MA 5037: Optimization Methods and Applications Chapter 6: Convex Sets

Suh-Yuh Yang (楊肅煜)

Department of Mathematics, National Central University Jhongli District, Taoyuan City 32001, Taiwan

syyang@math.ncu.edu.tw http://www.math.ncu.edu.tw/~syyang/

Convex set

- **Definition:** A set $C \subseteq \mathbb{R}^n$ is called convex if for any $x, y \in C$ and $\lambda \in [0, 1]$, we have $\lambda x + (1 \lambda)y \in C$.
- Note 1: *C* is convex \iff for any $x, y \in C$, the line segment [x, y] is in *C*. i.e., $[x, y] \subseteq C$.
- Note 2: The empty set \emptyset is a convex set. (\$ not! then $\exists ... \rightarrow \leftarrow$)
- **Example:** A line in \mathbb{R}^n is a set of the form, $L = \{z + td : t \in \mathbb{R}\}$, where $z, d \in \mathbb{R}^n$. Let $x = z + t_1d \in L$ and $y = z + t_2d \in L$. Then for any $\lambda \in [0, 1]$, $\lambda x + (1 \lambda)y = z + (\lambda t_1 + (1 \lambda)t_2)d \in L$. Therefore, *L* is a convex set.

Convexity of hyperplanes and half-spaces

- Note 1: For any $x, y \in \mathbb{R}^n$, the closed and open line segments [x, y] and (x, y) are convex sets.
- Note 2: The entire space \mathbb{R}^n is a convex set.
- Note 3: Let a ∈ ℝⁿ \ {0} and b ∈ ℝ. The following sets are convex:
 (1) the hyperplane H = {x ∈ ℝⁿ : a^Tx = b};
 (2) the half-space H⁻ = {x ∈ ℝⁿ : a^Tx ≤ b};
 (3) the open half-space {x ∈ ℝⁿ : a^Tx < b}.

Proof of (2): Let $x, y \in H^-$ and $\lambda \in [0, 1]$. We will show that $z = \lambda x + (1 - \lambda)y \in H^-$. Indeed,

$$\begin{aligned} \boldsymbol{a}^{\top} \boldsymbol{z} &= \boldsymbol{a}^{\top} (\lambda \boldsymbol{x} + (1 - \lambda) \boldsymbol{y}) = \lambda (\boldsymbol{a}^{\top} \boldsymbol{x}) + (1 - \lambda) (\boldsymbol{a}^{\top} \boldsymbol{y}) \\ &\leq \lambda b + (1 - \lambda) b = b, \end{aligned}$$

which implies $z \in H^-$. \Box

Convexity of balls

Let $\mathbf{c} \in \mathbb{R}^n$ and r > 0. Let $\|\cdot\|$ be an arbitrary norm defined on \mathbb{R}^n . Then the open ball $B(\mathbf{c}, r) := \{\mathbf{x} \in \mathbb{R}^n : \|\mathbf{x} - \mathbf{c}\| < r\}$ and the closed ball $B[\mathbf{c}, r] := \{\mathbf{x} \in \mathbb{R}^n : \|\mathbf{x} - \mathbf{c}\| \le r\}$ are convex.

Proof: We will show the convexity of the closed ball. Let $x, y \in B[c, r]$ and $\lambda \in [0, 1]$. Then $||x - c|| \le r$ and $||y - c|| \le r$. Let $z = \lambda x + (1 - \lambda)y$. We will show that $z \in B[c, r]$. Indeed, $||z - c|| = ||\lambda x + (1 - \lambda)y - c|| = ||\lambda(x - c) + (1 - \lambda)(y - c)||$ $\le ||\lambda(x - c)|| + ||(1 - \lambda)(y - c)||$ $= \lambda ||x - c|| + (1 - \lambda)||y - c||$ $< \lambda r + (1 - \lambda)r$

$$= r$$
.

Therefore $z \in B[c, r]$, establishing the result. \Box

Note: The above result is true for any norm defined on \mathbb{R}^n .

Convexity of ellipsoids

An ellipsoid is a set of the form

$$E = \{ \mathbf{x} \in \mathbb{R}^n : f(\mathbf{x}) := \mathbf{x}^\top Q \mathbf{x} + 2\mathbf{b}^\top \mathbf{x} + c \le 0 \},\$$

where $Q \in \mathbb{R}^{n \times n}$ is positive semidefinite, $\mathbf{b} \in \mathbb{R}^n$, and $c \in \mathbb{R}$. Then E is a convex set.

