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Convex function

@ Definition: A function f : C C R" — R defined on a convex set C is
called convex over C if

fAx4+ (1 =A)y) <A(x)+(1—A)f(y), Vx,yeC, A €[0,1].
— ———
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A(x)+(1=2)f(y)

O x+(1-A)y)

H . I . 1
X Ax+(1-h)y y

@ Definition: A function f : C C R" — R defined on a convex set C is
called strictly convex over C if

fAx+(1—=ANy) <A (x)+(1-A)f(y), Vx#yeC, Ae(0,1).

@ A function is called concave if —f is convex. Similarly, f is called
strictly concave if —f is strictly convex.
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Convexity of affine functions and norms

@ Convexity of affine functions: Let f(x) = a ' x + b, where
a € R"and b € R. Taking x, y € R", A € [0,1], we have
fAx+(1=A)y) = a' (Ax+(1—-A)y)+b
= AMa"x)+(1=A)(a"y)+Ab+(1—A)b
= AMa'x+b)+(1-MN)(a'y+b)
= M)+ A -Af(y)
Therefore, f is both convex and concave.

@ Convexity of norms: Let || - || be a norm on R”. Then f(x) = ||x||
is convex. Indeed, V x, y € R", A € [0,1], we have

fAx+(1=ANy) [Ax + (1= Ayl

[Ax[| + (1 =)yl
Allll+ (1 =)y
Af(x) + (1= A)fy).

IN
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Jensen’s inequality

Letf : C C R" — R be a convex function, where C is a convex set. Then for
any x1,x2, -+ ,x € Cand A € Ay, the following inequality holds:

k k
F(L ) < LS.

Proof: We will prove the inequality by induction on k.

The inequality holds for the simplest case k = 1. Assume that for any k vectors
x1,%2,+ -+ ,% € Cand A € Ay, the inequality holds. We will now prove the inequality
for k 4+ 1 vectors. Assume that x1,x2,- -+ , %1 € Cand A € Agyq. If Ay = 1then

Ai = 0for1 <i < k and the inequality holds. If A;41 < 1 then

k+1 k k

f(Z ?\ixi) = f(z Aix; 4 /\k+1xk+1) :f<(1 —Aks1) ) mxz + /\k+1xk+1)
i=1 i=1 i=
ﬁ/—/
v
< (1= M )f (0) + A f (xr1),
where Y ———— =1and thenv € C. Since f(v) < , we obtain
; Ak+1 flo 2 1- Ak+1

k+1 k+1

F( ) < LAs). O
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The gradient inequality

Letf : C C R" — R be a continuously differentiable function defined on
the convex set C. Then f is convex over C if and only if

fo0) + V() (y—x) <f(y), Yx,y €C
Proof:

(=) Letx#y e Cand A € (0,1). Wehave f(Ay + (1 — A)x) < Af(y) + (1 — A)f(x).
Hence,

Flt My=2) =) _ Oy + A=A 1) _ g

Taking A — 0, the left-hand side converges to the directional derivative of f at x in the
direction y — x, so that Vf(x) T (y — x) = f'(x; y — x) < f(y) — f(x).

(<): Letz,w e C, A € (0,1). We will show f(Az + (1 — A)w) < Af(z) + (1 — A)f(w).
Letu:= Az+ (1 —A)w € C. Then z — u = — 152 (w — u). Invoking the gradient
inequality on the pairs z, u and w, u, we have

A
f) + V@) (z—u) <f(z) and f(u) - ;= Vf() " (z—u) <f(w).
Multiplying the first inequality by ﬁ and adding it to the second one, we obtain

T ) < T2 () + fw).
Thatis, f(Az+ (1 —Nw) < Af(z) + (1 —A)f(w). O
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The gradient inequality for strictly convex function

@ Letf: C CR" — R be a continuously differentiable function defined
on the convex set C. Then f is strictly convex over C if and only if

f)+ V) (y—x) <f(y), Yx#yeC.

Proof: («<): It is similar to the proof on the previous page.

