MA 5037: Optimization Methods and Applications Chapter 9: Optimization Over a Convex Set

Suh-Yuh Yang (楊肅煜)

Department of Mathematics, National Central University Jhongli District, Taoyuan City 32001, Taiwan

syyang@math.ncu.edu.tw http://www.math.ncu.edu.tw/~syyang/

Convex optimization problem

• We will consider the constrained optimization problem (P):

 $(P) \qquad \min f(x) \quad \text{s.t. } x \in C,$

where *f* is a continuously differentiable function and $C \subseteq \mathbb{R}^n$ is *a* closed and convex set.

- For an unconstrained optimization problem, the stationary points of continuously differentiable functions are points that the gradient vanishes. It was shown that stationarity is a necessary condition for a point to be an unconstrained local optimum point.
- Definition: (stationary points of constrained problems) Let f be a continuously differentiable function over a closed convex set C ⊆ ℝⁿ. Then x* ∈ C is called a stationary point of (P) if

 $\nabla f(\mathbf{x}^*)^{\top}(\mathbf{x}-\mathbf{x}^*) \geq 0, \quad \forall \ \mathbf{x} \in C.$

• Stationarity actually means that there are no feasible descent directions of f at x^* . This suggests that stationarity is in fact a necessary condition for a local minimum of (P).

Stationarity as a necessary optimality condition

Theorem: Let f be a continuously differentiable function over a closed convex set C ⊆ ℝⁿ, and let x* ∈ C be a local minimum of (P). Then x* is a stationary point of (P).

Proof: Assume in contradiction that x^* is not a stationary point of (P). Then ∃ $x \in C$ such that $\nabla f(x^*)^\top (x - x^*) < 0 \Rightarrow f'(x^*; d) < 0$, where $d := x - x^*$. It follows that $\exists \varepsilon \in (0, 1)$ s.t. $f(x^* + td) < f(x^*)$ for all $t \in (0, \varepsilon)$. Since *C* is convex, $x^* + td = x^* + t(x - x^*) = (1 - t)x^* + tx \in C$. Therefore, $f(x^*)$ is not a local minimum. This is a contradiction! \Box

• Note: If $C = \mathbb{R}^n$, then the stationary points of (P) are the points x^* satisfying $\nabla f(x^*)^\top (x - x^*) \ge 0$, for all $x \in \mathbb{R}^n$. Plugging $x = x^* - \nabla f(x^*)^\top$ into the above inequality, we obtain $- \|\nabla f(x^*)\|^2 \ge 0 \Rightarrow \nabla f(x^*) = \mathbf{0}$.

Therefore, it follows that the notion of a stationary point of a function and a stationary point of a minimization problem coincide when the problem is unconstrained.

Stationarity over $C = \mathbb{R}^n_+$

Consider the optimization problem:

$$(Q) \qquad \min f(\mathbf{x}) \quad \text{s.t. } x_i \ge 0, \ i = 1, 2, \cdots, n,$$

where *f* is a continuously differentiable function over \mathbb{R}^n_+ . A vector $x^* \in \mathbb{R}^n_+$ is a stationary point of (Q) if and only if

$$\nabla f(\mathbf{x}^*)^\top \mathbf{x} - \nabla f(\mathbf{x}^*)^\top \mathbf{x}^* \ge 0, \quad \forall \mathbf{x} \ge \mathbf{0}.$$
 (*)

We will now use the following technical result: $a^{\top}x + b \ge 0 \forall x \ge 0$ iff $a \ge 0$ and $b \ge 0$. Thus, (\star) holds iff $\nabla f(x^*) \ge 0$ and $\nabla f(x^*)^{\top}x^* \le 0$. Since $x^* \ge 0$, we have (\star) iff

$$\nabla f(\mathbf{x}^*) \ge \mathbf{0} \text{ and } x_i^* \frac{\partial f}{\partial x_i}(\mathbf{x}^*) = 0, \quad i = 1, 2, \cdots, n.$$

We can compactly write the above condition as follows:

$$\frac{\partial f}{\partial x_i}(\boldsymbol{x}^*) = \begin{cases} = 0 & x_i^* > 0, \\ \ge 0, & x_i^* = 0. \end{cases}$$

Stationarity over the unit-sum set

Consider the optimization problem:

(R)
$$\min f(\mathbf{x})$$
 s.t. $e^{\top}\mathbf{x} = 1$,

where *f* is a continuously differentiable function over \mathbb{R}^n . The following feasible set is called the unit-sum set:

$$U = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{e}^\top \mathbf{x} = 1 \} = \{ \mathbf{x} \in \mathbb{R}^n : \sum_{i=1}^n x_i = 1 \}.$$

