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Convex set

Definition: A set C ⊆ Rn is called convex if for any x, y ∈ C and
λ ∈ [0, 1], we have λx + (1− λ)y ∈ C.

Note 1: C is convex⇐⇒ for any x, y ∈ C, the line segment [x, y]
is in C. i.e., [x, y] ⊆ C.

Note 2: The empty set ∅ is a convex set. ($ not! then ∃ ...→←)

Example: A line in Rn is a set of the form, L = {z + td : t ∈ R},
where z, d ∈ Rn. Let x = z + t1d ∈ L and y = z + t2d ∈ L. Then
for any λ ∈ [0, 1], λx + (1− λ)y = z + (λt1 + (1− λ)t2)d ∈ L.
Therefore, L is a convex set.
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Chapter 6

Convex Sets

In this chapter we begin our exploration of convex analysis, which is the mathematical
theory essential for analyzing and understanding the theoretical and practical aspects of
optimization.

6.1 Definition and Examples
We begin with the definition of a convex set.

Definition 6.1 (convex sets). A set C ⊆ �n is called convex if for any x,y ∈ C and
λ∈ [0,1], the point λx+(1−λ)y belongs to C .

The above definition is equivalent to saying that for any x,y ∈ C , the line segment
[x,y] is also in C . Examples of convex and nonconvex sets in �2 are illustrated in Figure
6.1. We will now show some basic examples of convex sets.

convex sets nonconvex sets

Figure 6.1. The three left sets are convex, while the three right sets are nonconvex.

Example 6.2 (convexity of lines). A line in �n is a set of the form

L= {z+ td : t ∈�},
where z,d ∈ �n and d �= 0. To show that L is indeed a convex set, let us take x,y ∈ L.
Then there exist t1, t2 ∈ � such that x = z+ t1d and y = z+ t2d. Therefore, for any
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Convexity of hyperplanes and half-spaces

Note 1: For any x, y ∈ Rn, the closed and open line segments
[x, y] and (x, y) are convex sets.

Note 2: The entire space Rn is a convex set.

Note 3: Let a ∈ Rn \ {0} and b ∈ R. The following sets are convex:
(1) the hyperplane H = {x ∈ Rn : a>x = b};
(2) the half-space H− = {x ∈ Rn : a>x ≤ b};
(3) the open half-space {x ∈ Rn : a>x < b}.

Proof of (2): Let x, y ∈ H− and λ ∈ [0, 1]. We will show that
z = λx + (1− λ)y ∈ H−. Indeed,

a>z = a>(λx + (1− λ)y) = λ(a>x) + (1− λ)(a>y)
≤ λb + (1− λ)b = b,

which implies z ∈ H−. �
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Convexity of balls

Let c ∈ Rn and r > 0. Let ‖ · ‖ be an arbitrary norm defined on Rn. Then
the open ball B(c, r) := {x ∈ Rn : ‖x− c‖ < r} and the closed ball
B[c, r] := {x ∈ Rn : ‖x− c‖ ≤ r} are convex.

Proof: We will show the convexity of the closed ball. Let x, y ∈ B[c, r]
and λ ∈ [0, 1]. Then ‖x− c‖ ≤ r and ‖y− c‖ ≤ r. Let
z = λx + (1− λ)y. We will show that z ∈ B[c, r]. Indeed,

‖z− c‖ = ‖λx + (1− λ)y− c‖ = ‖λ(x− c) + (1− λ)(y− c)‖
≤ ‖λ(x− c)‖+ ‖(1− λ)(y− c)‖
= λ‖x− c‖+ (1− λ)‖y− c‖
≤ λr + (1− λ)r
= r.

Therefore z ∈ B[c, r], establishing the result. �

Note: The above result is true for any norm defined on Rn.
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Convexity of ellipsoids

An ellipsoid is a set of the form

E = {x ∈ Rn : f (x) := x>Qx + 2b>x + c ≤ 0},
where Q ∈ Rn×n is positive semidefinite, b ∈ Rn, and c ∈ R. Then E is a
convex set.

Proof: Let x, y ∈ E, λ ∈ [0, 1], and z := λx + (1− λ)y. Then f (x) ≤ 0, f (y) ≤ 0 and

z>Qz = (λx + (1− λ)y)>Q(λx + (1− λ)y)

= λ2x>Qx + (1− λ)2y>Qy + 2λ(1− λ)x>Qy.

