pick x0 ∈ Rn arbitrarily.

General step: For any k = 0, 1, · · · , execute the following steps

(a) Compute the Newton direction dk, which is the solution to the
linear system ∇2f (xk)dk = −∇f (xk).

(b) Set xk+1 = xk + dk.

(c) If ‖∇f (xk+1)‖ ≤ ε then stop, and xk+1 is the output.
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Convergence of the sequence {xk}

1 Newton’s method requires that ∇2f (x) is positive definite for every
x ∈ Rn, which in particular implies that there exists a unique optimal
solution x∗ (In fact, we need the assumption ∇f (x∗) = 0. Then, similar to the
proof of Theorem 2.38, we can show that ∃! minimizer x∗). However, this is
not enough to guarantee convergence of the sequence {xk}.

2 Consider the function f (x) =
√

1 + x2 defined over R. The
unique minimizer is of course x = 0. The first and second
derivatives of f are

f ′(x) =
x√

1 + x2
and f ′′(x) =

1
(1 + x2)3/2 > 0.

Therefore, the pure Newton’s method has the form

xk+1 = xk −
f ′(xk)

f ′′(xk)
= xk − xk(1 + x2

k) = −x3
k .

If |x0| ≥ 1 then the method diverges.
If |x0| < 1 then the method converges very rapidly to x∗ = 0.
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Quadratic local convergence of Newton’s method

Let f : Rn → R be a twice continuously differentiable function. Assume

∃ m > 0 s.t. ∇2f (x) � mI for any x ∈ Rn,

∃ L > 0 s.t. ‖∇2f (x)−∇2f (y)‖ ≤ L‖x− y‖ for any x, y ∈ Rn.

Let {xk} be the sequence generated by Newton’s method, and let x∗ be the
unique minimizer of f over Rn. Then for any k = 0, 1, · · · the following
inequality holds:

‖xk+1 − x∗‖ ≤ L
2m
‖xk − x∗‖2.

In addition, if ‖x0 − x∗‖ ≤ m/L then

‖xk − x∗‖ ≤ 2m
L

(1
2

)2k

, k = 0, 1, · · · . (?)
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Proof of the quadratic local convergence

Let k be a nonnegative integer. Then
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Proof. Let k be a nonnegative integer. Then

xk+1 −x∗ = xk − (∇2 f (xk ))
−1∇ f (xk )−x∗

∇ f (x∗)=0
= xk −x∗ +(∇2 f (xk ))

−1(∇ f (x∗)−∇ f (xk ))

= xk −x∗ +(∇2 f (xk ))
−1
∫ 1

0
[∇2 f (xk + t (x∗ −xk ))](x

∗ −xk )d t

= (∇2 f (xk ))
−1
∫ 1

0

4∇2 f (xk + t (x∗ −xk ))−∇2 f (xk )
5
(x∗ −xk )d t .

Combining the latter equality with the fact that∇2 f (xk )� mI implies that ‖(∇2 f (xk ))
−1‖

≤ 1
m . Hence,

‖xk+1 −x∗‖ ≤ ‖(∇2 f (xk ))
−1‖
22222
∫ 1

0

4∇2 f (xk + t (x∗ −xk ))−∇2 f (xk )
5
(x∗ −xk )d t

22222

≤ ‖(∇2 f (xk ))
−1‖
∫ 1

0

2224∇2 f (xk + t (x∗ −xk ))−∇2 f (xk )
5
(x∗ −xk )

222d t

≤ ‖(∇2 f (xk ))
−1‖
∫ 1

0

222∇2 f (xk + t (x∗ −xk ))−∇2 f (xk )
222 · ‖x∗ −xk‖d t

≤ L
m

∫ 1

0
t‖xk −x∗‖2d t =

L
2m
‖xk −x∗‖2.

