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Convex set

@ Definition: A set C C R" is called convex if for any x,y € C and
A € [0,1], we have Ax 4+ (1 — A)y € C.

@ Note 1: C is convex <= for any x,y € C, the line segment [x, |
isinC. ie., [x,y] C C.

@ Note 2: The empty set @ is a convex set. ($ not! then 3... —+<)

@ Example: A line in R” is a set of the form, L = {z 4+ td : t € R},
where z,d € R". Letx =z+tjd € Land y = z+ fpd € L. Then
forany A € [0,1], Ax+ (1 = A)y =z+ (At + (1 — A)tp)d € L.
Therefore, L is a convex set.

convex sets nonconvex sets
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Convexity of hyperplanes and half-spaces

@ Note 1: For any x,y € R”, the closed and open line segments
[x,y] and (x,y) are convex sets.

@ Note 2: The entire space R" is a convex set.
@ Note 3: Let a € R" \ {0} and b € R. The following sets are convex:
(1) the hyperplane H = {x € R" : a'x = b};
(2) the half-space H- = {x e R" : a'x < b};
(3) the open half-space {x € R" : a'x < b}.
Proof of (2): Letx,y € H™ and A € [0,1]. We will show that
z=Ax+ (1—-A)y € H . Indeed,
a'z = a'(Mx+1-Ny)=Aa'x)+(1-MN)(a"y)
< Ab+(1-A)b=)b,

whichimpliesz € H-. O
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Convexity of balls

Letc € R" and r > 0. Let || - || be an arbitrary norm defined on R". Then
the open ball B(c,r) := {x € R" : ||x — ¢|| < r} and the closed ball
Blc, 7] ;== {x € R" : ||x — c|| < r} are convex.

Proof: We will show the convexity of the closed ball. Let x, y € Blc, 7]
and A € [0,1]. Then ||x —¢|| < rand ||ly —¢|| < r. Let
z = Ax+ (1 — A)y. We will show that z € B¢, r]. Indeed,

lz—ell =

A

IN

Ax+ (1= Ay —cl| = [Ax —c) + (1 = A)(y — o]
[A(x =)l + 11 =A)(y =)

Allx = el + (1 =A)lly — ¢l

Ar+(1=A)r

Therefore z € B|c, 1], establishing the result. [

Note: The above result is true for any norm defined on R".
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Convexity of ellipsoids

An ellipsoid is a set of the form
E={xecR":f(x):=x"Qx+2b'x+c<0},
where Q € R™ ™ is positive semidefinite, b € R", and ¢ € R. Then E is a
convex set.
Proof: Letx,y € E,A € [0,1],and z := Ax+ (1 — A)y. Thenf(x) <0,f(y) <0and
20z = (Ax+(1-A)y) QAx+(1-A)y)
AxTQx+ (1-A) 2y TQy+20(1 - A)x" Qy.
Since x' Qy = (Q'/2x) " (Q!/?y), by the Cauchy-Schwarz inequality, we have
<" Qy < 10 21Q 2yl = /¥ Qxy/yT Qy < 5 (" Qx +yT Qy).
Thus, 2" Qz < AxTQx + (1 — A)y " Qy. Hence,
f(z) < ATQx4+(1—-A)y Qy+2Ab x+2(1-Mb'y+c
AxTQr+2bTx+0)+ (1 - M)y ' Qy+2b"y+¢)
M)+ (1 =A)f(y) <0,

establishing the desired result thatz € E. [J
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Convexity is preserved under the intersection

@ Lemma: Let C; C IR be a convex set for any i € I, where I is an
arbitrary index set. Then M;cC; is convex.

Proof: Letx,y € Nic;Cjand A € [0,1]. Thenx,y € C;, Vie L
Since C; is convex, it follows that Ax + (1 —A)y € C;, Vi € L.
Therefore, Ax + (1 — A)y € N;e;C;. That is, Nj¢/C; is convex. [

@ Example (convex polytopes): A set P is called a convex polytope if it
has the form P = {x € R" : Ax < b}, where A € R™*" and b € R™.
The convexity of P follows from the fact that it is an intersection
of half-spaces and half-spaces are convex:

m
P=[){xeR":Aix < b;},
i=1
where A; is the ith row of A.
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Preservation of convexity

©Q LetCy,- -, Cx € R" be convex sets and let yq, - - - , px € R. Then the
following set is convex:

k
1Cr +pupCo 4 - - 4+ Gy = {Zﬂixi: x; € C;1 gigk}
i=1

Note: if C C R" is a convex set and b € R", then the set
C+b:={x+b:x¢c C}isalso convex.