Since x>Qy = (Q1/2x)>(Q1/2y), by the Cauchy-Schwarz inequality, we have

x>Qy ≤ ‖Q1/2x‖‖Q1/2y‖ =
√

x>Qx
√

y>Qy ≤ 1
2
(x>Qx + y>Qy).

Thus, z>Qz ≤ λx>Qx + (1− λ)y>Qy. Hence,

f (z) ≤ λx>Qx + (1− λ)y>Qy + 2λb>x + 2(1− λ)b>y + c

= λ(x>Qx + 2b>x + c) + (1− λ)(y>Qy + 2b>y + c)

= λf (x) + (1− λ)f (y) ≤ 0,

establishing the desired result that z ∈ E. �
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Convexity is preserved under the intersection

Lemma: Let Ci ⊆ Rn be a convex set for any i ∈ I, where I is an
arbitrary index set. Then ∩i∈ICi is convex.

Proof: Let x, y ∈ ∩i∈ICi and λ ∈ [0, 1]. Then x, y ∈ Ci, ∀ i ∈ I.
Since Ci is convex, it follows that λx + (1− λ)y ∈ Ci, ∀ i ∈ I.
Therefore, λx + (1− λ)y ∈ ∩i∈ICi. That is, ∩i∈ICi is convex. �

Example (convex polytopes): A set P is called a convex polytope if it
has the form P = {x ∈ Rn : Ax ≤ b}, where A ∈ Rm×n and b ∈ Rm.
The convexity of P follows from the fact that it is an intersection
of half-spaces and half-spaces are convex:

P =
m⋂

i=1

{x ∈ Rn : Aix ≤ bi},

where Ai is the ith row of A.
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Preservation of convexity

1 Let C1, · · · , Ck ⊆ Rn be convex sets and let µ1, · · · , µk ∈ R. Then the
following set is convex:

µ1C1 + µ2C2 + · · ·+ µkCk :=
{ k

∑
i=1

µixi : xi ∈ Ci, 1 ≤ i ≤ k
}

Note: if C ⊆ Rn is a convex set and b ∈ Rn, then the set
C + b := {x + b : x ∈ C} is also convex.

2 Let Ci ⊆ Rki be a convex set for any i = 1, 2, · · · , m. Then the
following Cartesian product is convex:

C1 × C2 × · · · × Cm := {(x1, x2, · · · , xm) : xi ∈ Ci, 1 ≤ i ≤ m}

3 Let M ⊆ Rn be a convex set and let A ∈ Rm×n. Then the image set
A(M) := {Ax : x ∈ M} is convex.

4 Let D ⊆ Rm be a convex set and let A ∈ Rm×n. Then the inverse
image set, A−1(D) := {x ∈ Rn : Ax ∈ D}, is convex.
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Convex combinations

Definition: Given x1, x2, · · · , xk ∈ Rn, a convex combination of these
k vectors is a vector of the form λ1x1 + λ2x2 + · · ·+ λkxk, where
λi ∈ R and λi ≥ 0 for 1 ≤ i ≤ k, satisfying λ1 + λ2 + · · ·+ λk = 1,
i.e., λ := (λ1, λ2, · · · , λk)

> ∈ ∆k.

Note: A convex set can be defined by the property that any
convex combination of two points from the set is also in the set.

Theorem: Let C ⊆ Rn be a convex set and let x1, x2, · · · , xm ∈ C.
Then for any λ = (λ1, · · · , λm)> ∈ ∆m := {α ∈ Rm

+ : ∑m
i=1 αi = 1},

we have ∑m
i=1 λixi ∈ C. That is, a convex combination of any finite

number of points from a convex set is in the set.
Proof: We prove the theorem by induction on m. The case m = 1 is trivial.
Suppose that m = k holds. Let x1, x2, · · · , xk+1 ∈ C and λ ∈ ∆k+1. If λk+1 = 1,
then ∑k+1

i=1 λixi = xk+1 ∈ C. If λk+1 < 1, then

z :=
k+1

∑
i=1

λixi =
k

∑
i=1

λixi + λk+1xk+1 = (1− λk+1)

v︷ ︸︸ ︷
k

∑
i=1

λi

1− λk+1
xi + λk+1xk+1.