A point $x^* \in U$ is a stationary point of (R) if and only if

(*I*)
$$\nabla f(\mathbf{x}^*)^\top (\mathbf{x} - \mathbf{x}^*) \ge 0, \ \forall \ \mathbf{x} \text{ satisfying } \mathbf{e}^\top \mathbf{x} = 1.$$

We will show that condition (I) is equivalent to

(II)
$$\frac{\partial f}{\partial x_1}(\mathbf{x}^*) = \frac{\partial f}{\partial x_2}(\mathbf{x}^*) = \cdots = \frac{\partial f}{\partial x_n}(\mathbf{x}^*).$$

(II) \Rightarrow **(I)**: Assume that $x^* \in U$ satisfies (II). Then for any $x \in U$,

$$\nabla f(\mathbf{x}^*)^\top (\mathbf{x} - \mathbf{x}^*) = \frac{\partial f}{\partial x_1}(\mathbf{x}^*) \left(\sum_{i=1}^n x_i - \sum_{i=1}^n x_i^*\right) = \frac{\partial f}{\partial x_1}(\mathbf{x}^*)(1-1) = 0.$$

Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan MA 5037/Chapter 9: Optimization Over a Convex Set - 5/15

Stationarity over the unit-sum set (cont'd)

We have thus shown that (I) is satisfied.

(I) \Rightarrow **(II)**: Take $x^* \in U$ that satisfies (I). Suppose in contradiction that (II) does not hold. Then $\exists i \neq j$ s.t. $\frac{\partial f}{\partial x_i}(x^*) > \frac{\partial f}{\partial x_j}(x^*)$. Define the vector $x \in U$ as

$$x_{k} = \begin{cases} x_{k}^{*} & k \notin \{i, j\}, \\ x_{i}^{*} - 1 & k = i, \\ x_{j}^{*} + 1 & k = j. \end{cases}$$

Then

$$\nabla f(\mathbf{x}^*)^\top (\mathbf{x} - \mathbf{x}^*) = \frac{\partial f}{\partial x_i} (\mathbf{x}^*) (x_i - x_i^*) + \frac{\partial f}{\partial x_j} (\mathbf{x}^*) (x_j - x_j^*)$$
$$= -\frac{\partial f}{\partial x_i} (\mathbf{x}^*) + \frac{\partial f}{\partial x_j} (\mathbf{x}^*) < 0,$$

which is a contradiction to the assumption that (I) is satisfied.

Stationarity over the unit-ball

Consider the optimization problem:

$$(S) \qquad \min f(\mathbf{x}) \quad \text{s.t.} \|\mathbf{x}\| \leq 1,$$

where f is a continuously differentiable function over B[0, 1].

 $A \text{ point } \mathbf{x}^* \in B[\mathbf{0}, 1] \text{ is a stationary point of } (S)$ $\iff \nabla f(\mathbf{x}^*)^\top (\mathbf{x} - \mathbf{x}^*) \ge 0, \forall ||\mathbf{x}|| \le 1$ $\iff \min\{\nabla f(\mathbf{x}^*)^\top \mathbf{x} - \nabla f(\mathbf{x}^*)^\top \mathbf{x}^* : ||\mathbf{x}|| \le 1\} \ge 0 \qquad (\star)$

Claim: $\forall a \in \mathbb{R}^n$ the optimal value of $\min\{a^\top x : \|x\| \le 1\}$ is " $-\|a\|$ ". *Proof:* The case of $a = \mathbf{0}$ is trivial. Assume that $a \ne \mathbf{0}$, then by the CS inequality, for any $x \in B[\mathbf{0}, 1]$, we have $a^\top x \ge -\|a\| \|x\| \ge -\|a\|$, so that $\min\{a^\top x : \|x\| \le 1\} \ge -\|a\|$. The lower bound is attained at $x := -\frac{a}{\|a\|}$. \Box

Returning to the characterization of stationary points, from the claim, we have (\star) iff $-\nabla f(\mathbf{x}^*)^\top \mathbf{x}^* \ge \|\nabla f(\mathbf{x}^*)\|$. However, by the CS inequality, we have $-\nabla f(\mathbf{x}^*)^\top \mathbf{x}^* \le \|\nabla f(\mathbf{x}^*)\| \|\mathbf{x}^*\| \le \|\nabla f(\mathbf{x}^*)\|$.