(=): Suppose not, then 3 x # y € C such that f(x) + Vf(x) T (y — x) = f(y). Let
A€ (0,1) and z := Ax + (1 — A)y. Then, since f is strictly convex, we have

f2) < M)+ (1= Af(y) = M) + (1= ([f(x) + Vf(x) " (y —x)) =

fx) 4+ VF(x)T (Ax+ (1 - A)y —x) =f(x) + Vf(x) " (z — x), a contradiction!

@ Geometrically, the gradient inequality essentially states that for
convex functions, the tangent plane is below the surface of f.

~10 -
2 -15 -1 05 o0 o8

T/wfuncfimzf(’,\‘, y) = x4 }/2 and its tangent plane at (1,1).
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A global minimizer

@ Letf:C CR" — R be a continuously differentiable convex function
over the convex set C. Assume that Vf(x*) = 0 for some x* € C.
Then x* is a global minimum point of f over C.

Proof: Let z € C. Then from the gradient inequality, we have

f(2) 2 f() + V() T (z = ") = f(x").
That is, x* is a global minimum point of f over C. [

@ Letf : R" — IR be a continuously differentiable convex function. Then
Vf(x*) = 0 if and only if x* is a global minimum point of f over R™.
Proof: Using the above theorem and Theorem 2.6, we reach the
conclusion. U
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Convexity and strict convexity of quadratic functions

Let f : R" — R be the quadratic function, f(x) = x' Ax +2b ' x + ¢, where
A € R"™" is symmetric, b € R", and c € R. Then f is (strictly) convex if
and only if A = 0 (A - 0).
Proof:
@ The convexity of f is equivalent to the validity of the gradient inequality (see
page 5): f(y) > f(x) + Vf(x) T (y —x), Vx,y € R". That s,
y Ay 426 y+c>x"Ax+2b x +c+2(Ax+b) (y—x), VxycR?
which is equivalent to
(yfx)TA(yfx) >0, Vx,y e R" = d"Ad>0,VdecR" < A > 0.

@ To prove the strict convexity variant, note that strict convexity of f is the same as
fly) > f(x) + VF(x) T (y —x), Vx # y € R". The same arguments as above imply
that this is equivalent to A = 0. [

The left quadratic function f(x,y) = x* + y? is convex, while the middle
flx,y) = —(x* + y?) and right f (x,y) = x> — y* are nonconvex.
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Monotonicity of the gradient

Letf : C C R" — R be a continuously differentiable function defined on
the convex set C. Then f is convex over C if and only if

T
(Vf(x) = Vf(y)) (x—y) 20, VxyeC.
Proof: (=): Since f is convex over C, by the gradient inequality, we have V x,y € C,

f@) = f)+ VW) (x—y), fly)=fx)+ V) (y-x),

By summing the two inequalities, we have (Vf(x) — Vf(y)) T (x —y) > 0.
(<): Let g be the one-dimensional function defined by g(t) = f(x+t(y —x)), t € [0,1].
By the fundamental theorem of calculus, we have the gradient inequality,

1
ﬂﬂ=ﬂﬂ=ﬂ®+fghﬂt
0
1
= fx)+ f (%) Vf (ot tly —x))dt
= f@)+ V() (y— ) +L (v = )7 (V/ (x+ 1y —x)) — Y/ (x)ds

> f(0)+ V()" (y~x),
where the last inequality follows from the monotonicity of Vf that

Hy —x) " (Vf(x+Hy —x)) = Vf(x)) = (Vf(x +Hy—x)) = V() (x+Hy—x) —x) > 0. O
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Second order characterization of convexity

Letf : C C R" — IR be a twice continuously differentiable function over an
open convex set C. Then f is convex over C if and only if V*f(x) = 0 for
anyx € C.
Proof: (=): Letx € Cand 0 # y € R". Since C is open, 3¢ > 0s.t. x + Ay € C for
0 < A < e. Invoking the gradient inequality, we have

fle+Ay) > f(x) + AVF(x) y.

By the quadratic approximation theorem, we have

A2
fle+Ay) =f(x) + AVF() 'y + Sy "V (x)y +o(Alyl?),
which implies that

/\2 1 )\2 2
Ay oy 20 = Ly vy + S s

for any A € (0,¢). Taking A — 0*, we can conclude that y " V?f(x)y > 0, for any

y € R". Therefore, V2f(x) = 0 for any x € C.