Since
k

∑
i=1

λi

1− λk+1
=

∑k
i=1 λi

1− λk+1
= 1, we have v ∈ C and hence, z ∈ C. �
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Convex hull

Definition: (convex hull) Let S ⊆ Rn. Then the convex hull of S is
the set comprising all the convex combinations of vectors from S, i.e.,

conv(S) :=
{ k

∑
i=1

λixi

∣∣∣ x1, x2, · · · , xk ∈ S, λ ∈ ∆k, k ∈N
}

.

Note: The convex hull conv(S) is a convex set (Exercise!). In fact,
conv(S) is the “smallest” convex set containing S, pls see below.

Lemma: Let S ⊆ Rn. If S ⊆ T and T is convex, then conv(S) ⊆ T.
Proof: Let z ∈ conv(S). Then we have z = ∑k

i=1 λixi, for some x1, · · · , xk ∈ S ⊆ T
and λ = (λ1, · · · , λk)

> ∈ ∆k. That is, z is a convex combination of elements from
T. Since T is convex, by the previous theorem, we obtain z ∈ T. �
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Since
∑m

i=1
λi

1−λm+1
= 1−λm+1

1−λm+1
= 1, it follows that v (as defined in the above equation)

is a convex combination of m points from C , and hence by the induction hypotheses
we have that v ∈ C . Thus, by the definition of a convex set, z = (1 − λm+1)v +
λm+1xm+1 ∈C .

Definition 6.11 (convex hulls). Let S ⊆ �n. Then the convex hull of S, denoted by
conv(S), is the set comprising all the convex combinations of vectors from S:

conv(S)≡
7

k∑
i=1

λi xi : x1,x2, . . . ,xk ∈ S,λ ∈Δk , k ∈�
8

.

Note that in the definition of the convex hull, the number of vectors k in the convex
combination representation can be any positive integer. The convex hull conv(S) is the
“smallest” convex set containing S meaning that if another convex set T contains S, then
conv(S)⊆ T . This property is stated and proved in the following lemma.

Lemma 6.12. Let S ⊆�n . If S ⊆ T for some convex set T , then conv(S)⊆ T .

Proof. Suppose that indeed S ⊆ T for some convex set T . To prove that conv(S) ⊆ T ,
take z ∈ conv(S). Then by the definition of the convex hull, there exist x1,x2, . . . ,xk ∈
S ⊆ T (where k is a positive integer) and λ ∈ Δk such that z =

∑k
i=1 λi xi . By Theorem

6.10 and the convexity of T , it follows that any convex combination of elements from T
is in T , and therefore, since x1,x2, . . . ,xk ∈ T , it follows that z ∈ T , showing the desired
result.

An example of a convex hull of a nonconvex polytope is given in Figure 6.3.

C conv(C)

Figure 6.3. A nonconvex set and its convex hull.

The following well-known result, called the Carathéodory theorem, states that any
element in the convex hull of a subset of a given set S ⊆�n can be represented as a convex
combination of no more than n+ 1 vectors from S.

Theorem 6.13 (Carathéodory theorem). Let S ⊆ �n and let x ∈ conv(S). Then there
exist x1,x2, . . . ,xn+1 ∈ S such that x ∈ conv({x1,x2, . . . ,xn+1}); that is, there exist λ ∈Δn+1
such that

x=
n+1∑
i=1

λi xi .

A nonconvex set with its convex hull
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Carathéodory Theorem

Let S ⊆ Rn and let x ∈ conv(S). Then ∃ x1, x2, · · · , xn+1 ∈ S such that
x ∈ conv({x1, · · · , xn+1}). That is, ∃ λ = (λ1, λ2, · · · , λn+1) ∈ ∆n+1
such that x = ∑n+1

i=1 λixi.

Proof: Let x ∈ conv(S). Then ∃ x1, · · · , xk ∈ S, λ ∈ ∆k s.t. x = ∑k
i=1 λixi with λi > 0 ∀ i.

If k ≤ n + 1, the result is proven. If k ≥ n + 2, then x2 − x1, · · · , xk − x1 are linearly
dependent. Therefore, ∃ µ2, · · · , µk not all zeros such that ∑k

i=2 µi(xi − x1) = 0. Let
µ1 := −∑k

i=2 µi, we obtain ∑k
i=1 µixi = 0 and ∑k

i=1 µi = 0, where ∃ i for which µi < 0.
Let α ∈ R+. Then

x =
k

∑
i=1

λixi =
k

∑
i=1

λixi + α
k

∑
i=1

µixi =
k

∑
i=1

(λi + αµi)xi and
k

∑
i=1

(λi + αµi) = 1.