Proof: Let $x, y \in E, \lambda \in [0, 1]$, and $z := \lambda x + (1 - \lambda)y$. Then $f(x) \le 0, f(y) \le 0$ and

$$z^{\top}Qz = (\lambda x + (1 - \lambda)y)^{\top}Q(\lambda x + (1 - \lambda)y)$$

= $\lambda^{2}x^{\top}Qx + (1 - \lambda)^{2}y^{\top}Qy + 2\lambda(1 - \lambda)x^{\top}Qy$

Since $\mathbf{x}^{\top} Q \mathbf{y} = (Q^{1/2} \mathbf{x})^{\top} (Q^{1/2} \mathbf{y})$, by the Cauchy-Schwarz inequality, we have

$$\mathbf{x}^{\top} Q \mathbf{y} \leq \|Q^{1/2} \mathbf{x}\| \|Q^{1/2} \mathbf{y}\| = \sqrt{\mathbf{x}^{\top} Q \mathbf{x}} \sqrt{\mathbf{y}^{\top} Q \mathbf{y}} \leq \frac{1}{2} (\mathbf{x}^{\top} Q \mathbf{x} + \mathbf{y}^{\top} Q \mathbf{y}).$$

Thus, $\boldsymbol{z}^{\top} Q \boldsymbol{z} \leq \lambda \boldsymbol{x}^{\top} Q \boldsymbol{x} + (1 - \lambda) \boldsymbol{y}^{\top} Q \boldsymbol{y}$. Hence,

$$\begin{aligned} f(\mathbf{z}) &\leq \lambda \mathbf{x}^\top Q \mathbf{x} + (1-\lambda) \mathbf{y}^\top Q \mathbf{y} + 2\lambda \mathbf{b}^\top \mathbf{x} + 2(1-\lambda) \mathbf{b}^\top \mathbf{y} + c \\ &= \lambda (\mathbf{x}^\top Q \mathbf{x} + 2\mathbf{b}^\top \mathbf{x} + c) + (1-\lambda) (\mathbf{y}^\top Q \mathbf{y} + 2\mathbf{b}^\top \mathbf{y} + c) \\ &= \lambda f(\mathbf{x}) + (1-\lambda) f(\mathbf{y}) \leq 0, \end{aligned}$$

establishing the desired result that $z \in E$. \Box

Convexity is preserved under the intersection

Lemma: Let C_i ⊆ ℝⁿ be a convex set for any i ∈ I, where I is an arbitrary index set. Then ∩_{i∈I}C_i is convex.

Proof: Let $x, y \in \bigcap_{i \in I} C_i$ and $\lambda \in [0, 1]$. Then $x, y \in C_i$, $\forall i \in I$. Since C_i is convex, it follows that $\lambda x + (1 - \lambda)y \in C_i$, $\forall i \in I$. Therefore, $\lambda x + (1 - \lambda)y \in \bigcap_{i \in I} C_i$. That is, $\bigcap_{i \in I} C_i$ is convex.

Example (convex polytopes): A set P is called a convex polytope if it has the form P = {x ∈ ℝⁿ : Ax ≤ b}, where A ∈ ℝ^{m×n} and b ∈ ℝ^m. The convexity of P follows from the fact that it is an intersection of half-spaces and half-spaces are convex:

$$P=\bigcap_{i=1}^m \{x\in \mathbb{R}^n: A_ix\leq b_i\},\$$

where A_i is the *i*th row of A.

Preservation of convexity

• Let $C_1, \dots, C_k \subseteq \mathbb{R}^n$ be convex sets and let $\mu_1, \dots, \mu_k \in \mathbb{R}$. Then the following set is convex:

$$\mu_1 C_1 + \mu_2 C_2 + \dots + \mu_k C_k := \left\{ \sum_{i=1}^k \mu_i x_i : x_i \in C_i, 1 \le i \le k \right\}$$

Note: if $C \subseteq \mathbb{R}^n$ is a convex set and $b \in \mathbb{R}^n$, then the set $C + b := \{x + b : x \in C\}$ is also convex.

Let C_i ⊆ ℝ^{k_i} be a convex set for any i = 1, 2, · · · , m. Then the following Cartesian product is convex:

 $C_1 \times C_2 \times \cdots \times C_m := \{(x_1, x_2, \cdots, x_m) : x_i \in C_i, 1 \le i \le m\}$

- So Let $M \subseteq \mathbb{R}^n$ be a convex set and let $A \in \mathbb{R}^{m \times n}$. Then the image set $A(M) := \{Ax : x \in M\}$ is convex.
- Let $D \subseteq \mathbb{R}^m$ be a convex set and let $A \in \mathbb{R}^{m \times n}$. Then the inverse image set, $A^{-1}(D) := \{x \in \mathbb{R}^n : Ax \in D\}$, is convex.