Stationarity over the unit-ball (cont'd)

Finally, we can conclude that x^* is a stationary point of (S) iff

$$\|\nabla f(\boldsymbol{x}^*)\| = -\nabla f(\boldsymbol{x}^*)^\top \boldsymbol{x}^*. \quad (\star\star)$$

Let x^* be a point satisfying $(\star\star)$. Then

- If $\nabla f(\mathbf{x}^*) = \mathbf{0}$, then $(\star \star)$ holds automatically.
- If $\nabla f(x^*) \neq 0$, then $||x^*|| = 1$ since otherwise, if $||x^*|| < 1$ then by the CS inequality,

$$\|\nabla f(\mathbf{x}^*)\| = -\nabla f(\mathbf{x}^*)^{\top} \mathbf{x}^* \le \|\nabla f(\mathbf{x}^*)\| \|\mathbf{x}^*\| < \|\nabla f(\mathbf{x}^*)\|,$$

which is a contradiction. We therefore conclude that when $\nabla f(\mathbf{x}^*) \neq \mathbf{0}, \mathbf{x}^*$ is a stationary point if and only if $\|\mathbf{x}^*\| = 1$ and

$$\|\nabla f(\boldsymbol{x}^*)\| \cdot \|\boldsymbol{x}^*\| = \|\nabla f(\boldsymbol{x}^*)\| = -\nabla f(\boldsymbol{x}^*)^\top \boldsymbol{x}^*$$

$$\underset{by \ CS}{\Longrightarrow} \exists \ \lambda < 0 \text{ s.t. } \nabla f(\boldsymbol{x}^*) = \lambda \boldsymbol{x}^*.$$

In conclusion, \mathbf{x}^* is a stationary point of (S) if and only if either $\nabla f(\mathbf{x}^*) = \mathbf{0}$ or $\|\mathbf{x}^*\| = 1$ and $\exists \lambda < 0$ s.t. $\nabla f(\mathbf{x}^*) = \lambda \mathbf{x}^*$.

Some stationarity conditions

feasible set	explicit stationarity condition
\mathbb{R}^{n}	$ abla f(\mathbf{x}^*) = 0$
\mathbb{R}^n_+	$\frac{\partial f}{\partial x_i}(\mathbf{x}^*) \begin{cases} = 0, & x_i^* > 0\\ \ge 0, & x_i^* = 0 \end{cases}$
$\{\mathbf{x} \in \mathbb{R}^n : \mathbf{e}^T \mathbf{x} = 1\}$	$\frac{\partial f}{\partial x_1}(\mathbf{x}^*) = \cdots = \frac{\partial f}{\partial x_n}(\mathbf{x}^*)$
<i>B</i> [0,1]	$\nabla f(\mathbf{x}^*) = 0 \text{ or } \mathbf{x}^* = 1 \text{ and } \exists \lambda \leq 0 : \nabla f(\mathbf{x}^*) = \lambda \mathbf{x}^*$

Stationarity in convex problems

- Stationarity is a necessary optimality condition for local optimality.
- When the objective function is additionally assumed to be *convex*, stationarity is a necessary and sufficient condition for optimality. See the theorem below.
- Theorem: Let f be a continuously differentiable convex function over a closed and convex set C ⊆ ℝⁿ. Then x^{*} is a stationary point of

 $(P) \qquad \min f(x) \quad \text{s.t. } x \in C$

if and only if x^* *is an optimal solution of (P).*

Proof: If x^* is an optimal solution of (P), then by Theorem 9.2 (page 3), it follows that x^* is a stationary point of (P). Assume that x^* is a stationary point of (P), and let $x \in C$. Then from the gradient inequality for convex functions, we have

$$f(\mathbf{x}) \geq f(\mathbf{x}^*) + \nabla f(\mathbf{x}^*)^\top (\mathbf{x} - \mathbf{x}^*) \geq f(\mathbf{x}^*).$$

This shown that x^* is the global minimum point of (P). \Box

The second projection theorem

• Geometrically, the second projection theorem states that for a given closed and convex set $C, x \in \mathbb{R}^n$ and $y \in C$, the angle between $x - P_C(x)$ and $y - P_C(x)$ is greater than or equal to 90°.

• **Theorem:** (second projection theorem) Let $C \subseteq \mathbb{R}^n$ be a closed convex set and let $x \in \mathbb{R}^n$. Then $z = P_C(x)$ if and only if $z \in C$ and $(x - z)^\top (y - z) \le 0$ for any $y \in C$.

