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Convex function

Definition: A function f : C ⊆ Rn → R defined on a convex set C is
called convex over C if

f (λx + (1− λ)y︸ ︷︷ ︸
∈C

) ≤ λf (x) + (1− λ)f (y), ∀ x, y ∈ C, λ ∈ [0, 1].

NLO
2014/9/17
page 117�

�
�

�

�
�

�
�

Chapter 7

Convex Functions

7.1 Definition and Examples
In the last chapter we introduced the notion of a convex set. This chapter is devoted to
the concept of convex functions, which is fundamental in the theory of optimization.

Definition 7.1 (convex functions). A function f : C →� defined on a convex set C ⊆�n

is called convex (or convex over C ) if

f (λx+(1−λ)y)≤ λ f (x)+ (1−λ) f (y) for any x,y ∈C ,λ ∈ [0,1]. (7.1)

The fundamental inequality (7.1) is illustrated in Figure 7.1.

x y

λ f(x)�(1�λ)f(y)

f(λ x�(1�λ)y)

λ x�(1�λ)y

Figure 7.1. Illustration of the inequality f (λx+ (1−λ)y)≤ λ f (x) + (1−λ) f (y).

In case when no domain is specified, then we naturally assume that f is defined over
the entire space �n . If we do not allow equality in (7.1) when x �= y and λ ∈ (0,1), the
function is called strictly convex.

Definition 7.2 (strictly convex functions). A function f : C →� defined on a convex set
C ⊆�n is called strictly convex if

f (λx+(1−λ)y)< λ f (x)+ (1−λ) f (y) for any x �= y ∈C ,λ ∈ (0,1).
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Definition: A function f : C ⊆ Rn → R defined on a convex set C is
called strictly convex over C if

f (λx + (1− λ)y) < λf (x) + (1− λ)f (y), ∀ x 6= y ∈ C, λ ∈ (0, 1).

A function is called concave if −f is convex. Similarly, f is called
strictly concave if −f is strictly convex.
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Convexity of affine functions and norms

Convexity of affine functions: Let f (x) = a>x + b, where
a ∈ Rn and b ∈ R. Taking x, y ∈ Rn, λ ∈ [0, 1], we have

f (λx + (1− λ)y) = a>(λx + (1− λ)y) + b

= λ(a>x) + (1− λ)(a>y) + λb + (1− λ)b

= λ(a>x + b) + (1− λ)(a>y + b)
= λf (x) + (1− λ)f (y).

Therefore, f is both convex and concave.

Convexity of norms: Let ‖ · ‖ be a norm on Rn. Then f (x) = ‖x‖
is convex. Indeed, ∀ x, y ∈ Rn, λ ∈ [0, 1], we have

f (λx + (1− λ)y) = ‖λx + (1− λ)y‖
≤ ‖λx‖+ ‖(1− λ)y‖
= λ‖x‖+ (1− λ)‖y‖
= λf (x) + (1− λ)f y).
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Jensen’s inequality

Let f : C ⊆ Rn → R be a convex function, where C is a convex set. Then for
any x1, x2, · · · , xk ∈ C and λ ∈ ∆k, the following inequality holds:

f
( k

∑
i=1

λixi

)
≤

k

∑
i=1

λif (xi).

Proof: We will prove the inequality by induction on k.
The inequality holds for the simplest case k = 1. Assume that for any k vectors
x1, x2, · · · , xk ∈ C and λ ∈ ∆k, the inequality holds. We will now prove the inequality
for k + 1 vectors. Assume that x1, x2, · · · , xk+1 ∈ C and λ ∈ ∆k+1. If λk+1 = 1 then
λi = 0 for 1 ≤ i ≤ k and the inequality holds. If λk+1 < 1 then

f
(k+1

∑
i=1

λixi

)
= f

( k

∑
i=1

λixi + λk+1xk+1

)
= f
(
(1− λk+1)

k

∑
i=1

λi

1− λk+1
xi︸ ︷︷ ︸

v

+ λk+1xk+1

)
≤ (1− λk+1)f (v) + λk+1f (xk+1),

where
k

∑
i=1

λi

1− λk+1
= 1 and then v ∈ C. Since f (v) ≤

k

∑
i=1

λi

1− λk+1
f (xi), we obtain

f
(k+1

∑
i=1

λixi

)
≤

k+1

∑
i=1

λif (xi). �
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The gradient inequality

Let f : C ⊆ Rn → R be a continuously differentiable function defined on
the convex set C. Then f is convex over C if and only if

f (x) +∇f (x)>(y− x) ≤ f (y), ∀ x, y ∈ C.
Proof:
(⇒): Let x 6= y ∈ C and λ ∈ (0, 1). We have f (λy + (1− λ)x) ≤ λf (y) + (1− λ)f (x).
Hence,

f (x + λ(y− x))− f (x)
λ

=
f (λy + (1− λ)x)− f (x)

λ
≤ f (y)− f (x).

Taking λ→ 0+, the left-hand side converges to the directional derivative of f at x in the
direction y− x, so that ∇f (x)>(y− x) = f ′(x; y− x) ≤ f (y)− f (x).
(⇐): Let z, w ∈ C, λ ∈ (0, 1). We will show f (λz + (1− λ)w) ≤ λf (z) + (1− λ)f (w).
Let u := λz + (1− λ)w ∈ C. Then z− u = − 1−λ

λ (w− u). Invoking the gradient
inequality on the pairs z, u and w, u, we have

f (u) +∇f (u)>(z− u) ≤ f (z) and f (u)− λ

1− λ
∇f (u)>(z− u) ≤ f (w).

Multiplying the first inequality by λ
1−λ and adding it to the second one, we obtain

1
1− λ

f (u) ≤ λ

1− λ
f (z) + f (w).