Convex combinations

- **Definition:** Given $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k \in \mathbb{R}^n$, a convex combination of these k vectors is a vector of the form $\lambda_1 \mathbf{x}_1 + \lambda_2 \mathbf{x}_2 + \dots + \lambda_k \mathbf{x}_k$, where $\lambda_i \in \mathbb{R}$ and $\lambda_i \ge 0$ for $1 \le i \le k$, satisfying $\lambda_1 + \lambda_2 + \dots + \lambda_k = 1$, *i.e.*, $\boldsymbol{\lambda} := (\lambda_1, \lambda_2, \dots, \lambda_k)^\top \in \Delta_k$.
- Note: A convex set can be defined by the property that *any* convex combination of two points from the set is also in the set.
- **Theorem:** Let $C \subseteq \mathbb{R}^n$ be a convex set and let $\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_m \in C$. Then for any $\boldsymbol{\lambda} = (\lambda_1, \cdots, \lambda_m)^\top \in \Delta_m := \{ \boldsymbol{\alpha} \in \mathbb{R}^m_+ : \sum_{i=1}^m \alpha_i = 1 \}$, we have $\sum_{i=1}^m \lambda_i \mathbf{x}_i \in C$. That is, a convex combination of any finite number of points from a convex set is in the set.

Proof: We prove the theorem by induction on *m*. The case m = 1 is trivial. Suppose that m = k holds. Let $x_1, x_2, \dots, x_{k+1} \in C$ and $\lambda \in \Delta_{k+1}$. If $\lambda_{k+1} = 1$, then $\sum_{i=1}^{k+1} \lambda_i x_i = x_{k+1} \in C$. If $\lambda_{k+1} < 1$, then v

$$\boldsymbol{z} := \sum_{i=1}^{k+1} \lambda_i \boldsymbol{x}_i = \sum_{i=1}^k \lambda_i \boldsymbol{x}_i + \lambda_{k+1} \boldsymbol{x}_{k+1} = (1 - \lambda_{k+1}) \sum_{i=1}^k \frac{\lambda_i}{1 - \lambda_{k+1}} \boldsymbol{x}_i + \lambda_{k+1} \boldsymbol{x}_{k+1}.$$

Since $\sum_{i=1}^k \frac{\lambda_i}{1 - \lambda_{k+1}} = \frac{\sum_{i=1}^k \lambda_i}{1 - \lambda_{k+1}} = 1$, we have $\boldsymbol{v} \in C$ and hence, $\boldsymbol{z} \in C$. \Box

Convex hull

- **Definition:** (convex hull) Let $S \subseteq \mathbb{R}^n$. Then the convex hull of S is the set comprising all the convex combinations of vectors from S, i.e., $\operatorname{conv}(S) := \left\{ \sum_{i=1}^k \lambda_i \mathbf{x}_i \middle| \mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_k \in S, \mathbf{\lambda} \in \Delta_k, k \in \mathbb{N} \right\}.$
- Note: *The convex hull* conv(*S*) *is a convex set* (Exercise!). In fact, conv(*S*) is the "smallest" convex set containing *S*, pls see below.
- Lemma: Let $S \subseteq \mathbb{R}^n$. If $S \subseteq T$ and T is convex, then $\operatorname{conv}(S) \subseteq T$.

Proof: Let $z \in \text{conv}(S)$. Then we have $z = \sum_{i=1}^{k} \lambda_i x_i$, for some $x_1, \dots, x_k \in S \subseteq T$ and $\lambda = (\lambda_1, \dots, \lambda_k)^\top \in \Delta_k$. That is, z is a convex combination of elements from T. Since T is convex, by the previous theorem, we obtain $z \in T$. \Box

Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan MA 5037/Chapter 6: Convex Sets – 9/24

Carathéodory Theorem

Let $S \subseteq \mathbb{R}^n$ and let $\mathbf{x} \in \text{conv}(S)$. Then $\exists x_1, x_2, \cdots, x_{n+1} \in S$ such that $\mathbf{x} \in \text{conv}(\{\mathbf{x}_1, \cdots, \mathbf{x}_{n+1}\})$. That is, $\exists \lambda = (\lambda_1, \lambda_2, \cdots, \lambda_{n+1}) \in \Delta_{n+1}$ such that $\mathbf{x} = \sum_{i=1}^{n+1} \lambda_i \mathbf{x}_i$.

Proof: Let $\mathbf{x} \in \text{conv}(S)$. Then $\exists x_1, \dots, x_k \in S$, $\lambda \in \Delta_k$ s.t. $\mathbf{x} = \sum_{i=1}^k \lambda_i x_i$ with $\lambda_i > 0 \forall i$. If $k \le n + 1$, the result is proven. If $k \ge n + 2$, then $x_2 - x_1, \dots, x_k - x_1$ are linearly dependent. Therefore, $\exists \mu_2, \dots, \mu_k$ not all zeros such that $\sum_{i=2}^k \mu_i (x_i - x_1) = \mathbf{0}$. Let $\mu_1 := -\sum_{i=2}^k \mu_i$, we obtain $\sum_{i=1}^k \mu_i x_i = \mathbf{0}$ and $\sum_{i=1}^k \mu_i = 0$, where $\exists i$ for which $\mu_i < 0$. Let $\alpha \in \mathbb{R}_+$. Then

$$\mathbf{x} = \sum_{i=1}^k \lambda_i \mathbf{x}_i = \sum_{i=1}^k \lambda_i \mathbf{x}_i + \alpha \sum_{i=1}^k \mu_i \mathbf{x}_i = \sum_{i=1}^k (\lambda_i + \alpha \mu_i) \mathbf{x}_i \quad \text{and} \quad \sum_{i=1}^k (\lambda_i + \alpha \mu_i) = 1.$$