We will prove inequality (5.4) by induction on k. Note that for k = 0, we assumed that

‖x0−x∗‖ ≤ m
L

,

so in particular

‖x0−x∗‖ ≤ 2m
L

�
1

2

�20

,

establishing the basis of the induction. Assume that (5.4) holds for an integer k, that is,
‖xk −x∗‖ ≤ 2m

L (
1
2 )

2k
; we will show it holds for k + 1. Indeed, by (5.3) we have

‖xk+1 −x∗‖ ≤ L

2m
‖xk −x∗‖2 ≤ L

2m

 
2m

L

�
1

2

�2k!2

=
2m

L

�
1

2

�2k+1

,

proving the desired result.

A very naive implementation of Newton’s method in MATLAB is given below.

function x=pure_newton(f,g,h,x0,epsilon)
% Pure Newton’s method
%
% INPUT
% ==============
% f .......... objective function
% g .......... gradient of the objective function
% h .......... Hessian of the objective function

Since ∇2f (xk) � mI, it follows that ‖(∇2f (xk))
−1‖ ≤ 1/m. Hence,
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L
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so in particular

‖x0−x∗‖ ≤ 2m
L

�
1

2

�20

,
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2m

L

�
1

2

�2k!2

=
2m

L

�
1

2

�2k+1

,

proving the desired result.

A very naive implementation of Newton’s method in MATLAB is given below.

function x=pure_newton(f,g,h,x0,epsilon)
% Pure Newton’s method
%
% INPUT
% ==============
% f .......... objective function
% g .......... gradient of the objective function
% h .......... Hessian of the objective function
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Proof of the quadratic local convergence (cont’d)

We use the mathematical induction to show (?). For n = 0, we have

‖x0 − x∗‖ ≤ m
L

=
2m
L

(1
2

)20

.

Assume for n = k, we have

‖xk − x∗‖ ≤ 2m
L

(1
2

)2k

.

Then for n = k + 1,

‖xk+1 − x∗‖ ≤ L
2m
‖xk − x∗‖2 ≤ L

2m

(2m
L

(1
2

)2k)2
=

2m
L

(1
2

)2k+1

.

This proves the desired result. �
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Example 1

Consider the minimization problem:

min
x,y

100x4 + 0.01y4,

whose optimal solution is obviously (x, y) = (0, 0).
1 The gradient method with initial vector x0 = (1, 1)> and

parameters (s, α, β, ε) = (1, 0.5, 0.5, 10−6) converges after the
huge amount of 14612 iterations.

2 Invoking pure Newton’s method, we obtain convergence after
only 17 iterations.
Note that the basic assumptions required for the convergence of
Newton’s method as described in the quadratic local
convergence theorem are not satisfied. The Hessian is always
positive semidefinite, but it is not always positive definite and
does not satisfy a Lipschitz property.

Please see textbook, pages 86-87.
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Example 2

Consider the minimization problem (Please see textbook, pages 87-88):

min
x,y

(√
x2 + 1 +

√
y2 + 1

)
,

whose optimal solution is x = (0, 0). The Hessian of the function is

∇2f (x) =

[ 1
(x2+1)3/2 0

0 1
(y2+1)3/2

]
� 0.

Despite the fact that the Hessian is positive definite, there does not exist an
m > 0 for which ∇2f (x) � mI.

1 If we employ Newton’s method with initial vector x0 = (1, 1)>

and tolerance ε = 10−8 we obtain convergence after 37 iterations,
but in the first 30 iterations the method is almost stuck.

2 The gradient method with backtracking and parameters
(s, α, β) = (1, 0.5, 0.5) converges after only 7 iterations.

3 If x0 = (10, 10)>, the gradient method with backtracking
converges after 13 iterations, but Newton’s method diverges.
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Damped Newton’s method

As can be seen in the last example, pure Newton’s method does not
guarantee descent of the generated sequence of function values even
when the Hessian is positive definite. This drawback can be rectified by
introducing a stepsize chosen by a certain line search procedure, leading to
the so-called damped Newton’s method.

Input: α, β ∈ (0, 1): parameters for the backtracking procedure, ε > 0:
tolerance parameter.

Initialization: Pick x0 ∈ Rn arbitrarily.

General step: For any k = 0, 1, · · · , execute the following steps

(a) compute the Newton direction dk, which is the solution to the
linear system ∇2f (xk)dk = −∇f (xk).