@ Let C; C RN be a convex set foranyi=1,2,--- ,m. Then the
following Cartesian product is convex:

Cy xCyx o X Cypi={(x1,x0,- -+ ,xm) :x; € C;, 1 < i <m}
© Let M C R" be a convex set and let A € R™*". Then the image set
A(M) := {Ax : x € M} is convex.

@ Let D C R™ be a convex set and let A € R™*"™. Then the inverse
image set, A"1(D) := {x € R" : Ax € D}, is convex.
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Convex combinations

@ Definition: Given x1,xp, - - - ,x, € R", a convex combination of these
k vectors is a vector of the form Ayx1 + Axxy + - - - + Agxy, where
A€ Rand A; > 0for1 <i <k, satisfying Ay + Ao +---+ A =1,
ie, A := ()\1, Ag, - - ,/\k)T S Ak'

@ Note: A convex set can be defined by the property that any
convex combination of two points from the set is also in the set.

@ Theorem: Let C C R" be a convex set and let x1,xp,- -+ ,x, € C.
Then forany A = (A1, -+, Aw) | € Ay = {0 e RT: Y1 a; = 1},
we have Y " 1 Aix; € C. That is, a convex combznatzon of any finite
number of poznts from a convex set is in the set.

Proof: We prove the theorem by induction on m. The case m = 1 is trivial.
Suppose that m = k holds. Letx1,xp,- - , 2.1 € Cand A € Apyq. If Ag g =1,

then Z LAk = xq € C.If Agyq < 1, then

v
—N—
k+1 k k
z:= ) Aixi =Y A+ AgpaXirr = (1= Agyr) Z /\k+1XI + A1
i=1 i=1 i=1
k k
A KA
Since Z ! = Lii A =1,wehavev € Cand hence,z € C. O

i=1 1- )\kJrl 1- )\k+l
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Convex hull

@ Definition: (convex hull) Let S C IR". Then the convex hull of S is
the set comprising alé the convex combinations of vectors from S, i.e.,

conv(S) := {Z/\ixi X1,%, X €S,A € Nk € ]N}.
i=1
@ Note: The convex hull conv(S) is a convex set (Exercise!). In fact,

conv(S) is the “smallest” convex set containing S, pls see below.
@ Lemma: Let S CR". IfS C T and T is convex, then conv(S) C T.

Proof: Let z € conv(S). Then we have z = Y¥_; Ax;, for some x,--- ,x, €SC T

and A = (Aq,-- -, Ak)T € Ay. That is, z is a convex combination of elements from
T. Since T is convex, by the previous theorem, we obtainz € T. [

C conv(C)

A nonconvex set with its convex hull
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Carathéodory Theorem

Let S C R" and let x € conv(S). Then 3 xq,x2,- -+ ,x,11 € S such that
x € conv({xy, -, xy41}) Thatis, 3IA = (A, Ay, -+, Ayi1) € Dy
such that x = Y1 A,

Proof: Let x € conv(S). Then I x1,- -+ , 2 €S, A € Apsit. x = Z{-‘Zl Aixi with A; > 0V i
If k < n+1, the result is proven. If k > n 42, then xp — x1, - - - , x, — x7 are linearly
dependent. Therefore, 3 yip, - - -, g not all zeros such that 2;‘:2 ui(xi —x1) = 0. Let

ijl = f]g,LZT]ﬁ, we obtain 2;(:1 uix; = 0 and Zﬁ-‘zl ui = 0, where 37 for which y; < 0.
eta € Ry. Then

k k k
x= Z/\ixl Z:)\xZ +1ny,x, = Z (A +ap;)x; and Z(/\i'i‘fxﬂi) =1
i=1 i=1 i=1
The above representation is a convex combination if and only if
Ai+ap; >0, Vi=1,--- k.
Since A; > 0 Vi, the above set of inequalities is satisfied for all « € [0, ¢], where
€= min { i } Taking a = ¢, then A; + ap; = 0 for j = argmin, » <0{;—”_\"}. This

<0l
means that we have found a representation of x as a convex combination of k — 1

vectors. This process can be carried on until a representation of x as a convex
combination of no more than n + 1 vectors is derived. [
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Example: n = 2