The above representation is a convex combination if and only if

$$\lambda_i + \alpha \mu_i \geq 0, \quad \forall i = 1, \cdots, k.$$

Since $\lambda_i > 0 \ \forall i$, the above set of inequalities is satisfied for all $\alpha \in [0, \varepsilon]$, where $\varepsilon = \min_{i: \ \mu_i < 0} \left\{ \frac{-\lambda_i}{\mu_i} \right\}$. Taking $\alpha = \varepsilon$, then $\lambda_j + \alpha \mu_j = 0$ for $j = \operatorname{argmin}_{i: \ \mu_i < 0} \left\{ \frac{-\lambda_i}{\mu_i} \right\}$. This means that we have found a representation of x as a convex combination of k - 1 vectors. This process can be carried on until a representation of x as a convex combination of no more than n + 1 vectors is derived. \Box

Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan MA 5037/Chapter 6: Convex Sets - 10/24

Example: n = 2

Let
$$S = \{x_1, x_2, x_3, x_4\} \subseteq \mathbb{R}^2$$
, where
 $x_1 = (1, 1)^\top$, $x_2 = (1, 2)^\top$, $x_3 = (2, 1)^\top$, $x_4 = (2, 2)^\top$.
Let $x \in \text{conv}(S)$ be given by

$$x = \frac{1}{8}x_1 + \frac{1}{4}x_2 + \frac{1}{2}x_3 + \frac{1}{8}x_4 = (\frac{13}{8}, \frac{11}{8})^\top$$

By the Carathéodory Theorem, x can be expressed as a convex combination of three of the four vectors x_1, x_2, x_3, x_4 . The vectors

$$x_2 - x_1 = (0,1)^{\top}, \quad x_3 - x_1 = (1,0)^{\top}, \quad x_4 - x_1 = (1,1)^{\top}$$

are linearly dependent, and $(x_2 - x_1) + (x_3 - x_1) - (x_4 - x_1) = 0$. i.e., $-x_1 + x_2 + x_3 - x_4 = 0$. Therefore, for any $\alpha \ge 0$ we have

$$x = (\frac{1}{8} - \alpha)x_1 + (\frac{1}{4} + \alpha)x_2 + (\frac{1}{2} + \alpha)x_3 + (\frac{1}{8} - \alpha)x_4.$$

We need guarantee that $\frac{1}{8} - \alpha \ge 0$, $\frac{1}{4} + \alpha \ge 0$, $\frac{1}{2} + \alpha \ge 0$, $\frac{1}{8} - \alpha \ge 0$, which combined with $\alpha \ge 0$ yields that $0 \le \alpha \le 1/8$. *Now taking* $\alpha = 1/8$, we obtain the convex combination $\mathbf{x} = (3/8)\mathbf{x}_2 + (5/8)\mathbf{x}_3$.

Convex cones

- Definition: A set S is called a cone if for any x ∈ S and λ ≥ 0, we have λx ∈ S.
- Lemma: A set S is a convex cone if and only if the following properties hold: (1) x, y ∈ S ⇒ x + y ∈ S; (2) x ∈ S, λ ≥ 0 ⇒ λx ∈ S. Proof:

(⇒) Let $x, y \in S$. By the convexity, we have $\frac{1}{2}x + (1 - \frac{1}{2})y \in S$. Since *S* is a cone, we have $2 \times \frac{1}{2}(x + y) = x + y \in S$, i.e., property (1) holds. Property (2) is true because *S* is a cone.