That is, f (λz + (1− λ)w) ≤ λf (z) + (1− λ)f (w). �
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The gradient inequality for strictly convex function

Let f : C ⊆ Rn → R be a continuously differentiable function defined
on the convex set C. Then f is strictly convex over C if and only if

f (x) +∇f (x)>(y− x) < f (y), ∀ x 6= y ∈ C.
Proof: (⇐): It is similar to the proof on the previous page.
(⇒): Suppose not, then ∃ x 6= y ∈ C such that f (x) +∇f (x)>(y− x) = f (y). Let
λ ∈ (0, 1) and z := λx + (1− λ)y. Then, since f is strictly convex, we have
f (z) < λf (x) + (1− λ)f (y) = λf (x) + (1− λ)

(
f (x) +∇f (x)>(y− x)

)
=

f (x) +∇f (x)>
(
λx + (1− λ)y− x

)
= f (x) +∇f (x)>

(
z− x

)
, a contradiction!

Geometrically, the gradient inequality essentially states that for
convex functions, the tangent plane is below the surface of f .
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7.2. First Order Characterizations of Convex Functions 121
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Figure 7.2. The function f (x, y) = x2 + y2 and its tangent hyperplane at (1,1), which is a
lower bound of the function’s surface.

We note that Proposition 7.8 establishes only the sufficiency of the stationarity condi-
tion∇ f (x∗) = 0 for guaranteeing that x∗ is a global optimal solution. When C is not the
entire space, this condition is not necessary. However, when C =�n , then by Theorem
2.6, this is also a necessary condition, and we can thus write the following statement.

Theorem 7.9 (necessity and sufficiency of stationarity). Let f : �n → � be a continu-
ously differentiable convex function. Then∇ f (x∗) = 0 if and only if x∗ is a global minimum
point of f over �n .

Using the gradient inequality we can now establish the conditions under which a
quadratic function is convex/strictly convex.

Theorem 7.10 (convexity and strict convexity of quadratic functions with positive
semidefinite matrices). Let f :�n→� be the quadratic function given by f (x) = xT Ax+
2bT x+ c, where A ∈ �n×n is symmetric, b ∈ �n , and c ∈ �. Then f is (strictly) convex if
and only if A� 0 (A� 0).

Proof. By Theorem 7.6 the convexity of f is equivalent to the validity of the gradient
inequality:

f (y)≥ f (x)+∇ f (x)T (y−x) for any x,y ∈�n ,

which can be written explicitly as

yT Ay+ 2bT y+ c ≥ xT Ax+ 2bT x+ c + 2(Ax+b)T (y−x) for any x,y ∈�n .

After some rearrangement of terms, we can rewrite the latter inequality as

(y−x)T A(y−x)≥ 0 for any x,y ∈�n . (7.7)

Making the transformation d = y− x, we conclude that inequality (7.7) is equivalent to
the inequality dT Ad≥ 0 for any d ∈�n , which is the same as saying that A� 0. To prove
the strict convexity variant, note that strict convexity of f is the same as

f (y)> f (x)+∇ f (x)T (y−x) for any x,y ∈�n such that x �= y.

The function f (x, y) = x2 + y2 and its tangent plane at (1, 1).
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A global minimizer

Let f : C ⊆ Rn → R be a continuously differentiable convex function
over the convex set C. Assume that ∇f (x∗) = 0 for some x∗ ∈ C.
Then x∗ is a global minimum point of f over C.
Proof: Let z ∈ C. Then from the gradient inequality, we have

f (z) ≥ f (x∗) +∇f (x∗)>(z− x∗) = f (x∗).

That is, x∗ is a global minimum point of f over C. �

Let f : Rn → R be a continuously differentiable convex function. Then
∇f (x∗) = 0 if and only if x∗ is a global minimum point of f over Rn.
Proof: Using the above theorem and Theorem 2.6, we reach the
conclusion. �
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Convexity and strict convexity of quadratic functions

Let f : Rn → R be the quadratic function, f (x) = x>Ax + 2b>x + c, where
A ∈ Rn×n is symmetric, b ∈ Rn, and c ∈ R. Then f is (strictly) convex if
and only if A � 0 (A � 0).
Proof:

The convexity of f is equivalent to the validity of the gradient inequality (see
page 5): f (y) ≥ f (x) +∇f (x)>(y− x), ∀ x, y ∈ Rn. That is,

y>Ay + 2b>y + c ≥ x>Ax + 2b>x + c + 2(Ax + b)>(y− x), ∀ x, y ∈ Rn,
which is equivalent to

(y− x)>A(y− x) ≥ 0, ∀ x, y ∈ Rn ⇐⇒ d>Ad ≥ 0, ∀ d ∈ Rn ⇐⇒ A � 0.
To prove the strict convexity variant, note that strict convexity of f is the same as
f (y) > f (x) +∇f (x)>(y− x), ∀ x 6= y ∈ Rn. The same arguments as above imply
that this is equivalent to A � 0. �
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122 Chapter 7. Convex Functions

The same arguments as above imply that this is equivalent to

dT Ad> 0 for any 0 �= d ∈�n ,

which is the same as A� 0.

Examples of convex and nonconvex quadratic functions are illustrated in Figure 7.3.
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Figure 7.3. The left quadratic function is convex ( f (x, y) = x2 + y2), while the middle
(−x2− y2) and right (x2− y2) functions are nonconvex.

Another type of a first order characterization of convexity is the monotonicity prop-
erty of the gradient. In the one-dimensional case, this means that the derivative is nonde-
creasing, but another definition of monotonicity is required in the n-dimensional case.

Theorem 7.11 (monotonicity of the gradient). Suppose that f is a continuously differen-
tiable function over a convex set C ⊆�n. Then f is convex over C if and only if

(∇ f (x)−∇ f (y))T (x− y)≥ 0 for any x,y ∈C . (7.8)

Proof. Assume first that f is convex over C . Then by the gradient inequality we have for
any x,y ∈C

f (x)≥ f (y)+∇ f (y)T (x− y),

f (y)≥ f (x)+∇ f (x)T (y−x).

By summing the two inequalities, the inequality (7.8) follows. To prove the opposite
direction, suppose that (7.8) holds and let x,y ∈C . Let g be the one-dimensional function
defined by

g (t ) = f (x+ t (y−x)), t ∈ [0,1].