(«): Suppose that V2f(x) > 0 for any x € C. We will prove the gradient inequality. Let
x,y € C. By the linear approximation theorem, 3 z € [x,y] C C such that

fy) =f(x) + V() (y —x) + %(y —x) ' V2f(2)(y —x).
Since V2f(z) = 0, the gradient inequality f(y) > f(x) + Vf(x) " (y —x) holds. O
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Sufficient second order condition for strict convexity

@ Letf:C CR" — R be a twice continuously differentiable function
over a convex set C. Assume that V*f(x) = 0 for any x € C, then f is
strictly convex over C.

@ Note: Note that the positive definiteness of the Hessian is only a
sufficient condition for strict convexity and is not necessary.
Indeed, the function f(x) = x* is strictly convex, but its second
order derivative f”’ (x) = 12x? is equal to zero for x = 0.
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Example: convexity of the log-sum-exp function

Consider the log-sum-exp function f(x) = In(e"1 4 ¢*2 4 - - - + ¢*). The partial
derivatives of f are given by

iei .

Xi 2 - 1 X] 7 1 # ’

aaf 76 X’ i:1;2/“‘/”r aaéf ( ) (Zcf:grk) eli . ]
Xi Zk 1€ Xi0Xj - T, )2 + o, v L=

The Hessian matrix is

Xi
V¥ (x) = diag(w) —ww', w; = o WE Ay
j=1
Consider the expression for any 0 # v € R",

n
o' V¥(x)o =Y wo? — (v w)>
i=1
Define vectors s, t by s; = \/w;v;, t; = \/w;, i =1,2,--- ,n. Then by the
Cauchy-Schwarz inequality, we have

(07w = (T2 < sl = (Swot) (L) = (L wef).

Therefore, v | V2f(x)v > 0 forany 0 # v € R".
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Convexity under summation and multiplication

@ Letf:C CR" — R bea convex function defined over a convex set C
and let « > 0. Then «f is a convex function over C.

Proof: Letx,y € Cand A € [0,1]. Then

@)(Ax+(1-ANy) = af(Ax+(1-A)y)
aAf(x) +a(1 = A)f(y)
Maf)(x) + (1= A)(af)(y). O
@ Letfi,fo, -+ ,fp: C S R" — R be convex functions over a convex set
C. Then the sum function fi + f» + - - - + f is a convex over C.
Proof: Letx,y € Cand A € [0,1]. Then
(At+fat-+fp)(Ax+(1=A)y)
=fi(Ax+(1-Ay)+ - +f(Ax+ (1-A)y)
<M+ A =MfY) + -+ A ) + (1= Af(y)
=AMAE) +- A () A=A (A) + - +fi(y)
=AMA+L+ @)+ AN +L+ - +H)y). O

IN
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Convexity under linear change of variables

Letf : C C R" — R be a convex function defined on a convex set C. Let
A € R"™" and b € R". Then the function g defined by g(y) := f(Ay + b)
is convex over the convex set D := {y € R™ : Ay +b € C}.

Proof: First, D is convex because it is the linear inverse image of the
convex set C — b, i.e., D = A~1(C — b) (cf. Chapter 6, page 7).

Lety,,y, € D. Define x; = Ay, +band x, = Ay, +b. Then
x1,xp € C. Let A € [0,1]. By the convexity of f we have

f(/\x1 + (1 — /\)xz) S /\f(xl) + (1 — )\)f(x'z)
That is,

f(AMAy, +b) + (1-A)(Ay, +b)) < Mf(Ay; +b) + (1 - A)f (Ay, + ),
or equivalently,

fAAY, + (1= A)y,) +b) < Af(Ay; +b) + (1 - A)f(Ay, +b).
In other words, we have

gy + (1= A)yy) < Ag(y) + (1= 1)g(y2),
establishing the convexity of g. [
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Composition of convex functions

@ Conwvexity is not preserved under composition of convex functions: Let
¢(t) = t? and h(t) = t> — 4. Then g, h are convex. However, their
composition s(t) := g(h(t)) = (> — 4)? is not convex.