(\Leftarrow) By property (2), *S* is a cone. Let $x, y \in S$ and $\lambda \in [0, 1]$. Since *S* is a cone, we have $\lambda x \in S$ and $(1 - \lambda)y \in S$. By property (1), we further have $\lambda x + (1 - \lambda)y \in S$, establishing the convexity. \Box

• **Example:** Consider the convex polytope $C = \{x \in \mathbb{R}^n : Ax \le 0\}$, where $A \in \mathbb{R}^{m \times n}$. The set *C* is clearly a convex set, see page 6. It is also a cone since

$$x \in C, \lambda \ge 0 \implies Ax \le \mathbf{0}, \lambda \ge 0 \implies A(\lambda x) \le \mathbf{0} \implies \lambda x \in C.$$

Lorentz cone (ice cream cone)

The Lorentz cone, also called the ice cream cone, is given by

The boundary of the ice cream cone L^2

The Lorentz cone is in fact a convex cone. Let $(x, t)^{\top}, (y, s)^{\top} \in L^n$. Then $||x|| \le t$ and $||y|| \le s$. The triangle inequality implies that

$$||x + y|| \le ||x|| + ||y|| \le t + s.$$

That is, $(x, t)^{\top} + (y, s)^{\top} = (x + y, t + s)^{\top} \in L^n$. We have property (1). To show property (2), take $(x, t)^{\top} \in L^n$ and $\lambda \ge 0$. Then we obtain $\|\lambda x\| = \lambda \|x\| \le \lambda t$, so $\lambda (x, t)^{\top} = (\lambda x, \lambda t)^{\top} \in L^n$.

Conic combination

- **Definition:** Given $x_1, x_2, \dots, x_k \in \mathbb{R}^n$, a conic combination of these k vectors is a vector of the form $\lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_k x_k$, where $\lambda_i \ge 0$ for all $i = 1, 2, \dots, k$.
- **Lemma:** Let *C* be a convex cone, and let $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k \in C$ and $\lambda_1, \lambda_2, \dots, \lambda_k \geq 0$. Then the conic combination $\sum_{i=1}^k \lambda_i \mathbf{x}_i \in C$. *Proof:* Since *C* is a convex cone, by property (2), we have $\lambda_i \mathbf{x}_i \in C, \forall i$. By property (1), $\sum_{i=1}^k \lambda_i \mathbf{x}_i \in C$. \Box
- **Definition:** (conic hull) Let *S* ⊆ ℝ^{*n*}. Then the conic hull of *S* is the set comprising all the conic combinations of vectors from *S*, *i.e.*,

$$\operatorname{cone}(S) := \Big\{ \sum_{i=1}^k \lambda_i \mathbf{x}_i \Big| \, \mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_k \in S, \lambda \in \mathbb{R}^k_+, k \in \mathbb{N} \Big\}.$$

Note that cone(S) is a convex cone. (Exercise!) In fact, we have

• Lemma: Let $S \subseteq \mathbb{R}^n$. If $S \subseteq T$ for some convex cone T, then $\operatorname{cone}(S) \subseteq T$, *i.e.*, the conic hull of S is the smallest convex cone containing S. (Exercise!)

Conic representation theorem

Let $S \subseteq \mathbb{R}^n$ and let $\mathbf{x} \in \text{cone}(S)$. Then $\exists k$ linearly independent vectors $\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_k \in S$ such that $\mathbf{x} \in \text{cone}(\{\mathbf{x}_1, \cdots, \mathbf{x}_k\})$; that is, $\exists \lambda = (\lambda_1, \lambda_2, \cdots, \lambda_k) \in \mathbb{R}^k_+$ such that $\mathbf{x} = \sum_{i=1}^k \lambda_i \mathbf{x}_i$ and $k \leq n$.

Proof: Let $x \in \text{cone}(S)$. Then $\exists x_1, \dots, x_m \in S$, $\lambda \in \mathbb{R}^m_+$ s.t. $x = \sum_{i=1}^m \lambda_i x_i$ with $\lambda_i > 0 \forall i$. If x_1, \dots, x_m are linearly independent, then $k := m \le n$ and the result is proven. Otherwise, $\exists \mu_1, \dots, \mu_m \in \mathbb{R}$ not all zeros such that $\sum_{i=1}^m \mu_i x_i = \mathbf{0}$. Let $\alpha \in \mathbb{R}$. Then

$$\mathbf{x} = \sum_{i=1}^m \lambda_i \mathbf{x}_i = \sum_{i=1}^m \lambda_i \mathbf{x}_i + \alpha \sum_{i=1}^m \mu_i \mathbf{x}_i = \sum_{i=1}^m (\lambda_i + \alpha \mu_i) \mathbf{x}_i.$$

The above representation is a conic combination if and only if

$$\lambda_i + \alpha \mu_i \geq 0, \quad \forall i = 1, \cdots, m.$$

Since $\lambda_i > 0$ for all *i*, we can find $\tilde{\alpha} \in \mathbb{R}$ s.t. $\lambda_j + \tilde{\alpha}\mu_j = 0$ for some *j* and $\lambda_i + \tilde{\alpha}\mu_i \ge 0$ for the others. Thus we obtain a representation of *x* as a conic combination of at most m - 1 vectors. Continuing this process, we can obtain *k* linearly independent vectors $x_1, x_2, \dots, x_k \in S$ with $k \le n$ such that $x \in \text{cone}(\{x_1, \dots, x_k\})$. \Box (Please see textbook page 107 for more details)

Linear systems consisting of linear equalities and nonnegativity constraints often appear as constraints in standard formulations of *linear programming problems*.