The left quadratic function f (x, y) = x2 + y2 is convex, while the middle
f (x, y) = −(x2 + y2) and right f (x, y) = x2 − y2 are nonconvex.
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Monotonicity of the gradient

Let f : C ⊆ Rn → R be a continuously differentiable function defined on
the convex set C. Then f is convex over C if and only if

(∇f (x)−∇f (y))>(x− y) ≥ 0, ∀ x, y ∈ C.

Proof: (⇒): Since f is convex over C, by the gradient inequality, we have ∀ x, y ∈ C,

f (x) ≥ f (y) +∇f (y)>(x− y), f (y) ≥ f (x) +∇f (x)>(y− x),

By summing the two inequalities, we have (∇f (x)−∇f (y))>(x− y) ≥ 0.
(⇐): Let g be the one-dimensional function defined by g(t) = f (x + t(y− x)), t ∈ [0, 1].
By the fundamental theorem of calculus, we have the gradient inequality,
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7.3. Second Order Characterization of Convex Functions 123

By the fundamental theorem of calculus we have

f (y) = g (1) = g (0)+
∫ 1

0
g ′(t )d t

= f (x)+
∫ 1

0
(y−x)T∇ f (x+ t (y−x))d t

= f (x)+∇ f (x)T (y−x)+
∫ 1

0
(y−x)T (∇ f (x+ t (y−x))−∇ f (x))d t

≥ f (x)+∇ f (x)T (y−x),

where the last inequality follows from the fact that for any t > 0 we have by the mono-
tonicity of ∇ f that

(y−x)T (∇ f (x+ t (y−x))−∇ f (x)) =
1

t
(∇ f (x+ t (y−x))−∇ f (x))T (x+ t (y−x)−x) ≥ 0.

7.3 Second Order Characterization of Convex Functions
When the function is twice continuously differentiable, convexity can be characterized
by the positive semidefiniteness of the Hessian matrix.

Theorem 7.12 (second order characterization of convexity). Let f be a twice continu-
ously differentiable function over an open convex set C ⊆ �n . Then f is convex if and only
if ∇2 f (x)� 0 for any x ∈C .

Proof. Suppose that ∇2 f (x) � 0 for all x ∈ C . We will prove the gradient inequality,
which by Theorem 7.6 is enough in order to establish convexity. Let x,y ∈ C . Then by
the linear approximation theorem (Theorem 1.24) we have that there exists z ∈ [x,y] (and
hence z ∈C ) for which

f (y) = f (x)+∇ f (x)T (y−x)+
1

2
(y−x)T∇2 f (z)(y−x). (7.9)

Since ∇2 f (z) � 0, it follows that (y− x)T∇2 f (z)(y− x) ≥ 0, and hence by (7.9), the
inequality f (y)≥ f (x)+∇ f (x)T (y−x) holds.

To prove the opposite direction, assume that f is convex over C . Let x ∈ C and let
y ∈ �n . Since C is open, it follows that x+ λy ∈ C for 0 < λ < ε, where ε is a small
enough positive number. Invoking the gradient inequality we have

f (x+λy)≥ f (x)+λ∇ f (x)T y. (7.10)

In addition, by the quadratic approximation theorem (Theorem 1.25) we have that

f (x+λy) = f (x)+λ∇ f (x)T y+
λ2

2
yT∇2 f (x)y+ o(λ2‖y‖2),

which combined with (7.10) yields the inequality

λ2

2
yT∇2 f (x)y+ o(λ2‖y‖2)≥ 0

where the last inequality follows from the monotonicity of ∇f that

t(y− x)>(∇f (x+ t(y− x))−∇f (x)) = (∇f (x+ t(y− x))−∇f (x))>(x+ t(y− x)− x) ≥ 0. �
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Second order characterization of convexity

Let f : C ⊆ Rn → R be a twice continuously differentiable function over an
open convex set C. Then f is convex over C if and only if ∇2f (x) � 0 for
any x ∈ C.
Proof: (⇒): Let x ∈ C and 0 6= y ∈ Rn. Since C is open, ∃ ε > 0 s.t. x + λy ∈ C for
0 < λ < ε. Invoking the gradient inequality, we have

f (x + λy) ≥ f (x) + λ∇f (x)>y.

By the quadratic approximation theorem, we have

f (x + λy) = f (x) + λ∇f (x)>y +
λ2

2
y>∇2f (x)y + o(λ2‖y‖2),

which implies that

λ2

2
y>∇2f (x)y + o(λ2‖y‖2) ≥ 0 =⇒ 1

2
y>∇2f (x)y +

o(λ2‖y‖2)

λ2 ≥ 0

for any λ ∈ (0, ε). Taking λ→ 0+, we can conclude that y>∇2f (x)y ≥ 0, for any
y ∈ Rn. Therefore, ∇2f (x) � 0 for any x ∈ C.
(⇐): Suppose that ∇2f (x) � 0 for any x ∈ C. We will prove the gradient inequality. Let
x, y ∈ C. By the linear approximation theorem, ∃ z ∈ [x, y] ⊆ C such that

f (y) = f (x) +∇f (x)>(y− x) +
1
2
(y− x)>∇2f (z)(y− x).

Since ∇2f (z) � 0, the gradient inequality f (y) ≥ f (x) +∇f (x)>(y− x) holds. �
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Sufficient second order condition for strict convexity

Let f : C ⊆ Rn → R be a twice continuously differentiable function
over a convex set C. Assume that ∇2f (x) � 0 for any x ∈ C, then f is
strictly convex over C.