Let S = {x1,x2,x3,x4} C R?, where

X1 = (1,1)T, Xy = (1,2)T, X3 = (2,1)T, X4 = (Z,Z)T.
Let x € conv(S) be given by

X = 1x —I—lx +1x +1x —(13 11)T
Tt Ty g T g8

By the Carathéodory Theorem, x can be expressed as a convex
combination of three of the four vectors x7, x7, x3,x4. The vectors

Xy — X1 = (Oll)T/ X3 — X1 = (1/0)T/ X4 — X1 = (1/1)T

are linearly dependent, and (x; — x71) + (x3 —x1) — (x4 — x7) = 0. i.e.,
—x1 +x + x3 — x4 = 0. Therefore, for any « > 0 we have
1 1 1 1
x = (g —a)x + (Z +a)xp + (5 +a)x3 + (g — a)xs.

Weneedguaranteethat%—tx > O,%—l—a > O,%—FD( >0, % —u>0,
which combined with & > 0 yields that 0 < a < 1/8. Now taking
« = 1/8, we obtain the convex combination x = (3/8)xy + (5/8)x3.
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Convex cones

@ Definition: A set S is called a cone if for any x € S and A > 0, we
have Ax € S.

@ Lemma: A set S is a convex cone if and only if the following properties
hold: (1)x,y € S=x+y€S;(2)x€S,A>0= Ax€S.
Proof:
(=) Letx, y € S. By the convexity, we have %x +(1— %)y €S.

Since S is a cone, we have 2 x %(x +y)=x+ycSs,ie,
property (1) holds. Property (2) is true because S is a cone.

(<) By property (2), Sis a cone. Letx,y € Sand A € [0, 1]. Since
S is a cone, we have Ax € Sand (1 — A)y € S. By property (1),
we further have Ax + (1 — A)y € S, establishing the convexity. [J

@ Example: Consider the convex polytope C = {x € R" : Ax < 0},
where A € R™*". The set C is clearly a convex set, see page 6. It
is also a cone since

x€CA>0=> Ax<0,A>0 = A(MAx) <0 = AxeC.
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Lorentz cone (ice cream cone)

The Lorentz cone, also called the ice cream cone, is given by

L= {(x,t)T eR™!:xeR"teR, and ||x| < t}-

The Lorentz cone is in fact a convex cone. Let (x, )", (y,s) " € L".
Then ||x|| < tand |ly|| <s. The triangle inequality implies that

lx+yll < llxll + [yl <t+s.

Thatis, (x,t)" + (y,s) " = (x+y,t+s)" € L". We have property (1).
To show property (2), take (x,t) " € L" and A > 0. Then we obtain
[ Ax|| = Allx|| < At,so A(x, t) T = (Ax, At)T € L™
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Conic combination

@ Definition: Given x1,xp, - - - ,x, € R", a conic combination of these k
vectors is a vector of the form Aqx1 + Ayxp + - - - + Agxy, where
Ai>O0foralli=1,2,--- k.

@ Lemma: Let C be a convex cone, and let x1,x»,- - - ,x;, € C and
A1, Ao, -+, Ay > 0. Then the conic combination Zi'{:1 Aix; € C.
Proof: Since C is a convex cone, by property (2), we have
Aix; € C, YV i. By property (1), Y¥_ A€ C. O

@ Definition: (conic hull) Let S C R". Then the conic hull of S is the
set comprising all the conic combinations of vectors from S, i.e.,

k
cone(S) := { Y A
i=1

Note that cone(S) is a convex cone. (Exercise!) In fact, we have

@ Lemma: Let S C R". If S C T for some convex cone T, then
cone(S) C T, i.e., the conic hull of S is the smallest convex cone
containing S. (Exercise!)

X1,Xp, " , X € S, A€ ]Rli,k € IN}
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Conic representation theorem

Let S C R" and let x € cone(S). Then 3 k linearly independent vectors
X1,X2, -+ ,Xc € Ssuch that x € cone({x1,---,x;}); that is,

FA= (A, Ay, Ay) € RE such that x = Zﬁle Aix; and k < n.