• **Definition:** (*basic feasible solution*)

Let $P := \{x \in \mathbb{R}^n : Ax = b, x \ge 0\}$, where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. Suppose that the rows of A are linearly independent. Then $\bar{x} \in P$ is a basic feasible solution (BFS) of P if the columns of A corresponding to the indices of the positive values of \bar{x} are linearly independent.

- Note: Since the columns of *A* reside in \mathbb{R}^m , it follows that a BFS has at most *m* nonzero elements.
- Example: Consider the linear system

 $x_1 + x_2 + x_3 = 6$, $x_2 + x_3 = 3$, $x_1, x_2, x_3 \ge 0$.

A BFS of the system is (3,3,0). It satisfies all the constraints and the columns corresponding to the positive elements, $(1,0)^{\top}$, $(1,1)^{\top}$ are linearly independent.

Existence of a BFS in *P*

Theorem: Let $P := \{x \in \mathbb{R}^n : Ax = b, x \ge 0\}$, where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. If $P \neq \emptyset$, then it contains at least one BFS.

Proof: Let $x \in P \neq \emptyset$. Then Ax = b and $x \ge 0$. It follows that $b = x_1a_1 + x_2a_2 + \cdots + x_na_n$, i.e., $b \in \text{cone}(\{a_1, a_2, \cdots, a_n\})$, where a_i denotes the *i*th column of A. By the conic representation theorem, there exist indices $i_1 < i_2 < \cdots < i_k$ and k numbers $x_{i_1}, x_{i_2}, \cdots, x_{i_k} > 0$ such that $b = \sum_{j=1}^k x_{i_j}a_{i_j}$ and $a_{i_1}, a_{i_2}, \cdots, a_{i_k}$ are linearly independent.

Denote $\bar{x} := \sum_{j=1}^k x_{i_j} e_{i_j}$. Then $\bar{x} \ge \mathbf{0}$ and

$$A\bar{\mathbf{x}} = \sum_{j=1}^k x_{i_j} A \boldsymbol{e}_{i_j} = \sum_{j=1}^k x_{i_j} \boldsymbol{a}_{i_j} = \boldsymbol{b}.$$

Therefore, $\bar{x} \in P$ and satisfies that the columns of A corresponding to the indices of the positive components of \bar{x} are linearly independent. That is, P contains at least one BFS. \Box

Closure and interior of a convex set

• **Theorem:** Let $C \subseteq \mathbb{R}^n$ be a convex set. Then the closure cl(C) is convex.

Proof: Let $x, y \in cl(C)$ and $\lambda \in [0, 1]$. Then \exists sequences $\{x_k\}$, $\{y_k\} \subseteq C$ such that $x_k \to x$ and $y_k \to y$ as $k \to \infty$. By the convexity of C, $\lambda x_k + (1 - \lambda)y_k \in C$ for any k. Since $\lambda x_k + (1 - \lambda)y_k \to \lambda x + (1 - \lambda)y$, we can conclude that $\lambda x + (1 - \lambda)y \in cl(C)$, which implies that cl(C) is convex.

• (line segment principle): Let $C \subseteq \mathbb{R}^n$ be a convex set, and assume that $int(C) \neq \emptyset$. Suppose that $x \in int(C)$, $y \in cl(C)$. Then $(1 - \lambda)x + \lambda y \in int(C)$ for any $\lambda \in (0, 1)$.

(Please see textbook page 109 for the proof)

• **Theorem:** Let $C \subseteq \mathbb{R}^n$ be a convex set. Then the interior int(C) is convex.

Proof: If $int(C) = \emptyset$, then int(C) is convex. Let $x, y \in int(C)$ and $\lambda \in (0, 1)$. Then by the line segment principle, $(1 - \lambda)x + \lambda y \in int(C)$. We can conclude that int(C) is convex. \Box

Other topological properties

Let $C \subseteq \mathbb{R}^n$ *be a convex set and* $int(C) \neq \emptyset$ *. Then we have*

• $\operatorname{cl}(\operatorname{int}(C)) = \operatorname{cl}(C)$.

Proof:

(\subseteq): Since int(*C*) \subseteq *C*, we have cl(int(*C*)) \subseteq cl(*C*).