Note: Note that the positive definiteness of the Hessian is only a
sufficient condition for strict convexity and is not necessary.
Indeed, the function f (x) = x4 is strictly convex, but its second
order derivative f ′′(x) = 12x2 is equal to zero for x = 0.
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Example: convexity of the log-sum-exp function

Consider the log-sum-exp function f (x) = ln(ex1 + ex2 + · · ·+ exn ). The partial
derivatives of f are given by

∂f
∂xi

(x) =
exi

∑n
k=1 exk

, i = 1, 2, · · · , n,
∂2f

∂xi∂xj
(x) =

 − exi e
xj

(∑n
k=1 exk )2 , i 6= j,

− exi exi
(∑n

k=1 exk )2 + exi

∑n
k=1 exk , i = j.

The Hessian matrix is

∇2f (x) = diag(w)−ww>, wi =
exi

∑n
j=1 exj

, w ∈ ∆n.

Consider the expression for any 0 6= v ∈ Rn,

v>∇2f (x)v =
n

∑
i=1

wiv2
i − (v>w)2.

Define vectors s, t by si =
√

wivi, ti =
√

wi, i = 1, 2, · · · , n. Then by the
Cauchy-Schwarz inequality, we have

(v>w)2 = (s>t)2 ≤ ‖s‖2‖t‖2 =
( n

∑
i=1

wiv2
i

)( n

∑
i=1

wi

)
=
( n

∑
i=1

wiv2
i

)
.

Therefore, v>∇2f (x)v ≥ 0 for any 0 6= v ∈ Rn.
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Convexity under summation and multiplication

Let f : C ⊆ Rn → R be a convex function defined over a convex set C
and let α ≥ 0. Then αf is a convex function over C.
Proof: Let x, y ∈ C and λ ∈ [0, 1]. Then

(αf )(λx + (1− λ)y) = αf (λx + (1− λ)y)
≤ αλf (x) + α(1− λ)f (y)
= λ(αf )(x) + (1− λ)(αf )(y). �

Let f1, f2, · · · , fp : C ⊆ Rn → R be convex functions over a convex set
C. Then the sum function f1 + f2 + · · ·+ fp is a convex over C.
Proof: Let x, y ∈ C and λ ∈ [0, 1]. Then

(f1 + f2 + · · ·+ fp)(λx + (1− λ)y)
= f1(λx + (1− λ)y) + · · ·+ fp(λx + (1− λ)y)
≤ λf1(x) + (1− λ)f1(y) + · · ·+ λfp(x) + (1− λ)fp(y)
= λ(f1(x) + · · ·+ fp(x)) + (1− λ)(f1(y) + · · ·+ fp(y))
= λ(f1 + f2 + · · ·+ fp)(x) + (1− λ)(f1 + f2 + · · ·+ fp)(y). �
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Convexity under linear change of variables

Let f : C ⊆ Rn → R be a convex function defined on a convex set C. Let
A ∈ Rn×m and b ∈ Rn. Then the function g defined by g(y) := f (Ay + b)
is convex over the convex set D := {y ∈ Rm : Ay + b ∈ C}.
Proof: First, D is convex because it is the linear inverse image of the
convex set C− b, i.e., D = A−1(C− b) (cf. Chapter 6, page 7).

Let y1, y2 ∈ D. Define x1 = Ay1 + b and x2 = Ay2 + b. Then
x1, x2 ∈ C. Let λ ∈ [0, 1]. By the convexity of f we have

f (λx1 + (1− λ)x2) ≤ λf (x1) + (1− λ)f (x2).
That is,

f (λ(Ay1 + b) + (1− λ)(Ay2 + b)) ≤ λf (Ay1 + b) + (1− λ)f (Ay2 + b),

or equivalently,

f (A(λy1 + (1− λ)y2) + b) ≤ λf (Ay1 + b) + (1− λ)f (Ay2 + b).

In other words, we have

g(λy1 + (1− λ)y2) ≤ λg(y1) + (1− λ)g(y2),

establishing the convexity of g. �
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Composition of convex functions

Convexity is not preserved under composition of convex functions: Let
g(t) = t2 and h(t) = t2 − 4. Then g, h are convex. However, their
composition s(t) := g(h(t)) = (t2 − 4)2 is not convex.
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128 Chapter 7. Convex Functions

In general, convexity is not preserved under composition of convex functions. For
example, let g (t ) = t 2 and h(t ) = t 2 − 4. Then g and h are convex. However, their
composition

s(t ) = g (h(t )) = (t 2− 4)2

is not convex, as illustrated in Figure 7.4. (This can also be seen by the fact that s ′′(t ) =
12t 2− 16 and hence s ′′(t )< 0 for all |t | <

�
4
3 .) The next result shows that convexity is

preserved in the case of a composition of a nondecreasing convex function with a convex
function.
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Figure 7.4. The nonconvex function (t 2− 4)2.

Theorem 7.22 (preservation of convexity under composition with a nondecreasing
convex function). Let f : C → � be a convex function over the convex set C ⊆ �n . Let
g : I → � be a one-dimensional nondecreasing convex function over the interval I ⊆ �.
Assume that the image of C under f is contained in I : f (C )⊆ I . Then the composition of g
with f defined by

h(x)≡ g ( f (x)), x ∈C ,

is a convex function over C .

Proof. Let x,y ∈C and let λ ∈ [0,1]. Then

h(λx+(1−λ)y) = g ( f (λx+(1−λ)y)) (definition of h)
≤ g (λ f (x)+ (1−λ) f (y)) (convexity of f and monotonicity of g )
≤ λg ( f (x))+ (1−λ)g ( f (y)) (convexity of g )
= λh(x)+ (1−λ)h(y) (definition of h),

thus establishing the convexity of h.

Example 7.23. The function h(x) = e‖x‖2
is convex since it can be represented as h(x) =

g ( f (x)), where g (t ) = e t is a nondecreasing convex function and f (x) = ‖x‖2 is a convex
function.