Proof: Letx € cone(S). Then I xy,- - , x4 €S,A € R st x = Y0 Aix; with A; > 0V i

If x1,- - -,y are linearly independent, then k := m < 1 and the result is proven.
Otherwise, 3 y1,- -+, um € R not all zeros such that 21'-”:1 uix; = 0. Let « € R. Then

m
x:ZA,‘xlfz)\x,-i-txZ‘u,x,:Z (A + api)x;.
i=1

i=1
The above representation is a conic combination if and only if
Ai+ap; >0, Vi=1---,m

Since A; > 0 for all i, we can find & € R s.t. A; +&p; = 0 for some j and A; +ap; > 0 for
the others. Thus we obtain a representation of x as a conic combination of at most

m — 1 vectors. Continuing this process, we can obtain k linearly independent vectors
x1,%x2, X € Swithk < nsuch thatx € cone({xy, - ,x¢}). O

(Please see textbook page 107 for more details)
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Basic feasible solution (BFS)

Linear systems consisting of linear equalities and nonnegativity
constraints often appear as constraints in standard formulations of
linear programming problems.
@ Definition: (basic feasible solution)
Let P:={x € R": Ax =b,x > 0}, where A € R"*" and b € R™.
Suppose that the rows of A are linearly independent. Then X € Pisa
basic feasible solution (BFS) of P if the columns of A corresponding to
the indices of the positive values of X are linearly independent.
@ Note: Since the columns of A reside in R™, it follows that a BFS
has at most m nonzero elements.

@ Example: Consider the linear system
X1 +x+x3=6, x2+x3=23, x1,x,x32>0.

A BFS of the system is (3,3, 0). It satisfies all the constraints and
the columns corresponding to the positive elements, (1, O)T,
(1,1) " are linearly independent.
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Existence of a BFS in P

Theorem: Let P := {x € R" : Ax = b,x > 0}, where A € R"™*" and
b € R™. If P # @, then it contains at least one BFS.

Proof: Letx € P # &. Then Ax = b and x > 0. It follows that

b =xia1 +x2a5 + - - - + xuap, ie., b € cone({ay,az,- -+ ,a,}), where
a; denotes the ith column of A. By the conic representation theorem,
there exist indices iy < i < -+ < iy and k numbers x; , x;,, - - -, x; >0
such that b = 2;‘11 X; aj, and a; , a;,, - - -, a;_ are linearly independent.

Denote ¥ := Z;-;l Xj; €. Then x > 0 and
k k
Ax = ]; xi].Aei]. = ]; xi]. ai]. =b.
Therefore, X € P and satisfies that the columns of A corresponding to

the indices of the positive components of ¥ are linearly independent.
That is, P contains at least one BFS. [
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Closure and interior of a convex set

@ Theorem: Let C C R" be a convex set. Then the closure c1(C) is
convex.
Proof: Letx,y € cI(C) and A € [0,1]. Then 3 sequences {x},
{y} € Csuch thatx; — xand y;, — y ask — oo.
By the convexity of C, Axy + (1 — A)y, € C for any k.
Since Axy + (1 — A)y, — Ax + (1 — A)y, we can conclude that
Ax + (1= A)y € cl(C), which implies that cI(C) is convex. [
@ (line segment principle): Let C C IR" be a convex set, and assume
that int(C) # @. Suppose that x € int(C), y € cl(C). Then
(1= A)x+ Ay € int(C) forany A € (0,1).
(Please see textbook page 109 for the proof)
@ Theorem: Let C C IR" be a convex set. Then the interior int(C) is
convex.
Proof: If int(C) = &, then int(C) is convex. Let x,y € int(C) and
A € (0,1). Then by the line segment principle, (1 — A)x + Ay €
int(C). We can conclude that int(C) is convex. [
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Other topological properties

Let C C R" be a convex set and int(C) # &. Then we have

@ cl(int(C)) = cl(C).
Proof:
(9): Since int(C) C C, we have cl(int(C)) C cl(C).
(D): Letx € cl(C). We take y € int(C). Then by the line segment
principle, we have x; := ty + (1 — })x € int(C) for any k > 1.
Since x; — x as k — oo, we obtain x € cl(int(C)). O

@ int(cl(C)) = int(C).
Proof:
(2): Since C C cl(C), we have int(cl(C)) 2 int(C).
(©): Letx € int(cl(C)). Then F e > 0s.t. B(x,¢) C cl(C). Let
y € int(C). If y = x, then the result is proved. Otherwise, define
z:=x+a(x —y), where a = M Since ||z — x|| = §, we
have z € cl(C). By the line segment principle, we have
(1—A)y+Az € int(C) for A € [0,1). Taking A = 1 € (0,1),
weobtain (1 —A)y+Az=x€int(C). O
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Convex hull of compact set

Theorem: Let S C R" be a compact set. Then conv(S) is compact.
Proof:
@ (Boundedness) Since S is bounded, 3 M > 0 such that ||x|| < M for any x € S.