(⊇): Let $x \in cl(C)$. We take $y \in int(C)$. Then by the line segment principle, we have $x_k := \frac{1}{k}y + (1 - \frac{1}{k})x \in int(C)$ for any $k \ge 1$. Since $x_k \to x$ as $k \to \infty$, we obtain $x \in cl(int(C))$. □

• $\operatorname{int}(\operatorname{cl}(C)) = \operatorname{int}(C).$

Proof:

(⊇): Since *C* ⊆ cl(*C*), we have int(cl(*C*)) ⊇ int(*C*). (⊆): Let *x* ∈ int(cl(*C*)). Then ∃ $\varepsilon > 0$ s.t. *B*(*x*, ε) ⊆ cl(*C*). Let *y* ∈ int(*C*). If *y* = *x*, then the result is proved. Otherwise, define *z* := *x* + α (*x* − *y*), where $\alpha = \frac{\varepsilon}{2||x - y||}$. Since $||z - x|| = \frac{\varepsilon}{2}$, we have *z* ∈ cl(*C*). By the line segment principle, we have (1 − λ)*y* + λ *z* ∈ int(*C*) for $\lambda \in [0, 1)$. Taking $\lambda = \frac{1}{1 + \alpha} \in (0, 1)$, we obtain $(1 - \lambda)y + \lambda z = x \in int(C)$. □

Convex hull of compact set

Theorem: Let $S \subseteq \mathbb{R}^n$ be a compact set. Then conv(S) is compact. *Proof:*

• (Boundedness) Since *S* is bounded, $\exists M > 0$ such that $||\mathbf{x}|| \le M$ for any $x \in S$. Let $\mathbf{y} \in \text{conv}(S)$. By the Carathéodory theorem it follows that $\exists x_1, \dots, x_{n+1} \in S$ and $\lambda \in \Delta_{n+1}$ s.t. $\mathbf{y} = \sum_{i=1}^{n+1} \lambda_i x_i$. Therefore,

$$\|\boldsymbol{y}\| = \|\sum_{i=1}^{n+1} \lambda_i \boldsymbol{x}_i\| \le \sum_{i=1}^{n+1} \lambda_i \|\boldsymbol{x}_i\| \le M \sum_{i=1}^{n+1} \lambda_i = M$$

(Closedness) Let y_k be a sequence in conv(S) and y_k → y as k → ∞. We wish to show that y ∈ conv(S). By the Carathéodory theorem it follows that ∃ x₁^k, ..., x_{n+1}^k ∈ S and λ^k ∈ Δ_{n+1} s.t. y_k = Σ_{i=1}ⁿ⁺¹ λ_i^kx_i^k. By the compactness of S and Δ_{n+1}, the sequence {(λ^k, x₁^k, ..., x_{n+1}^k)} has a subsequence such that

$$\lim_{j\to\infty}(\boldsymbol{\lambda}^{k_j},\boldsymbol{x}_1^{k_j},\cdots,\boldsymbol{x}_{n+1}^{k_j})=(\boldsymbol{\lambda},\boldsymbol{x}_1,\cdots,\boldsymbol{x}_{n+1})$$

with $\lambda \in \Delta_{n+1}$ and $x_1, \cdots, x_{n+1} \in S$. Therefore, we have

$$\boldsymbol{y} = \lim_{j \to \infty} \boldsymbol{y}_{k_j} = \lim_{j \to \infty} \sum_{i=1}^{n+1} \lambda_i^{k_j} \boldsymbol{x}_i^{k_j} = \sum_{i=1}^{n+1} \lambda_i \boldsymbol{x}_i,$$

which means that $y \in \text{conv}(S)$. \Box

Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan MA 5037/Chapter 6: Convex Sets - 20/24

Conic hull of a finite set

Theorem: Let $S := \{a_1, a_2, \dots, a_k\} \subseteq \mathbb{R}^n$. Then cone(*S*) is closed. *Proof:*

• By the conic representation theorem, each element of cone(S) can be represented as a conic combination of a linearly independent subset of $\{a_1, a_2, \dots, a_k\}$. Let S_1, \dots, S_N be all the subsets of *S* comprising linearly independent vectors, then

$$\operatorname{cone}(S) = \bigcup_{i=1}^{N} \operatorname{cone}(S_i).$$

It suffices to show that $cone(S_i)$ is closed for all *i*. Let $i \in \{1, 2, \dots, N\}$. Then $S_i = \{b_1, b_2, \dots, b_m\}$ for some linearly independent vectors b_1, b_2, \dots, b_m . We can write $cone(S_i) = \{By : y \in \mathbb{R}^m_+\}$, where matrix $B := [b_1, b_2, \dots, b_m]_{n \times m}$.