The above representation is a convex combination if and only if

λi + αµi ≥ 0, ∀ i = 1, · · · , k.

Since λi > 0 ∀i, the above set of inequalities is satisfied for all α ∈ [0, ε], where

ε = min
i: µi<0

{−λi

µi

}
. Taking α = ε, then λj + αµj = 0 for j = argmini: µi<0

{
−λi
µi

}
. This

means that we have found a representation of x as a convex combination of k− 1
vectors. This process can be carried on until a representation of x as a convex
combination of no more than n + 1 vectors is derived. �
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Example: n = 2

Let S = {x1, x2, x3, x4} ⊆ R2, where

x1 = (1, 1)>, x2 = (1, 2)>, x3 = (2, 1)>, x4 = (2, 2)>.

Let x ∈ conv(S) be given by

x =
1
8

x1 +
1
4

x2 +
1
2

x3 +
1
8

x4 = (
13
8

,
11
8
)>

By the Carathéodory Theorem, x can be expressed as a convex
combination of three of the four vectors x1, x2, x3, x4. The vectors

x2 − x1 = (0, 1)>, x3 − x1 = (1, 0)>, x4 − x1 = (1, 1)>

are linearly dependent, and (x2 − x1) + (x3 − x1)− (x4 − x1) = 0. i.e.,
−x1 + x2 + x3 − x4 = 0. Therefore, for any α ≥ 0 we have

x = (
1
8
− α)x1 + (

1
4
+ α)x2 + (

1
2
+ α)x3 + (

1
8
− α)x4.

We need guarantee that 1
8 − α ≥ 0, 1

4 + α ≥ 0, 1
2 + α ≥ 0, 1

8 − α ≥ 0,
which combined with α ≥ 0 yields that 0 ≤ α ≤ 1/8. Now taking
α = 1/8, we obtain the convex combination x = (3/8)x2 + (5/8)x3.
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Convex cones

Definition: A set S is called a cone if for any x ∈ S and λ ≥ 0, we
have λx ∈ S.

Lemma: A set S is a convex cone if and only if the following properties
hold: (1) x, y ∈ S⇒ x + y ∈ S; (2) x ∈ S, λ ≥ 0⇒ λx ∈ S.
Proof:
(⇒) Let x, y ∈ S. By the convexity, we have 1

2 x + (1− 1
2 )y ∈ S.

Since S is a cone, we have 2× 1
2 (x + y) = x + y ∈ S, i.e.,

property (1) holds. Property (2) is true because S is a cone.

(⇐) By property (2), S is a cone. Let x, y ∈ S and λ ∈ [0, 1]. Since
S is a cone, we have λx ∈ S and (1− λ)y ∈ S. By property (1),
we further have λx + (1− λ)y ∈ S, establishing the convexity. �

Example: Consider the convex polytope C = {x ∈ Rn : Ax ≤ 0},
where A ∈ Rm×n. The set C is clearly a convex set, see page 6. It
is also a cone since

x ∈ C, λ ≥ 0 ⇒ Ax ≤ 0, λ ≥ 0 ⇒ A(λx) ≤ 0 ⇒ λx ∈ C.
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Lorentz cone (ice cream cone)

The Lorentz cone, also called the ice cream cone, is given by

Ln :=
{
(x, t)> ∈ Rn+1 : x ∈ Rn, t ∈ R, and ‖x‖ ≤ t

}
.
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Example 6.16. Consider the convex polytope

C = {x ∈�n : Ax≤ 0},
where A ∈ �m×n . The set C is clearly a convex cone since it is a convex polytope (see
Example 6.7). It is also a cone since

x ∈C ,λ≥ 0⇒Ax≤ 0,λ≥ 0⇒A(λx)≤ 0⇒ λx ∈C .

Taking, for example, m = n and A = −I, the set C reduces to the nonnegative orthant
�n
+.

Example 6.17 (Lorenz cone). The Lorenz cone, or ice cream cone whose boundary is de-
scribed in Figure 6.4, is given by

Ln =
&�

x
t

�
∈�n+1 : ‖x‖ ≤ t ,x ∈�n , t ∈�

3
.