2 ap
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@ Letf:C CR" — R bea convex function over a convex set C. Let
g : I — R be a one-dimensional nondecreasing convex function over
the interval I C R. Assume that f(C) C I. Then the composition of g
with f defined by h(x) := g(f(x)), x € C, is a convex function over C.
Proof: Letx,y € Cand A € [0,1]. Then we have

h(Ax+ (1= A)y) = g(f(Ax + (1= A)y)) < g(AMf(x) + (1 = A)f(y))
<A(f(x)) + (1= A)g(f(y)) = Ah(x) + (1 = A)h(y). O
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Pointwise maximum of convex functions

@ Theorem: Let f1,fo,- -+ ,fy : C C R" — R be convex functions over
the convex set C. Then the maximum function

flx) = max fi(x)
i=1,2,p
is a convex function over C.
Proof: Letx,y € Cand A € [0,1]. Then we have
fAx+(1=Ay) = max fi(Ax+(1-A)y)
=12, p

IN

Jmax (Ailx) + (1= V)fiy))

< A_max pfl-(x) +(1-2) _max fi(y)

=12, =12,

= M)+ 1-Af(y). O

@ Example: f(x) := max{x,xp,- -+, X, } is a convex function
" f is the maximum of 7 linear functions, which are convex.
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Partial minimization

@ Theorem: Let f : C x D C R x R" — R be a convex function over
the set C x D, where C C R™ and D C R" are convex. Let

g(x) == mirD\f(x,y), xeC,

Yoo o
where we assume that the minimum in the above definition is finite.
Then g is convex over C.

Proof: Letx1,x, € C, A € [0,1]. Taking ¢ > 0, then 3 y;,y, € Ds.t.
flruy) <glx) +e  flxay,) <glx) +e
By the convexity of f we have
fAGLYy) +(1=MN2,,) < My) + (1= A)f(x2,y,)
< Aglx) + (1-A)g(x2) +e

By the definition of ¢ we can conclude that

g(Ax1 + (1= A)xp) < Ag(wr) + (1 —A)g(x2) +e.
Since the above inequality holds for any & > 0, it follows that g is convex. [J

@ Example: Let C C R" be a convex set. The distance function

defined by d(x,C) := min{||x — y|| : y € C} is convex since the
function f(x,y) := ||x — y|| is convex over R" x C.
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Level sets of convex functions

@ Definition: Let f : S C R" — R be a function defined over the set S.
Then the level set of f with level w is given by

Lev(f,a) :={x € S:f(x) <a}.

@ Theorem: Let f : C C R" — IR be a convex function defined over a
convex set C. Then for any a € R the level set Lev(f, ) is convex.

Proof: Letx,y € Lev(f,a) and A € [0,1]. Then f(x),f(y) < a. By
the convexity of C, we have Ax + (1 — A)y € C and then

fAx+ (1 =A)y) <Af(x) + (1= Af(y) SAa+(1-Aa =g,

which implies that Ax 4+ (1 — A)y € Lev(f, «). Therefore, the
level set Lev(f, a) is convex. [
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Example

Consider the following set:

f(x)

D:= {xelR”:(xTQx—l—l +1n(fexl) }
i=1

where Q € R"*" and Q = 0. The set D is convex as a level set of a
convex function f. Specifically, D = Lev(f, 3).

The function f is indeed convex as the sum of two convex functions:
the log-sum-exp function, which was shown to be convex, and the
function g(x) := (x" Qx + 1)?, which is convex as a composition of
the nondecreasing convex function ¢(t) = (t + 1)? defined on R ;.
with the convex quadratic function x ' Qx.
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Quasi-convex functions

@ All convex functions defined over convex sets have convex level
sets, but the reverse claim is not true. That is, there do exist
nonconvex functions whose level sets are all convex.

@ Definition: A function f : C C R" — R defined over the convex set
C is called quasi-convex if for any a € R the set Lev(f, ) is convex.