Let f : C ⊆ Rn → R be a convex function over a convex set C. Let
g : I→ R be a one-dimensional nondecreasing convex function over
the interval I ⊆ R. Assume that f (C) ⊆ I. Then the composition of g
with f defined by h(x) := g(f (x)), x ∈ C, is a convex function over C.
Proof: Let x, y ∈ C and λ ∈ [0, 1]. Then we have

h(λx + (1− λ)y) = g(f (λx + (1− λ)y)) ≤ g(λf (x) + (1− λ)f (y))
≤ λg(f (x)) + (1− λ)g(f (y)) = λh(x) + (1− λ)h(y). �
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Pointwise maximum of convex functions

Theorem: Let f1, f2, · · · , fp : C ⊆ Rn → R be convex functions over
the convex set C. Then the maximum function

f (x) := max
i=1,2,··· ,p

fi(x)

is a convex function over C.
Proof: Let x, y ∈ C and λ ∈ [0, 1]. Then we have

f (λx + (1− λ)y) = max
i=1,2,··· ,p

fi(λx + (1− λ)y)

≤ max
i=1,2,··· ,p

(
λfi(x) + (1− λ)fi(y)

)
≤ λ max

i=1,2,··· ,p
fi(x) + (1− λ) max

i=1,2,··· ,p
fi(y)

= λf (x) + (1− λ)f (y). �

Example: f (x) := max{x1, x2, · · · , xn} is a convex function
∵ f is the maximum of n linear functions, which are convex.
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Partial minimization

Theorem: Let f : C×D ⊆ Rm ×Rn → R be a convex function over
the set C×D, where C ⊆ Rm and D ⊆ Rn are convex. Let

g(x) := min
y∈D

f (x, y), x ∈ C,

where we assume that the minimum in the above definition is finite.
Then g is convex over C.
Proof: Let x1, x2 ∈ C, λ ∈ [0, 1]. Taking ε > 0, then ∃ y1, y2 ∈ D s.t.

f (x1, y1) ≤ g(x1) + ε, f (x2, y2) ≤ g(x2) + ε.

By the convexity of f we have

f (λ(x1, y1) + (1− λ)(x2, y2)) ≤ λf (x1, y1) + (1− λ)f (x2, y2)

≤ λg(x1) + (1− λ)g(x2) + ε.

By the definition of g we can conclude that

g(λx1 + (1− λ)x2) ≤ λg(x1) + (1− λ)g(x2) + ε.

Since the above inequality holds for any ε > 0, it follows that g is convex. �

Example: Let C ⊆ Rn be a convex set. The distance function
defined by d(x, C) := min{‖x− y‖ : y ∈ C} is convex since the
function f (x, y) := ‖x− y‖ is convex over Rn × C.
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Level sets of convex functions

Definition: Let f : S ⊆ Rn → R be a function defined over the set S.
Then the level set of f with level α is given by

Lev(f , α) := {x ∈ S : f (x) ≤ α}.

Theorem: Let f : C ⊆ Rn → R be a convex function defined over a
convex set C. Then for any α ∈ R the level set Lev(f , α) is convex.

Proof: Let x, y ∈ Lev(f , α) and λ ∈ [0, 1]. Then f (x), f (y) ≤ α. By
the convexity of C, we have λx + (1− λ)y ∈ C and then

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y) ≤ λα + (1− λ)α = α,

which implies that λx + (1− λ)y ∈ Lev(f , α). Therefore, the
level set Lev(f , α) is convex. �
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Example

Consider the following set:

D :=
{

x ∈ Rn :

f (x)︷ ︸︸ ︷
(x>Qx + 1)2 + ln

( n

∑
i=1

exi
)
≤ 3

}
,

where Q ∈ Rn×n and Q � 0. The set D is convex as a level set of a
convex function f . Specifically, D = Lev(f , 3).

The function f is indeed convex as the sum of two convex functions:
the log-sum-exp function, which was shown to be convex, and the
function g(x) := (x>Qx + 1)2, which is convex as a composition of
the nondecreasing convex function ϕ(t) = (t + 1)2 defined on R+

with the convex quadratic function x>Qx.
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Quasi-convex functions

All convex functions defined over convex sets have convex level
sets, but the reverse claim is not true. That is, there do exist
nonconvex functions whose level sets are all convex.

Definition: A function f : C ⊆ Rn → R defined over the convex set
C is called quasi-convex if for any α ∈ R the set Lev(f , α) is convex.

Example: The one-dimensional function f (x) =
√
|x| is not

convex, but its level sets are convex. For any α < 0, we have
Lev(f , α) = ∅, and for any α ≥ 0,

Lev(f , α) = {x ∈ R :
√
|x| ≤ α} = {x ∈ R : |x| ≤ α2} = [−α2, α2].

We deduce that the nonconvex function f is quasi-convex.
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Figure 7.5. The quasi-convex function
�|x|.

In general, f is not a convex function, but it is not difficult to show that it is quasi-convex.
Indeed, let α ∈�. Then the corresponding level set is given by

Lev( f ,α) = {x ∈C : f (x)≤ α}= {x ∈�n : cT x+ d > 0, (a−αc)T x+(b −αd ) ≤ 0},
which is convex due to the fact that it is an intersection of two half-spaces (which are in
particular convex sets) when a �= αc, and when a= αc it is either a half-space (if b−αd ≤ 0)
or the empty set (if b −αd > 0).

7.6 Continuity and Differentiability of Convex Functions
Convex functions are not necessarily continuous when defined on nonopen sets. Let us
consider, for example, the function

f (x) =
&

1, x = 0,
x2, 0< x ≤ 1,

defined over the interval [0,1]. It is easy to see that this is a convex function, and obviously
it is not a continuous function (as also illustrated in Figure 7.6). The main result is that
convex functions are always continuous at interior points of their domain. Thus, for

�0.2 0 0.2 0.4 0.6 0.8 1
�0.2

0
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0.4

0.6

0.8

1

Figure 7.6. A noncontinuous convex function over the interval [0,1].
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Continuity of convex functions

Convex functions are not necessarily continuous when defined
on non-open sets. Let us consider, for example, the function
defined over the interval [0, 1],

f (x) =
{

1, x = 0,
x2, 0 ≤ x ≤ 1,

It is easy to see that this is a convex function, and obviously it is not a
continuous function.
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Figure 7.5. The quasi-convex function
�|x|.

