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Convex optimization problem

@ We will consider the constrained optimization problem (P):
(P) min f(x) stxeC,

where f is a continuously differentiable function and C C R" is
a closed and convex set.

@ For an unconstrained optimization problem, the stationary
points of continuously differentiable functions are points that
the gradient vanishes. It was shown that stationarity is a
necessary condition for a point to be an unconstrained local
optimum point.

@ Definition: (stationary points of constrained problems) Let f be a
continuously differentiable function over a closed convex set C C R".
Then x* € Cis called a stationary point of (P) if

Vix*) (x—x*) >0, VxeC

@ Stationarity actually means that there are no feasible descent
directions of f at x*. This suggests that stationarity is in fact a
necessary condition for a local minimum of (P).
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Stationarity as a necessary optimality condition

@ Theorem: Let f be a continuously differentiable function over a closed
convex set C C R", and let x* € C be a local minimum of (P). Then x*
is a stationary point of (P).
Proof: Assume in contradiction that x* is not a stationary point of (P). Then
Jx € Csuch that VF(x*)T (x —x*) < 0= f'(x*;d) < 0, where d := x — x*. It
follows that 3 e € (0,1) s.t. f(x* +td) < f(x*) forall t € (0,¢). Since C is convex,
x* +td = x* +t(x —x*) = (1 — t)x* + tx € C. Therefore, f(x*) is not a local
minimum. This is a contradiction! [

@ Note: If C = IR", then the stationary points of (P) are the points
x* satisfying Vf(x*) T (x —x*) > 0, for all x € R". Plugging
x = x* — Vf(x*) " into the above inequality, we obtain
—[IVf(")[? 2 0 = Vf(x") =0.

Therefore, it follows that the notion of a stationary point of a
function and a stationary point of a minimization problem
coincide when the problem is unconstrained.
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Stationarity over C = R’}

Consider the optimization problem:
(Q) min f(x) stx;>0,i=12---,n,

where f is a continuously differentiable function over R" . A vector
x* € R} is a stationary point of (Q) if and only if

Vi(x*)Tx — VF(x*)"x* >0, Vx>0 (%)

We will now use the following technical result: a'x+b>0VYx> 0iff
a>0and b > 0. Thus, (x) holds iff Vf(x*) > 0and Vf(x*)"x* < 0.
Since x* > 0, we have (x) iff

Vf(x*) > 0and x} f( )=0, i=12---,n

We can compactly write the above condztzon as follows:

LA )_{—o Xt >0,

ox; >0, x;-‘ =0.
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Stationarity over the unit-sum set

Consider the optimization problem:
(R) min f(x) ste x=1,

where f is a continuously differentiable function over IR"”. The
following feasible set is called the unit-sum set:

U={xcR":e'x=1}={xcR": le—l}

A point x* € U is a stationary point of (R) if and only if
(I Vi(x*) T (x —x*) >0, V xsatisfying e 'x = 1.
We will show that condition (I) is equivalent to

m L= ZLe ==L

(II) = (I): Assume that x* € U satisfies (II). Then for any x € U,

V)T (x ) = ji(x*)(ixi - ixr) - Lxya-1)-o
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Stationarity over the unit-sum set (cont’d)

We have thus shown that (1) is satisfied.

(I) = (II): Take x* € U that satisfies (I). Suppose in contradiction that
(II) does not hold. Then 37 # j s.t. f ( *) > f ( *). Define the
vector x € U as

Xy k¢ {ij},
X = X*l k—l
x+1 k=j.

Then
Vi) T e—x) = L - x;‘>+1<x*><xj—x*>

which is a contradiction to the assumption that (I) is satisfied.
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Stationarity over the unit-ball

Consider the optimization problem:
(S) min f(x) st x| <1,
where f is a continuously differentiable function over B[0, 1].
A point x* € B[0, 1] is a stationary point of (S)
= V()T (x—x) 20,V x| <1
<= min{Vf(x*)Tx — Vf(x*)Tx* : x| <1} >0 (%)

”

Claim: V a € R" the optimal value of min{a'x : ||x|| < 1} is “—||a
Proof: The case of a = 0 is trivial. Assume that a # 0, then by the CS
inequality, for any x € B[0,1], we have a'x > —|a||||x|| > —||a||, so
that min{a'x : ||x|| <1} > —|a||. The lower bound is attained at

. a

X = — 17,7
llall

Returning to the characterization of stationary points, from the claim,
we have (%) iff —Vf(x*) Tx* > | Vf(x*)||. However, by the CS
inequality, we have —Vf(x*) Tx* < | Vf(x")[|[x*|| < [ Vf(x")].
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Stationarity over the unit-ball (cont’d)