@ Example: The one-dimensional function f(x) = /|x| is not
convex, but its level sets are convex. For any a« < 0, we have
Lev(f,a) = @, and for any a > 0,

Lev(f,a) = {x € R:y/|x| <a} = {x e R: |x| < a®} = [—a?,a?].

We deduce that the nonconvex function f is quasi-convex.

25

=)
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Continuity of convex functions

@ Convex functions are not necessarily continuous when defined
on non-open sets. Let us consider, for example, the function
defined over the interval [0, 1],

1, x=0,
f(X)—{ x2’ 0<x<1,

It is easy to see that this is a convex function, and obviously it is not a
continuous function.

0.8
0.6
0.4

0.2

0.2

0.2 0 0.2 0.4 0.6 08 1

@ We will prove that convex functions are always local Lipschitz
continuous at interior points of their domain.
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Local Lipschitz continuity of convex functions

Let f : C C R" — IR be a convex function over the convex set C. Let
xg € int(C). Then there exist ¢ > 0 and L > 0 such that B[xg, ¢] C C and

f(x) = f(x0)| < Lllx = xoll, Vx & Blxo,él.

Proof: Since xo € int(C), I& > 05s.t Bo[xp, €] := {x € R" : ||x — xp]|c < €} C C.

@ Claim: f is upper bounded over Bg [xy, €].

Let v1,vy, - - -, von be the 2" extreme points of Be [x0, €]. These are the vectors
v; = x9 + €w;, where wq, wy, - - -, won are the vectors in {—1,1}". Then by the

Krein-Milman theorem, for any x € B [x0,€], IA € Apn s.t. x = 21'2:1 Aivj. By
Jensen’s inequality, we have

ZVI 271
fl) =f( Awi) < Y Af(vi) <M,
i=1 i=1
where M := maX;—i,... pn f (v;).
@ Claim: f(x) < M for any x € B[xo, €].
Since ||x|le < ||x||2 for any x € R, it holds that
Ba[xo,€] = Blxg,e] = {x e R" : ||x —x0]]2 < &} C B0, €]

Therefore, f(x) < M for any x € Blxy, €|
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Continuing the proof

@ Claim: f(x) — f(xp) < L|jx —xo .
Let x € B[xo, €] and x # xq. Define z := xg + 1 (x — x), where a = ||x — xg|| /&
Thena <1, z € Blxg, €], and f(z) < M. In addition, x = az + (1 — a)xp. By the
convexity of f we have
_ M —f(x0)
fx) < af(z) + (1 -a)f (xo) < flxo) +a(M—f(x0)) = f(x0) + ———|
Therefore, f(x) — f(xp) < L||x — xg]. —L
@ Claim: f(x) —f(xp) > —L|lx — xo]|.
Define u := x9 + 1 (xg — x). Then ||u — xo|| = ¢, u € Blxo, €], f(u) < M,
x =xp+a(xg—u),and

Jx—xo]|-

«
xg = 1+“(xo+zx(x0—u)) + Tt
Therefore,
x
f) < 1l + aleo — ) + o f ()
0/ =7,/ 0 1+a !
which implies that

Y

) e x0) = () = o) = (M — f(x)
i) - ML)

and the desired result is established. [

fx) = f(xo + a(xo —u))

llx = ol = f(x0) — Llx = xoll,
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Existence of directional derivatives for convex functions

Let f : C C R" — R be a convex function over the convex set C and let

. . x+td) —f(x
x € int(C). Then for any 0 # d € R", IIHLM
t—0
Proof: Let = . 8(t) —g(0) . ) .
: g(t) :==f(x+td) and let h(t) := ; . Then we wish to find 11151+ h(t).
t—
Sincex € int(C),3e > 0s.t. x+td,x —td € Cforallt € [0,¢]. Let 0 < t; < t» < &. Then
51
t

exists.

t
x4+hd=(1-)x+

(x + tzd).
f

By the convexity of f we have

x+ td) —f(x) < flx+ td) —f(x)
t - tr '

Therefore, i(t) is monotone nondecreasing over (0, ¢]. Taking 0 < t < ¢, we have

flatnd) < (- 10+ b d) — [

x= ) el = f(0) S o)+ fa—ed).