The Lorenz cone is in fact a convex cone. To show this, let us take ( xt ), ( ys ) ∈ Ln . Then
‖x‖ ≤ t ,‖y‖ ≤ s , which combined with the triangle inequality implies that

‖x+ y‖ ≤ ‖x‖+ ‖y‖ ≤ t + s ,

showing that ( xt ) + ( ys ) ∈ Ln , and hence that property A holds. To show property B,
take ( xt ) ∈ Ln and λ ≥ 0, then since ‖x‖ ≤ t , it readily follows that ‖λx‖ ≤ λt , so that
λ( xt ) ∈ Ln .

�2
�1

0
1

2

�2

�1

0

1

2
0

0.5

1

1.5

2

Figure 6.4. The boundary of the ice cream cone L2.

Example 6.18 (nonnegative polynomials). Consider the set of all coefficients of poly-
nomials of degree of at most n− 1 which are nonnegative over �:

Kn = {x ∈�n : x1 t n−1+ x2 t n−2+ · · ·+ xn−1 t + xn ≥ 0 for all t ∈�}.
It is easy to verify that this is a convex cone. Let us consider two special cases. When
n = 2, then clearly

K2 = {(x1, x2)
T : x1 t + x2 ≥ 0}= {(x1, x2) : x1 = 0, x2 ≥ 0},

The boundary of the ice cream cone L2

The Lorentz cone is in fact a convex cone. Let (x, t)>, (y, s)> ∈ Ln.
Then ‖x‖ ≤ t and ‖y‖ ≤ s. The triangle inequality implies that

‖x + y‖ ≤ ‖x‖+ ‖y‖ ≤ t + s.

That is, (x, t)> + (y, s)> = (x + y, t + s)> ∈ Ln. We have property (1).
To show property (2), take (x, t)> ∈ Ln and λ ≥ 0. Then we obtain
‖λx‖ = λ‖x‖ ≤ λt, so λ(x, t)> = (λx, λt)> ∈ Ln.
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Conic combination

Definition: Given x1, x2, · · · , xk ∈ Rn, a conic combination of these k
vectors is a vector of the form λ1x1 + λ2x2 + · · ·+ λkxk, where
λi ≥ 0 for all i = 1, 2, · · · , k.

Lemma: Let C be a convex cone, and let x1, x2, · · · , xk ∈ C and
λ1, λ2, · · · , λk ≥ 0. Then the conic combination ∑k

i=1 λixi ∈ C.
Proof: Since C is a convex cone, by property (2), we have
λixi ∈ C, ∀ i. By property (1), ∑k

i=1 λixi ∈ C. �

Definition: (conic hull) Let S ⊆ Rn. Then the conic hull of S is the
set comprising all the conic combinations of vectors from S, i.e.,

cone(S) :=
{ k

∑
i=1

λixi

∣∣∣ x1, x2, · · · , xk ∈ S, λ ∈ Rk
+, k ∈N

}
.

Note that cone(S) is a convex cone. (Exercise!) In fact, we have

Lemma: Let S ⊆ Rn. If S ⊆ T for some convex cone T, then
cone(S) ⊆ T, i.e., the conic hull of S is the smallest convex cone
containing S. (Exercise!)
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Conic representation theorem

Let S ⊆ Rn and let x ∈ cone(S). Then ∃ k linearly independent vectors
x1, x2, · · · , xk ∈ S such that x ∈ cone({x1, · · · , xk}); that is,
∃ λ = (λ1, λ2, · · · , λk) ∈ Rk

+ such that x = ∑k
i=1 λixi and k ≤ n.

Proof: Let x ∈ cone(S). Then ∃ x1, · · · , xm ∈ S, λ ∈ Rm
+ s.t. x = ∑m

i=1 λixi with λi > 0 ∀ i.
If x1, · · · , xm are linearly independent, then k := m ≤ n and the result is proven.
Otherwise, ∃ µ1, · · · , µm ∈ R not all zeros such that ∑m

i=1 µixi = 0. Let α ∈ R. Then

x =
m

∑
i=1

λixi =
m

∑
i=1

λixi + α
m

∑
i=1

µixi =
m

∑
i=1

(λi + αµi)xi.

The above representation is a conic combination if and only if

λi + αµi ≥ 0, ∀ i = 1, · · · , m.