(b) set tk = 1. While f (xk)− f (xk + tkdk) < −αtk∇f (xk)
>dk, set

tk := βtk.

(c) set xk+1 = xk + tkdk.

(d) if ‖∇f (xk+1)‖ ≤ ε then stop, and xk+1 is the output.
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The Cholesky factorization

1 An important issue in Newton’s method is whether the Hessian
matrix is positive definite, and if it is, then how to solve the
linear system ∇2f (xk)dk = −∇f (xk).

2 Given an n× n positive definite matrix A, a Cholesky factorization is a
factorization of the form A = LL>, where L is a lower triangular
n× n matrix whose diagonal is positive.

3 Given a Cholesky factorization, the task of solving Ax = b can
be easily done by two steps:

Step 1: Find the solution u of Lu = b.
Step 2: Find the solution x of L>x = u.

Since L is a triangular matrix with a positive diagonal, steps 1
and 2 can be carried out by forward and backward substitutions,
respectively, which both require O(n2) arithmetic operations.

4 However, the computation of the Cholesky factorization
requires O(n3) operations.

Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan MA 5037/Chapter 5: Newton’s Method – 12/15



How to compute the Cholesky factorization?

Consider the block matrix partition of the matrices A and L:

A =

[
A11 A12
A>12 A22

]
, L =

[
L11 0
L21 L22

]
,

where A11 ∈ R, A12 ∈ R1×(n−1), A22 ∈ R(n−1)×(n−1), L11 ∈ R,
L21 ∈ Rn−1, L22 ∈ R(n−1)×(n−1). Since A = LL>, we have[

A11 A12
A>12 A22

]
=

[
L2

11 L11L>21
L11L21 L21L>21 + L22L>22

]
.

Therefore,
L11 =

√
A11, L21 =

1√
A11

A>12,
and we can thus also write

L22L>22 = A22 −
1

A11
A>12A12.

We are left with the task of finding a Cholesky factorization of the
(n− 1)× (n− 1) matrix A22 − 1

A11
A>12A12. Continuing in this way, we

can compute the complete Cholesky factorization of matrix A.
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Example

Let the matrix A and the Cholesky factor L are respectively given by

A =

9 3 3
3 17 21
3 21 107

 and L =

`11 0 0
`21 `22 0
`31 `32 `33

 .

Then `11 =
√

9 = 3 and [
`21
`31

]
=

1
3

[
3
3

]
=

[
1
1

]
.

We now need to find the Cholesky factorization of

A22 −
1

A11
A>12A12 =

[
17 21
21 107

]
− 1

9

[
3
3

]
(3, 3) =

[
16 20
20 106

]
.

Let L22 =

[
`22 0
`32 `33

]
. Consequently, `22 =

√
16 = 4 and `32 = 1√

16
20 = 5. We are thus

left with the task of finding the Cholesky factorization of 106− 1
16

(20× 20) = 81. Of

course `33 =
√

81 = 9 and then L =

3 0 0
1 4 0
1 5 9

.
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A hybrid gradient-Newton method

How to employ Newton’s method when the Hessian is not always
positive definite? The simplest one is to construct a hybrid method that
employs either a Newton step at iterations in which the Hessian is positive
definite or a gradient step when the Hessian is not positive definite.

Input: α, β ∈ (0, 1): parameters for the backtracking procedure, ε > 0:
tolerance parameter.

Initialization: Pick x0 ∈ Rn arbitrarily.

General step: For any k = 0, 1, · · · , execute the following steps

(a) if ∇2f (xk) � 0 then take dk as the Newton direction dk, which is
the solution to the linear system ∇2f (xk)dk = −∇f (xk).
Otherwise, set dk = −∇f (xk).

(b) set tk = 1. While f (xk)− f (xk + tkdk) < −αtk∇f (xk)
>dk, set

tk := βtk.

(c) set xk+1 = xk + tkdk.

(d) if ‖∇f (xk+1)‖ ≤ ε then stop, and xk+1 is the output.

Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan MA 5037/Chapter 5: Newton’s Method – 15/15