• Let $x_k \in \operatorname{cone}(S_i)$ for $k \ge 1$ and $x_k \to \bar{x}$ as $k \to \infty$. We need to show that $\bar{x} \in \operatorname{cone}(S_i)$. Since $x_k \in \operatorname{cone}(S_i)$, $\exists y_k \in \mathbb{R}^m_+$ s.t. $x_k = By_k$. Since the columns of B are linearly independent, we can deduce that

$$\boldsymbol{y}_k = (\boldsymbol{B}^\top \boldsymbol{B})^{-1} \boldsymbol{B}^\top \boldsymbol{x}_k.$$

Thus, we have

$$\lim_{k\to\infty} \boldsymbol{y}_k = \lim_{k\to\infty} (\boldsymbol{B}^\top \boldsymbol{B})^{-1} \boldsymbol{B}^\top \boldsymbol{x}_k = (\boldsymbol{B}^\top \boldsymbol{B})^{-1} \boldsymbol{B}^\top \bar{\boldsymbol{x}} =: \bar{\boldsymbol{y}}$$

and $\bar{\boldsymbol{y}} \in \mathbb{R}^m_+$. Therefore,

$$\bar{x} = \lim_{k \to \infty} x_k = \lim_{k \to \infty} By_k = B\bar{y} \in \operatorname{cone}(S_i).$$

Extreme points

• **Definition:** (*extreme points*) Let $S \subseteq \mathbb{R}^n$ be a convex set. A point $x \in S$ is called an extreme point of S if there <u>do not</u> exist $x_1, x_2 \in S$, $x_1 \neq x_2$ and $\lambda \in (0, 1)$ such that $x = \lambda x_1 + (1 - \lambda)x_2$. The set of extreme points of S is denoted by ext(S).

That is, an extreme point is a point in the set *S* that cannot be represented as a nontrivial convex combination of two different points in *S*.

• **Example:** The set of extreme points of a convex polytope consists of all its vertices.

Extreme points and basic feasible solutions

Theorem: Let $P := \{x \in \mathbb{R}^n : Ax = b, x \ge 0\}$, where $A \in \mathbb{A}^{m \times n}$ has linearly independent rows and $b \in \mathbb{R}^m$. Then \bar{x} is a basic feasible solution of P if and only if it is an extreme point of P.

Proof:

(\Rightarrow): Let $\bar{\mathbf{x}} = (\bar{x}_1, \bar{x}_2, \dots, \bar{x}_n)^\top$ be a basic feasible solution of *P*. Without loss of generality, assume that $\bar{x}_1, \dots, \bar{x}_k > 0$ and $\bar{x}_{k+1} = \dots = \bar{x}_n = 0$, and the first *k* columns of *A*, denoted by a_1, \dots, a_k , are linearly independent. Suppose that $\bar{\mathbf{x}} \notin \text{ext}(P)$. Then $\exists \mathbf{y}, \mathbf{z} \in P, \mathbf{y} \neq \mathbf{z}$, and $\lambda \in (0, 1)$ s.t. $\bar{\mathbf{x}} = \lambda \mathbf{y} + (1 - \lambda)\mathbf{z}$. Note that the last n - k components in \mathbf{y} and \mathbf{z} are zeros. Therefore, we have

$$\sum_{i=1}^{k} y_i \boldsymbol{a}_i = \boldsymbol{b} \text{ and } \sum_{i=1}^{k} z_i \boldsymbol{a}_i = \boldsymbol{b} \Longrightarrow \sum_{i=1}^{k} (y_i - z_i) \boldsymbol{a}_i = \boldsymbol{0}, \ y_i - z_i \neq 0 \text{ for some } i \in \{1, 2, \cdots, k\},$$

which implies that a_1, \dots, a_k are linearly dependent, a contradiction! (\Leftarrow): Suppose that $\tilde{x} \in P$ is an extreme point, but it is not a basic feasible solution. Thus, the columns corresponding to the positive components of \tilde{x} are linearly dependent. WLOG, assume that the positive components of \tilde{x} are exactly the first *k* components. Then $\exists y \in \mathbb{R}^k$ s.t. $\sum_{i=1}^k y_i a_i = 0$, i.e., $A\tilde{y} = 0$, where $\tilde{y} = (y, 0)^\top$. Since the first *k* components of \tilde{x} are positive, $\exists \varepsilon > 0$ s.t. $x_1 := \tilde{x} + \varepsilon \tilde{y} \ge 0$ and $x_2 := \tilde{x} - \varepsilon \tilde{y} \ge 0$. Then we have $Ax_1 = A\tilde{x} + \varepsilon A\tilde{y} = b + \varepsilon 0 = b$ and $Ax_2 = b$. Therefore, $x_1, x_2 \in P$. Finally, we have $\tilde{x} = \frac{1}{2}x_1 + \frac{1}{2}x_2$. This is a contradiction, because \tilde{x} is an extreme point of *P*. \Box Sub-Yuh Yang (鬱), Math. Dept, NCU, Taiwan MA 5037/Chapter 6: Convex Sets - 23/24

The Krein-Milman theorem

We will state this theorem without a proof.

Krein-Milman theorem: Let $S \subseteq \mathbb{R}^n$ be a compact convex set. Then

 $S = \operatorname{conv}(\operatorname{ext}(S)).$

That is, a compact convex set is the convex hull of its extreme points.