Since λi > 0 for all i, we can find α̃ ∈ R s.t. λj + α̃µj = 0 for some j and λi + α̃µi ≥ 0 for
the others. Thus we obtain a representation of x as a conic combination of at most
m− 1 vectors. Continuing this process, we can obtain k linearly independent vectors
x1, x2, · · · , xk ∈ S with k ≤ n such that x ∈ cone({x1, · · · , xk}). �

(Please see textbook page 107 for more details)
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Basic feasible solution (BFS)

Linear systems consisting of linear equalities and nonnegativity
constraints often appear as constraints in standard formulations of
linear programming problems.

Definition: (basic feasible solution)
Let P := {x ∈ Rn : Ax = b, x ≥ 0}, where A ∈ Rm×n and b ∈ Rm.
Suppose that the rows of A are linearly independent. Then x̄ ∈ P is a
basic feasible solution (BFS) of P if the columns of A corresponding to
the indices of the positive values of x̄ are linearly independent.

Note: Since the columns of A reside in Rm, it follows that a BFS
has at most m nonzero elements.

Example: Consider the linear system

x1 + x2 + x3 = 6, x2 + x3 = 3, x1, x2, x3 ≥ 0.

A BFS of the system is (3, 3, 0). It satisfies all the constraints and
the columns corresponding to the positive elements, (1, 0)>,
(1, 1)> are linearly independent.
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Existence of a BFS in P

Theorem: Let P := {x ∈ Rn : Ax = b, x ≥ 0}, where A ∈ Rm×n and
b ∈ Rm. If P 6= ∅, then it contains at least one BFS.

Proof: Let x ∈ P 6= ∅. Then Ax = b and x ≥ 0. It follows that
b = x1a1 + x2a2 + · · ·+ xnan, i.e., b ∈ cone({a1, a2, · · · , an}), where
ai denotes the ith column of A. By the conic representation theorem,
there exist indices i1 < i2 < · · · < ik and k numbers xi1 , xi2 , · · · , xik > 0
such that b = ∑k

j=1 xijaij and ai1 , ai2 , · · · , aik are linearly independent.

Denote x̄ := ∑k
j=1 xijeij . Then x̄ ≥ 0 and

Ax̄ =
k

∑
j=1

xijAeij =
k

∑
j=1

xijaij = b.

Therefore, x̄ ∈ P and satisfies that the columns of A corresponding to
the indices of the positive components of x̄ are linearly independent.
That is, P contains at least one BFS. �
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Closure and interior of a convex set

Theorem: Let C ⊆ Rn be a convex set. Then the closure cl(C) is
convex.
Proof: Let x, y ∈ cl(C) and λ ∈ [0, 1]. Then ∃ sequences {xk},
{yk} ⊆ C such that xk → x and yk → y as k→ ∞.
By the convexity of C, λxk + (1− λ)yk ∈ C for any k.
Since λxk + (1− λ)yk → λx + (1− λ)y, we can conclude that
λx + (1− λ)y ∈ cl(C), which implies that cl(C) is convex. �

(line segment principle): Let C ⊆ Rn be a convex set, and assume
that int(C) 6= ∅. Suppose that x ∈ int(C), y ∈ cl(C). Then
(1− λ)x + λy ∈ int(C) for any λ ∈ (0, 1).
(Please see textbook page 109 for the proof)

Theorem: Let C ⊆ Rn be a convex set. Then the interior int(C) is
convex.
Proof: If int(C) = ∅, then int(C) is convex. Let x, y ∈ int(C) and
λ ∈ (0, 1). Then by the line segment principle, (1− λ)x + λy ∈
int(C). We can conclude that int(C) is convex. �
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Other topological properties

Let C ⊆ Rn be a convex set and int(C) 6= ∅. Then we have

cl(int(C)) = cl(C).
Proof:
(⊆): Since int(C) ⊆ C, we have cl(int(C)) ⊆ cl(C).
(⊇): Let x ∈ cl(C). We take y ∈ int(C). Then by the line segment
principle, we have xk := 1

k y + (1− 1
k )x ∈ int(C) for any k ≥ 1.