Lety € conv(S). By the Carathéodory theorem it follows that 3xq,--- ,x,41 €S
and A € Ayqysty = Z I Aix;. Therefore,

n+1

HyII—HZAx1H< 2)\||x1\<MZA -

@ (Closedness) Let y; be a sequence in conv(S) and y;, — y as k — co. We wish to
show that y € conv(S). By the Carathéodory theorem it follows that

3k, xk € Sand AF € AL sty = D0 ARRE. By the compactness of S

n

and A1, the sequence {(A ,x’l‘, X +1)} has a subsequence such that
ki k;
B (A5l = o)

with A € A1 and xq,- -+ ,x,41 € S. Therefore, we have
n+1 o
yfhmykfhmZA/ J*ZAxU

j—roo =

which means that y € conv(S). O
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Conic hull of a finite set

Theorem: Let S := {ay,ay,- -+ ,a,} C R". Then cone(S) is closed.
Proof:

@ By the conic representation theorem, each element of cone(S) can be represented
as a conic combination of a linearly independent subset of {ay,ay, - - - , a}. Let
S1,-++,Sn be all the subsets of S comprising linearly independent vectors, then

cone(S) = UN,cone(S;).

It suffices to show that cone(S;) is closed for all i. Leti € {1,2,--- ,N}. Then
S; ={by, by, , by} for some linearly independent vectors by, by, - - - , by, We
can write cone( ) = {By : y € R}, where matrix B := [by, by, - - , by]uxm-

@ Letxy € cone(S;) fork > 1 and x; — X as k — co. We need to show that
% € cone(S;). Since x; € cone(S;), Iy, € R s.t. xx = By,. Since the columns of
B are linearly independent, we can deduce that

y, = (B"B) "B x.

Thus, we have
lim y, = khm (B"TB) 'B'x, = (B'B) BTz =:7

k—o0
and i € R"}. Therefore,
% = lim x; = lim By, = By € cone(S;). O
k—o0 k—ro0
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Extreme points

@ Definition: (extreme points) Let S C IR" be a convex set. A point
x € S is called an extreme point of S if there do not exist x1,x, € S,
x1 # xpand A € (0,1) such that x = Ax1; + (1 — A)x,.

The set of extreme points of S is denoted by ext(S).
That is, an extreme point is a point in the set S that cannot be

represented as a nontrivial convex combination of two different
points in S.

@ Example: The set of extreme points of a convex polytope
consists of all its vertices.

X2

1 -

-2 -1 0 1 2 3 4
The convex set S = conv{xy, x5, x3, x4 }.
The extreme points set is ext(S) = {x1,xp,x3}.
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Extreme points and basic feasible solutions

Theorem: Let P:= {x € R" : Ax = b,x > 0}, where A € A"™*" has
linearly independent rows and b € R™. Then X is a basic feasible solution of
P if and only if it is an extreme point of P.

Proof:
(=): Let® = (%,X2,--- ,%,) | be a basic feasible solution of P. Without loss of
generality, assume that Xy, - - , X > 0and X1 = - - - = X, = 0, and the first k columns

of A, denoted by ay, - - - , ay, are linearly independent. Suppose that x ¢ ext(P). Then
Jy,zeP,y#zand A € (0,1)s.t. x = Ay + (1 — A)z. Note that the last n — k
components in y and z are zeros. Therefore, we have

k k k
Y viai=band Y ziai=b=) (yi—2z)a; =0, y;—z # Oforsomei € {1,2,--- ,k},
iz i=1 i=1

which implies that ay, - - - , a are linearly dependent, a contradiction!

(<): Suppose that X € P is an extreme point, but it is not a basic feasible solution. Thus,
the columns corresponding to the positive components of ¥ are linearly dependent.
WLOG, assume that the positive components of ¥ are exactly the first k components.
Then 3y € R¥s.t. YX_, y;a; = 0, i.e., A = 0, where § = (y,0) . Since the first k
components of ¥ are positive, 3 & > 0s.t. x; :=X+ ey > 0and xp := X — ey > 0. Then
we have Ax; = AX + €Ay = b+ ¢0 = b and Ax, = b. Therefore, x1,x; € P. Finally, we

have ¥ = 1x; + 1x,. This is a contradiction, because ¥ is an extreme point of P. O
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The Krein-Milman theorem

We will state this theorem without a proof.
Krein-Milman theorem: Let S C IR" be a compact convex set. Then
S = conv(ext(S)).

That is, a compact convex set is the convex hull of its extreme points.
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