In general, f is not a convex function, but it is not difficult to show that it is quasi-convex.
Indeed, let α ∈�. Then the corresponding level set is given by

Lev( f ,α) = {x ∈C : f (x)≤ α}= {x ∈�n : cT x+ d > 0, (a−αc)T x+(b −αd ) ≤ 0},
which is convex due to the fact that it is an intersection of two half-spaces (which are in
particular convex sets) when a �= αc, and when a= αc it is either a half-space (if b−αd ≤ 0)
or the empty set (if b −αd > 0).

7.6 Continuity and Differentiability of Convex Functions
Convex functions are not necessarily continuous when defined on nonopen sets. Let us
consider, for example, the function

f (x) =
&

1, x = 0,
x2, 0< x ≤ 1,

defined over the interval [0,1]. It is easy to see that this is a convex function, and obviously
it is not a continuous function (as also illustrated in Figure 7.6). The main result is that
convex functions are always continuous at interior points of their domain. Thus, for

�0.2 0 0.2 0.4 0.6 0.8 1
�0.2

0

0.2

0.4

0.6

0.8

1

Figure 7.6. A noncontinuous convex function over the interval [0,1].

We will prove that convex functions are always local Lipschitz
continuous at interior points of their domain.
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Local Lipschitz continuity of convex functions

Let f : C ⊆ Rn → R be a convex function over the convex set C. Let
x0 ∈ int(C). Then there exist ε > 0 and L > 0 such that B[x0, ε] ⊆ C and

|f (x)− f (x0)| ≤ L‖x− x0‖, ∀ x ∈ B[x0, ε].

Proof: Since x0 ∈ int(C), ∃ ε > 0 s.t B∞[x0, ε] := {x ∈ Rn : ‖x− x0‖∞ ≤ ε} ⊆ C.

Claim: f is upper bounded over B∞[x0, ε].
Let v1, v2, · · · , v2n be the 2n extreme points of B∞[x0, ε]. These are the vectors
vi = x0 + εwi, where w1, w2, · · · , w2n are the vectors in {−1, 1}n. Then by the
Krein-Milman theorem, for any x ∈ B∞[x0, ε], ∃ λ ∈ ∆2n s.t. x = ∑2n

i=1 λivi. By
Jensen’s inequality, we have

f (x) = f (
2n

∑
i=1

λivi) ≤
2n

∑
i=1

λif (vi) ≤ M,

where M := maxi=1,··· ,2n f (vi).

Claim: f (x) ≤ M for any x ∈ B[x0, ε].
Since ‖x‖∞ ≤ ‖x‖2 for any x ∈ Rn, it holds that

B2[x0, ε] = B[x0, ε] = {x ∈ Rn : ‖x− x0‖2 ≤ ε} ⊆ B∞[x0, ε].

Therefore, f (x) ≤ M for any x ∈ B[x0, ε].
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Continuing the proof

Claim: f (x)− f (x0) ≤ L‖x− x0‖.
Let x ∈ B[x0, ε] and x 6= x0. Define z := x0 +

1
α (x− x0), where α = ‖x− x0‖/ε.

Then α ≤ 1, z ∈ B[x0, ε], and f (z) ≤ M. In addition, x = αz + (1− α)x0. By the
convexity of f we have

f (x) ≤ αf (z)+ (1− α)f (x0) ≤ f (x0)+ α(M− f (x0)) = f (x0)+
M− f (x0)

ε︸ ︷︷ ︸
:=L

‖x− x0‖.

Therefore, f (x)− f (x0) ≤ L‖x− x0‖.
Claim: f (x)− f (x0) ≥ −L‖x− x0‖.
Define u := x0 +

1
α (x0 − x). Then ‖u− x0‖ = ε, u ∈ B[x0, ε], f (u) ≤ M,

x = x0 + α(x0 − u), and

x0 =
1

1 + α
(x0 + α(x0 − u)) +

α

1 + α
u.

Therefore,

f (x0) ≤
1

1 + α
f (

x︷ ︸︸ ︷
x0 + α(x0 − u)) +

α

1 + α
f (u),

which implies that

f (x) = f (x0 + α(x0 − u)) ≥ f (x0) + α(f (x0)− f (u)) ≥ f (x0)− α(M− f (x0))

= f (x0)−
M− f (x0)

ε
‖x− x0‖ = f (x0)− L‖x− x0‖,

and the desired result is established. �
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Existence of directional derivatives for convex functions

Let f : C ⊆ Rn → R be a convex function over the convex set C and let

x ∈ int(C). Then for any 0 6= d ∈ Rn, lim
t→0+

f (x + td)− f (x)
t

exists.

Proof: Let g(t) := f (x + td) and let h(t) :=
g(t)− g(0)

t
. Then we wish to find lim

t→0+
h(t).

Since x ∈ int(C), ∃ ε > 0 s.t. x + td, x− td ∈ C for all t ∈ [0, ε]. Let 0 < t1 < t2 ≤ ε. Then

x + t1d = (1− t1

t2
)x +

t1

t2
(x + t2d).

By the convexity of f we have

f (x+ t1d) ≤ (1− t1

t2
)f (x)+

t1

t2
f (x+ t2d) =⇒ f (x + t1d)− f (x)

t1
≤ f (x + t2d)− f (x)

t2
.

Therefore, h(t) is monotone nondecreasing over (0, ε]. Taking 0 < t ≤ ε, we have

x =
ε

ε + t
(x + td) +

t
ε + t

(x− εd) =⇒ f (x) ≤ ε

ε + t
f (x + td) +

t
ε + t

f (x− εd).

After some rearrangement of terms, we obtain

h(t) =
f (x + td)− f (x)

t
≥ f (x)− f (x− εd)

ε
,

showing that h is bounded below over (0, ε]. Since h is nondecreasing and bounded
below over (0, ε], it follows that the limit lim

t→0+
h(t) exists. �
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Extended real-valued functions

It is natural to consider functions that are defined over the entire
space Rn that take values in R∪ {∞} = (−∞, ∞]. Such a function
is called an extended real-valued function.