Since xk → x as k→ ∞, we obtain x ∈ cl(int(C)). �

int(cl(C)) = int(C).
Proof:
(⊇): Since C ⊆ cl(C), we have int(cl(C)) ⊇ int(C).
(⊆): Let x ∈ int(cl(C)). Then ∃ ε > 0 s.t. B(x, ε) ⊆ cl(C). Let
y ∈ int(C). If y = x, then the result is proved. Otherwise, define
z := x + α(x− y), where α = ε

2‖x−y‖ . Since ‖z− x‖ = ε
2 , we

have z ∈ cl(C). By the line segment principle, we have
(1− λ)y + λz ∈ int(C) for λ ∈ [0, 1). Taking λ = 1

1+α ∈ (0, 1),
we obtain (1− λ)y + λz = x ∈ int(C). �
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Convex hull of compact set

Theorem: Let S ⊆ Rn be a compact set. Then conv(S) is compact.
Proof:

(Boundedness) Since S is bounded, ∃M > 0 such that ‖x‖ ≤ M for any x ∈ S.
Let y ∈ conv(S). By the Carathéodory theorem it follows that ∃ x1, · · · , xn+1 ∈ S
and λ ∈ ∆n+1 s.t. y = ∑n+1

i=1 λixi. Therefore,

‖y‖ = ‖
n+1

∑
i=1

λixi‖ ≤
n+1

∑
i=1

λi‖xi‖ ≤ M
n+1

∑
i=1

λi = M.

(Closedness) Let yk be a sequence in conv(S) and yk → y as k→ ∞. We wish to
show that y ∈ conv(S). By the Carathéodory theorem it follows that
∃ xk

1, · · · , xk
n+1 ∈ S and λk ∈ ∆n+1 s.t. yk = ∑n+1

i=1 λk
i xk

i . By the compactness of S
and ∆n+1, the sequence {(λk, xk

1, · · · , xk
n+1)} has a subsequence such that

lim
j→∞

(λkj , x
kj
1 , · · · , x

kj
n+1) = (λ, x1, · · · , xn+1)

with λ ∈ ∆n+1 and x1, · · · , xn+1 ∈ S. Therefore, we have

y = lim
j→∞

ykj
= lim

j→∞

n+1

∑
i=1

λ
kj
i x

kj
i =

n+1

∑
i=1

λixi,

which means that y ∈ conv(S). �
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Conic hull of a finite set

Theorem: Let S := {a1, a2, · · · , ak} ⊆ Rn. Then cone(S) is closed.
Proof:

By the conic representation theorem, each element of cone(S) can be represented
as a conic combination of a linearly independent subset of {a1, a2, · · · , ak}. Let
S1, · · · , SN be all the subsets of S comprising linearly independent vectors, then

cone(S) = ∪N
i=1cone(Si).

It suffices to show that cone(Si) is closed for all i. Let i ∈ {1, 2, · · · , N}. Then
Si = {b1, b2, · · · , bm} for some linearly independent vectors b1, b2, · · · , bm. We
can write cone(Si) = {By : y ∈ Rm

+}, where matrix B := [b1, b2, · · · , bm]n×m.

Let xk ∈ cone(Si) for k ≥ 1 and xk → x̄ as k→ ∞. We need to show that
x̄ ∈ cone(Si). Since xk ∈ cone(Si), ∃ yk ∈ Rm

+ s.t. xk = Byk. Since the columns of
B are linearly independent, we can deduce that

yk = (B>B)−1B>xk.

Thus, we have
lim
k→∞

yk = lim
k→∞

(B>B)−1B>xk = (B>B)−1B>x̄ =: ȳ

and ȳ ∈ Rm
+. Therefore,

x̄ = lim
k→∞

xk = lim
k→∞

Byk = Bȳ ∈ cone(Si). �
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Extreme points

Definition: (extreme points) Let S ⊆ Rn be a convex set. A point
x ∈ S is called an extreme point of S if there do not exist x1, x2 ∈ S,
x1 6= x2 and λ ∈ (0, 1) such that x = λx1 + (1− λ)x2.
The set of extreme points of S is denoted by ext(S).

That is, an extreme point is a point in the set S that cannot be
represented as a nontrivial convex combination of two different
points in S.

Example: The set of extreme points of a convex polytope
consists of all its vertices.
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Figure 6.5. The filled area is the convex set S = conv{x1,x2,x3,x4}, where x1 =
(2,−1)T ,x2 = (1,3)T ,x3 = (−1,2)T ,x4 = (1,1)T . The extreme points set is ext(S) = {x1,x2,x3}.