After some rearrangement of terms, we obtain

by = L =118) ) e e

= > ,

€
showing that & is bounded below over (0, €]. Since  is nondecreasing and bounded

below over (0, €], it follows that the limit lin} h(t) exists. O
-0
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Extended real-valued functions

@ It is natural to consider functions that are defined over the entire
space IR" that take values in RU {oo} = (—o0, c0|. Such a function
is called an extended real-valued function.

@ The indicator function dg : R" — R U {oo}: givenaset S C R",
0 ifxes,
0s(x) = { o ifx¢s.
@ The effective domain of an extended real-valued function is
dom(f) := {x € R" : f(x) < oo}.
@ An extended real-valued function f : R” — R U {oo} is called

proper if it is not always equal to co, meaning that there exists
x9 € R" such that f(xg) < oco.

@ An extended real-valued function is convex if for any x, y € R”
and A € [0,1], wehave f(Ax + (1 — A)y) < Af(x) + (1 — A)f(y),
where we use the usual arithmetic with oo:

a+oc0:=00,VaeR, a-co:=00, VaceR;;, 0-00:=0.
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Convexity of extended real-valued functions

@ The above definition of convexity of extended real-valued
functions is equivalent to saying that (i) dom(f) is convex and (ii)
the function g : dom(f) — R defined by g(x) = f(x) for any
x € dom(f) is a convex finite-valued function over dom(f).

@ As an example, the indicator function d¢(-) of a set C C R" is
convex if and only if C is a convex set.

@ Assume thatf : R" — R U {co}. The epigraph set epi(f) C R"*+!
is defined by epi(f) := {(x,t) : f(x) < t}.

Below is the epigraph of a one-dimensional function f.

epi(f)

@ An extended real-valued (or a real-valued) function f is convex if and
only if its epigraph set epi(f) is convex.
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Convexity under maximum

@ Theorem: Let f; : R" — R U {oo} be an extended real-valued convex
function for any i € I, where I is an arbitrary index set. Then
f(x):= max fi(x) is an extended real-valued convex function.
1€

Proof: epi(f;) is convex for any i € I because f; is convex. epi(f) is
convex because epi(f) = Njcrepi(f;), intersection of convex sets.
Hence, the convexity of f is established. [

@ Definition of support function: Let S C IR". The support function
of S is the function og(x) := max x'y, VxR
ye

Since for each y € S, the function fy(x) := y " x is a convex function
over R", by the above theorem, it follows that the support function
os(x) is an extended real-valued convex function.

@ Example: Let S = B[0,1] := {y € R" : ||y|| < 1}. Letx € R". We
will show that og(x) = ||x||. Proof: If x = 0 then o5(x) = 0 = ||x||.
If x # 0 then Vy € S and x € R", we have by the C-S inequality
thatx "y < ||x||[ly|| < ||x||. Taking ¥ = x/||x|| € S, we have
x "9 = ||x||. The desired formula follows.
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Maxima of convex functions

@ Theorem: Let f : C C R" — IR be a convex function which is not
constant over the convex set C. Then f does not attain a maximum at a
point in int(C).

Proof: Assume in contradiction that x* € int(C) is a global maximizer of f over C.
Since f is not constant, 3y € Cs.t. f(y) < f(x*). Since x* € int(C), e > 0s.t.
z=x"te(x* —y) € C. Sincex* = 7y + €J%lz,f(x*) < &qfly) + Hilf(z)
Hence, f(z) > e(f(x*) —f(y)) +f(x*) > f(x*), which is a contradiction. O

@ Theorem: Let f : C C R" — R be a convex and continuous function
over the convex and compact set C. Then there exists at least one
maximizer of f over C that is an extreme point of C.