The indicator function δS : Rn → R∪ {∞}: given a set S ⊆ Rn,

δS(x) :=
{

0 if x ∈ S,
∞ if x 6∈ S.

The effective domain of an extended real-valued function is

dom(f ) := {x ∈ Rn : f (x) < ∞}.

An extended real-valued function f : Rn → R∪ {∞} is called
proper if it is not always equal to ∞, meaning that there exists
x0 ∈ Rn such that f (x0) < ∞.

An extended real-valued function is convex if for any x, y ∈ Rn

and λ ∈ [0, 1], we have f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y),
where we use the usual arithmetic with ∞:

a + ∞ := ∞, ∀ a ∈ R, a ·∞ := ∞, ∀ a ∈ R++, 0 ·∞ := 0.
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Convexity of extended real-valued functions

The above definition of convexity of extended real-valued
functions is equivalent to saying that (i) dom(f ) is convex and (ii)
the function g : dom(f )→ R defined by g(x) = f (x) for any
x ∈ dom(f ) is a convex finite-valued function over dom(f ).

As an example, the indicator function δC(·) of a set C ⊆ Rn is
convex if and only if C is a convex set.

Assume that f : Rn → R∪ {∞}. The epigraph set epi(f ) ⊆ Rn+1

is defined by epi(f ) :=
{
(x, t)> : f (x) ≤ t

}
.

Below is the epigraph of a one-dimensional function f .
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convex set and that the restriction of f to its effective domain dom( f ); that is, the function
g : dom( f ) → � defined by g (x) = f (x) for any x ∈ dom( f ) is a convex finite-valued
function over dom( f ). As an example, the indicator function δC (·) of a set C ⊆ �n is
convex if and only if C is a convex set.

An important set associated with extended real-valued functions is its epigraph. Sup-
pose that f :�n →�∪ {∞}. Then the epigraph set epi( f )⊆�n+1 is defined by

epi( f ) =
&�

x
t

�
: f (x)≤ t

3
.

An example of an epigraph can be seen in Figure 7.7. It is not difficult to show that an
extended real-valued (or a real-valued) function f is convex if and only if its epigraph
set epi( f ) is convex (see Exercise 7.29). An important property of convex extended real-
valued functions that convexity is preserved under the maximum operation. As was al-
ready mentioned, we do not use the “sup” notation in this book and we always refer to
the maximum of a function or the maximum over a given index set.

epi(f)

f

Figure 7.7. The epigraph of a one-dimensional function.

Theorem 7.38 (preservation of convexity under maximum). Let fi :�n→�∪{∞} be
an extended real-valued convex function for any i ∈ I (I being an arbitrary index set). Then
the function f (x) =maxi∈I fi (x) is an extended real-valued convex function.

Proof. The result follows from the fact that epi( f ) =
⋂

i∈I epi( fi ). The convexity of fi
for any i ∈ I implies the convexity of epi( fi ) for any i ∈ I . Consequently, epi( f ), as an
intersection of convex sets, is convex, and hence the convexity of f is established.

The differences between Theorems 7.38 and 7.25 are that the functions in Theorem
7.38 are not necessarily finite-valued and that the index set I can be infinite.

Example 7.39 (support functions). Let S ⊆�n . The support function of S is the function

σS (x) =max
y∈S

xT y.

Since for each y ∈ S, the function fy(x)≡ yT x is a convex function over�n (being linear),
it follows by Theorem 7.38 that σS is an extended real-valued convex function.

An extended real-valued (or a real-valued) function f is convex if and
only if its epigraph set epi(f ) is convex.
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Convexity under maximum

Theorem: Let fi : Rn → R∪ {∞} be an extended real-valued convex
function for any i ∈ I, where I is an arbitrary index set. Then
f (x) := max

i∈I
fi(x) is an extended real-valued convex function.

Proof: epi(fi) is convex for any i ∈ I because fi is convex. epi(f ) is
convex because epi(f ) = ∩i∈Iepi(fi), intersection of convex sets.
Hence, the convexity of f is established. �

Definition of support function: Let S ⊆ Rn. The support function
of S is the function σS(x) := max

y∈S
x>y, ∀ x ∈ Rn.

Since for each y ∈ S, the function fy(x) := y>x is a convex function
over Rn, by the above theorem, it follows that the support function
σS(x) is an extended real-valued convex function.

Example: Let S = B[0, 1] := {y ∈ Rn : ‖y‖ ≤ 1}. Let x ∈ Rn. We
will show that σS(x) = ‖x‖. Proof: If x = 0 then σS(x) = 0 = ‖x‖.
If x 6= 0 then ∀ y ∈ S and x ∈ Rn, we have by the C-S inequality
that x>y ≤ ‖x‖‖y‖ ≤ ‖x‖. Taking ỹ = x/‖x‖ ∈ S, we have
x>ỹ = ‖x‖. The desired formula follows.
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Maxima of convex functions

Theorem: Let f : C ⊆ Rn → R be a convex function which is not
constant over the convex set C. Then f does not attain a maximum at a
point in int(C).
Proof: Assume in contradiction that x∗ ∈ int(C) is a global maximizer of f over C.
Since f is not constant, ∃ y ∈ C s.t. f (y) < f (x∗). Since x∗ ∈ int(C), ∃ ε > 0 s.t.
z = x∗ + ε(x∗ − y) ∈ C. Since x∗ = ε

ε+1 y + 1
ε+1 z, f (x∗) ≤ ε

ε+1 f (y) + 1
ε+1 f (z).