We can fully characterize the extreme points of convex polytopes of the form P =
{x ∈ �n : Ax = b,x ≥ 0}, where A ∈ �m×n has linearly independent rows and b ∈ �m .
Recall (see Section 6.4) that x̄ is called a basic feasible solution of P if the columns of
A corresponding to the indices of the positive values of x̄ are linearly independent. In
Section 6.4 it was shown that if P is not empty, then it has at least one basic feasible
solution. Interestingly, the extreme points of P are exactly the basic feasible solutions of
P , which means that the linear independence of the columns of A corresponding to the
positive variables is an algebraic characterization of extreme points.

Theorem 6.34 (equivalence between extreme points and basic feasible solutions). Let
P = {x ∈�n : Ax= b,x≥ 0}, where A ∈�m×n has linearly independent rows and b ∈�m.
Then x̄ is a basic feasible solution of P if and only if it is an extreme point of P .

Proof. Suppose that x̄ is a basic feasible solution and assume without loss of generality
that its first k components are positive while the others are zero: x̄1 > 0, x̄2 > 0, . . . , x̄k >
0, x̄k+1 = x̄k+2 = · · · = x̄n = 0. Since x̄ is a basic feasible solution, the first k columns
of A denoted by a1,a2, . . . ,ak are linearly independent. Suppose in contradiction that
x̄ /∈ ext(P ). Then there exist two different vectors y,z ∈ P and λ ∈ (0,1) such that x̄ =
λy+ (1− λ)z. Combining this with the fact that y,z ≥ 0, we can conclude that the last
n− k variables in y and z are zeros. We can therefore write

k∑
i=1

yi ai = b,

k∑
i=1

zi ai = b.

Subtracting the second inequality from the first, we obtain

k∑
i=1

(yi − zi )ai = 0,

and since y �= z, we obtain that the vectors a1,a2, . . . ,ak are linearly dependent, which is a
contradiction to the assumption that they are linearly independent. To prove the reverse

The convex set S = conv{x1, x2, x3, x4}.
The extreme points set is ext(S) = {x1, x2, x3}.
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Extreme points and basic feasible solutions

Theorem: Let P := {x ∈ Rn : Ax = b, x ≥ 0}, where A ∈ Am×n has
linearly independent rows and b ∈ Rm. Then x̄ is a basic feasible solution of
P if and only if it is an extreme point of P.
Proof:
(⇒): Let x̄ = (x̄1, x̄2, · · · , x̄n)> be a basic feasible solution of P. Without loss of
generality, assume that x̄1, · · · , x̄k > 0 and x̄k+1 = · · · = x̄n = 0, and the first k columns
of A, denoted by a1, · · · , ak, are linearly independent. Suppose that x̄ 6∈ ext(P). Then
∃ y, z ∈ P, y 6= z, and λ ∈ (0, 1) s.t. x̄ = λy + (1− λ)z. Note that the last n− k
components in y and z are zeros. Therefore, we have

k

∑
i=1

yiai = b and
k

∑
i=1

ziai = b =⇒
k

∑
i=1

(yi− zi)ai = 0, yi− zi 6= 0 for some i ∈ {1, 2, · · · , k},

which implies that a1, · · · , ak are linearly dependent, a contradiction!
(⇐): Suppose that x̃ ∈ P is an extreme point, but it is not a basic feasible solution. Thus,
the columns corresponding to the positive components of x̃ are linearly dependent.
WLOG, assume that the positive components of x̃ are exactly the first k components.
Then ∃ y ∈ Rk s.t. ∑k

i=1 yiai = 0, i.e., Aỹ = 0, where ỹ = (y, 0)>. Since the first k
components of x̃ are positive, ∃ ε > 0 s.t. x1 := x̃ + εỹ ≥ 0 and x2 := x̃− εỹ ≥ 0. Then
we have Ax1 = Ax̃ + εAỹ = b + ε0 = b and Ax2 = b. Therefore, x1, x2 ∈ P. Finally, we
have x̃ = 1

2 x1 +
1
2 x2. This is a contradiction, because x̃ is an extreme point of P. �
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The Krein-Milman theorem

We will state this theorem without a proof.

Krein-Milman theorem: Let S ⊆ Rn be a compact convex set. Then

S = conv(ext(S)).

That is, a compact convex set is the convex hull of its extreme points.
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