Proof: $z = P_C(x)$ if and only if it is the optimal solution of the problem

min
$$g(\boldsymbol{y}) := \|\boldsymbol{y} - \boldsymbol{x}\|^2$$
 s.t. $\boldsymbol{y} \in C$

It follows that $z = P_C(x)$ if and only if $\nabla g(z)^\top (y - z) \ge 0 \ \forall \ y \in C$, i.e.,

$$(\mathbf{x}-\mathbf{z})^{ op}(\mathbf{y}-\mathbf{z}) \geq 0 \quad \forall \ \mathbf{y} \in C.$$

Nonexpansiveness property of P_C

- *Let* $C \subseteq \mathbb{R}^n$ *be a closed convex set. Then*
- (1) $\forall v, w \in \mathbb{R}^n$, $(P_C(v) P_C(w))^\top (v w) \ge ||P_C(v) P_C(w)||^2$. *Proof:* By the second projection theorem, for any $x \in \mathbb{R}^n$ and $y \in C$ we have

$$(\boldsymbol{x} - P_C(\boldsymbol{x}))^\top (\boldsymbol{y} - P_C(\boldsymbol{x})) \leq 0.$$

Substituting x = v and $y = P_C(w)$, x = w and $y = P_C(v)$, we have

 $(\boldsymbol{v} - P_C(\boldsymbol{v}))^\top (P_C(\boldsymbol{w}) - P_C(\boldsymbol{v})) \leq 0$ and $(\boldsymbol{w} - P_C(\boldsymbol{w}))^\top (P_C(\boldsymbol{v}) - P_C(\boldsymbol{w})) \leq 0.$

Adding the two inequalities yields

$$(P_{\mathcal{C}}(\boldsymbol{w}) - P_{\mathcal{C}}(\boldsymbol{v}))^{\top}(\boldsymbol{v} - \boldsymbol{w} + P_{\mathcal{C}}(\boldsymbol{w}) - P_{\mathcal{C}}(\boldsymbol{v})) \leq 0,$$

showing the desired inequality. \Box

(2) (nonexpansiveness) $\forall v, w \in \mathbb{R}^n$, $||P_C(v) - P_C(w)|| \le ||v - w||$. *Proof:* Assume that $P_C(v) \ne P_C(w)$. Then by the CS inequality we have

$$(P_C(v) - P_C(w))^{\top}(v - w) \le ||P_C(v) - P_C(w)|| ||v - w||,$$

which combined with (1) yields

$$||P_C(v) - P_C(w)||^2 \le ||P_C(v) - P_C(w)|| ||v - w||,$$

showing the desired inequality. \Box

Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan

MA 5037/Chapter 9: Optimization Over a Convex Set - 12/15

An additional useful representation of stationarity

The next result describes an additional useful representation of stationarity in terms of the orthogonal projection operator

Theorem: Let f be a continuously differentiable function defined on the closed and convex set $C \subseteq \mathbb{R}^n$ and s > 0. Then x^* is a stationary point of

$$(P) \qquad \min f(\mathbf{x}) \quad \text{s.t. } \mathbf{x} \in C$$

if and only if

$$\mathbf{x}^* = P_C(\mathbf{x}^* - s\nabla f(\mathbf{x}^*)).$$

Proof: By the second projection theorem, $\mathbf{x}^* = P_C(\mathbf{x}^* - s\nabla f(\mathbf{x}^*))$ if and only if

$$(\mathbf{x}^* - s \nabla f(\mathbf{x}^*) - \mathbf{x}^*)^\top (\mathbf{x} - \mathbf{x}^*) \le 0 \quad \forall \ \mathbf{x} \in C$$

if and only if

$$\nabla f(\mathbf{x}^*)^{\top}(\mathbf{x}-\mathbf{x}^*) \geq 0 \quad \forall \mathbf{x} \in C.$$

That is, x^* is a stationary point of the problem (P). \Box

The gradient projection method

The stationarity condition $x^* = P_C(x^* - s\nabla f(x^*))$ naturally motivates the following algorithm for solving problem (P):

The gradient projection method:

Input: $\varepsilon > 0$, tolerance parameter.

Initialization: Pick $x_0 \in \mathbb{R}^n$ arbitrarily.

General step: For any $k = 0, 1, \dots$, execute the following steps

(a) Pick a stepsize t_k by a line search procedure.

(b) Set
$$x_{k+1} = P_C(x_k - t_k \nabla f(x_k))$$
.

(c) if $||x_{k+1} - x_k|| \le \varepsilon$ then stop, and x_{k+1} is the output.

Note:

- (1) In the unconstrained case, that is, when $C = \mathbb{R}^n$, the gradient projection method is just the gradient method.
- (2) There are several strategies for choosing the stepsizes t_k . Two choices are (i) constant stepsize $t_k = \overline{t}$ for all k. (ii) backtracking.

To be continued!

- Backtracking
- Convergence of the gradient projection method
- Sparsity constrained problems