Hence, f (z) ≥ ε(f (x∗)− f (y)) + f (x∗) > f (x∗), which is a contradiction. �

Theorem: Let f : C ⊆ Rn → R be a convex and continuous function
over the convex and compact set C. Then there exists at least one
maximizer of f over C that is an extreme point of C.
Proof: By the Weierstrass theorem, the existence of maximizer of f over C is
guaranteed. Let x∗ be a maximizer of f over C. If x∗ is an extreme point of C.
Then the result is established. Otherwise, if x∗ is not an extreme point, then by
the Krein-Milman theorem, C = conv(ext(C)). ∃ x1, · · · , xk ∈ ext(C) and
λ = (λ1, · · · , λk)

> ∈ ∆k, λi > 0 ∀ i, s.t. x∗ = ∑k
i=1 λixi. By the convexity of f we

have f (x∗) ≤ ∑k
i=1 λif (xi), or equivalently, ∑k

i=1 λi(f (xi)− f (x∗)) ≥ 0. Since
f (xi) ≤ f (x∗), ∀ i, we have f (xi) = f (x∗), ∀ i. Thus, the extreme points x1, · · · , xk

are all maximizers of f over C. �
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Computation of ‖A‖1,1

Let A ∈ Rm×n. Recall that ‖A‖1,1 := max{‖Ax‖1 : ‖x‖1 ≤ 1}.
Since the optimization problem consists of maximizing a convex
and continuous function (composition of a norm function with a
linear function) over a compact convex set, there exists a
maximizer which is an extreme point of the `1 ball.

Note that there are exactly 2n extreme points to the `1 ball, e1,
−e1, e2, −e2, · · · , en, −en.

Since

‖Aej‖1 = ‖A(−ej)‖1 =
m

∑
i=1
|Aij|,

we have

‖A‖1,1 := max
1≤j≤n

‖Aej‖1 = max
1≤j≤n

m

∑
i=1
|Aij|.
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The arithmetic geometric mean (AGM) inequality

AGM inequality: For any x1, x2, · · · , xn ≥ 0 the inequality holds:
1
n

n

∑
i=1

xi ≥
( n

∏
i=1

xi

)1/n
.

More generally, for any λ ∈ ∆n, one has
n

∑
i=1

λixi ≥
n

∏
i=1

xλi
i .

Proof: Let f (x) = − ln(x). Then f is convex over (0, ∞). For any x1, x2, · · · , xn > 0 and
λ ∈ ∆n, we have from Jensen’s inequality that

f (
n

∑
i=1

λixi) ≤
n

∑
i=1

λif (xi) =⇒ − ln(
n

∑
i=1

λixi) ≤ −
n

∑
i=1

λi ln(xi) =⇒ ln(
n

∑
i=1

λixi) ≥
n

∑
i=1

λi ln(xi).

Taking the exponent of both sides of the last inequality, we have
n

∑
i=1

λixi ≥ exp(
n

∑
i=1

λi ln(xi)) =
n

∏
i=1

xλi
i .

Plugging in λi =
1
n for all i yields the special case. �
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Young’s inequality and Hölder’s inequality

Young’s inequality: For any s, t ≥ 0 and p, q > 1 satisfying
1
p + 1

q = 1 it hold that st ≤ sp

p + tq

q .
Proof: By the generalized AGM inequality we have for any x, y ≥ 0,

x
1
p y

1
q ≤ x

p + y
q . Setting x = sp and y = tq, the result follows. �

Hölder’s inequality: For any x, y ∈ Rn and p, q ≥ 1 satisfying
1
p + 1

q = 1 it holds that |x>y| ≤ ‖x‖p‖y‖q.
Proof: If x = 0 or y = 0 then the inequality is trivial. Assume that x 6= 0 and
y 6= 0. The inequality is trivial for the cases of (p, q) = (1, ∞) and (p, q) = (∞, 1).
We assume that 1 < p, q < ∞. For 1 ≤ i ≤ n, setting s = |xi |

‖x‖p
and t = |yi |

‖y‖q
in

Young’s inequality yields
|xiyi|
‖x‖p‖y‖q

≤ 1
p
|xi|p

‖x‖p
p
+

1
q
|yi|q

‖y‖q
q

.

Summing the above inequality over i, we have

∑n
i=1 |xiyi|
‖x‖p‖y‖q

≤ 1
p

∑n
i=1 |xi|p

‖x‖p
p

+
1
q

∑n
i=1 |yi|q

‖y‖q
q

=
1
p
+

1
q
= 1.

By the triangle inequality we have

|x>y| ≤
n

∑
i=1
|xiyi| ≤ ‖x‖p‖y‖q. �
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Minkowski’s inequality

The p-norm (for p ≥ 1) satisfies the triangle inequality:

Let p ≥ 1. Then for any x, y ∈ Rn, ‖x + y‖p ≤ ‖x‖p + ‖y‖p holds.
Proof: The case p = 1 is trivial. We assume that p > 1, x 6= 0, y 6= 0, and x + y 6= 0. The
function ϕ(t) := tp is convex over R+ since ϕ′′(t) = p(p− 1)tp−2 > 0 for t > 0. By the
convexity, for any λ1, λ2 ≥ 0, λ1 + λ2 = 1, we have

(λ1t + λ2s)p ≤ λ1tp + λ2sp.

Plugging

λ1 =
‖x‖p

‖x‖p + ‖y‖p
, λ2 =

‖y‖p

‖x‖p + ‖y‖p
, t =

|xi|
‖x‖p

, s =
|yi|
‖y‖p

,

in the above inequality yields

1
(‖x‖p + ‖y‖p)p (|xi|+ |yi|)p ≤

‖x‖p

‖x‖p + ‖y‖p

|xi|p

‖x‖p
p
+

‖y‖p

‖x‖p + ‖y‖p

|yi|p

‖y‖p
p

.

Summing the above inequality over i, we obtain

1
(‖x‖p + ‖y‖p)p

n

∑
i=1

(|xi|+ |yi|)p ≤
‖x‖p

‖x‖p + ‖y‖p
+

‖y‖p

‖x‖p + ‖y‖p
= 1.

Hence, ‖x + y‖p
p = ∑n

i=1 |xi + yi|p ≤ ∑n
i=1(|xi|+ |yi|)p ≤ (‖x‖p + ‖y‖p)p. �
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