Proof: By the Weierstrass theorem, the existence of maximizer of f over C is
guaranteed. Let x* be a maximizer of f over C. If x* is an extreme point of C.
Then the result is established. Otherwise, if x* is not an extreme point, then by
the Krein-Milman theorem, C = conv(ext(C)). I x1,- - - ,x; € ext(C) and
A=Ay, AT €A A >0V, st xF = Z?:l Aix;. By the convexity of f we
have f(x*) < YX_; Af(x;), or equivalently, X | A;(f(x;) — f(x*)) > 0. Since
f(x) <f(x*), Vi, wehavef(x;) = f(x*), Vi. Thus, the extreme points xy, - - - , x¢

are all maximizers of f over C. [
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Computation of ||Al11

@ Let A € R™*". Recall that ||Al|1,1 := max{||Ax||; : [|x]|; < 1}.

@ Since the optimization problem consists of maximizing a convex
and continuous function (composition of a norm function with a
linear function) over a compact convex set, there exists a
maximizer which is an extreme point of the /; ball.

@ Note that there are exactly 2n extreme points to the ¢1 ball, e,
—ey, ey, —€y, -, ey, —€y.

@ Since "
[Aell1 = |A(=¢)]ln = ) |Aj,
i=1
we have

m
Al = Aeil|; = Al
1A]l1,1 fngg\l ejll1 g]a;l;\ il
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The arithmetic geometric mean (AGM) inequality

AGM inequality: For any x1,x2, -+, xp > 0 the inequality holds:

n

- Zx, > (Hx)l/n.

More generally, for any A € An, one has Z Aix; > Hx

i=1
Proof: Let f(x) = —In(x). Then f is convex over (0, 00). For any x1,x2,- -+ ,x, > 0 and
A € Ay, we have from Jensen’s inequality that

n

f(};mx» <Y Af() = —In(Y Am) < — ) Addn() = In(Y Am) > Y Arln(x)

i=1 i=1 i=1 i=1 i=1
Taking the exponent of both sides of the last inequality, we have
n n n A
E/\ixi > exp(z Ailn(x;)) = Hxi i
i=1 i=1 i=1

Plugging in A; = 1 for all i yields the special case. [J
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Young’s inequality and Holder’s inequality

° Young’s inequality: For any s, t > Oand p,q > 1 satisfying
1+ 1 =1ithold that st < + &
Proof By the generalized AGM mequahty we have for any x,y > 0,
xV yq < x y . Setting x = s” and y = #1, the result follows. [

° Holder s mequahty. Forany x,y € R" and p,q > 1 satisfying
1 1 _ 13 T
p T 7 = Lit holds that Ix " y| < [|x][pllyll-
Proof: If x = 0 or y = 0 then the inequality is trivial. Assume that x # 0 and
y # 0. The inequality is trivial for the cases of (p,q) = (1, 00) and (p,q) = (oo 1).
We assume that 1 < p,q < co. For 1 <i <1, setting s = Hlel and t = HyH

Young’s inequality yields
BT YEE iyl _ 1l 1y

Ixllpllylls = Pl a lylly

Summing the above inequality over i, we have

Ll byl Lo bl | 1 X \Ziw o1
Ixlpllylle =P xlp a0 Dyl » 4

By the triangle inequality we have
n

Tyl < Zi xiyil < llxlpllyllg- O
=
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Minkowski’s inequality

The p-norm (for p > 1) satisfies the triangle inequality:

Let p > 1. Then for any x,y € R, ||[x +yl|, < ||x||p + |ly||, holds.

Proof: The case p = 1is trivial. We assume thatp > 1,x # 0,y # 0, and x +y # 0. The
function ¢(t) := # is convex over R since ¢” (t) = p(p — 1)#"=2 > 0 for t > 0. By the
convexity, for any Aq,Ay >0, A1 + Ay =1, we have

(A]f + Azs)p < /\1tp + AQSP.

Plugging
N N "R I T
Tl + Ty o+ 1ol = Tl = Tyl
in the above inequality yields
1 el P vl P
(x| + < T .
Tl Tl T < o ST, (e 1T + Tl (i

Summing the above inequality over i, we obtain

n
[Ix[lp Iyl
(llllp + Hpr ) = Tl + ol Tl + 9l

Hence, [|x +yll = XLy [xi +vil? < Xy (Il + [yil)? < (llxllp + lyllp)- O

(Ixi] + [yil)”
1
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