Finally, we can conclude that x* is a stationary point of (S) iff
IVF()Il = =VF () Tar. (x)
Let x* be a point satisfying (%%). Then
@ If Vf(x*) = 0, then (%) holds automatically.
@ If Vf(x*) # 0, then ||x*|| = 1 since otherwise, if ||x*|| < 1 then by
the CS inequality,

IVF () = =VF () T < VGl < IVF )L
which is a contradiction. We therefore conclude that when
Vf(x*) # 0, x* is a stationary point if and only if ||x*|| = 1 and

IVFG - [ = [V () )| = = VF () T

<= JA <0s.t. VF(x™) = Ax".

—~—~

by CS
In conclusion, x* is a stationary point of (S) if and only if either
Vi(x*) =0or|x*]| =1and 3 A < 0s.t. Vf(x*) = Ax™.
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Some stationarity conditions

feasible set explicit stationarity condition
R” Vi) =
n . , X > 0
R () { , x:=0
{(xeR”:eTx=1} 3x1(x)_ .= 8f(x*)
B[0,1] Vf(x*)=0or||x*||=1and I1<0: Vf(x") = Ax*
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Stationarity in convex problems

@ Stationarity is a necessary optimality condition for local
optimality.

@ When the objective function is additionally assumed to be
convex, stationarity is a necessary and sufficient condition for
optimality. See the theorem below.

@ Theorem: Let f be a continuously differentiable convex function over
a closed and convex set C C IR". Then x™* is a stationary point of

(P) min f(x) st xeC
if and only if x* is an optimal solution of (P).

Proof: If x* is an optimal solution of (P), then by Theorem 9.2 (page 3), it follows
that x* is a stationary point of (P). Assume that x* is a stationary point of (P), and
let x € C. Then from the gradient inequality for convex functions, we have

fl) 2 f(x') + VF () T (x = %) = f(x).

This shown that x* is the global minimum point of (P). [
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The second projection theorem

@ Geometrically, the second projection theorem states that for a
given closed and convex set C,x € R" and y € C, the angle
between x — Pc(x) and y — Pc(x) is greater than or equal to 90°.

-4 -3 -2 -1 0 1 2 3 4 5
@ Theorem: (second projection theorem) Let C C IR" be a closed
convex set and let x € R". Then z = Pc(x) if and only if z € C and
(x—z)"(y—z) <O0foranyy € C.
Proof: z = Pc(x) if and only if it is the optimal solution of the problem
min g(y) := |y —x|?* styeC
It follows that z = Pc(x) if and only if Vg(z) T (y —z) >0V y € C, ie,

(x—2)T(y—2z)>0 VyeC O
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Nonexpansiveness property of P

Let C C IR™ be a closed convex set. Then
(1) Yo,w € R", (Pc(v) — Pe(w)) ' (v —w) > ||Pc(v) — Pc(w)].
Proof: By the second projection theorem, for any x € R" and y € C we have
(x = Pc(x)) " (y — Pc(x)) < 0.
Substituting x = v and y = Pc(w), x = w and y = P¢(v), we have
(v~ Pc(v)) " (Pc(w) —Pc(v)) <0 and  (w —Pc(w))' (Pc(v) — Pc(w)) <0,
Adding the two inequalities yields
(Pc(w) = Pc(2)) " (v —w + Pc(w) — Pc(v)) <0,
showing the desired inequality. [J

(2) (nonexpansiveness) ¥V v,w € R", ||Pc(v) — Pc(w)|| < ||[v —w|.
Proof: Assume that Pc(v) # Pc(w). Then by the CS inequality we have

(Pc(v) = Pc(w)) " (v —w) < [|Pc(v) — Pe(w) [0 — wl],
which combined with (1) yields
[Pc() = Pe(w)||* < |[Pe(w) — Pe(w)||]|o — w]|,

showing the desired inequality. [J
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An additional useful representation of stationarity

The next result describes an additional useful representation of
stationarity in terms of the orthogonal projection operator

Theorem: Let f be a continuously differentiable function defined on the
closed and convex set C C R" and s > 0. Then x* is a stationary point of

(P) min f(x) st xeC

if and only if
x* = Pco(x" —sVf(x")).

Proof: By the second projection theorem, x* = Pc(x* —sVf(x*)) if
and only if

(x* —sVf(x*) —x*) T (x—x*) <0 VxeC
if and only if
Vi) (x—x*)>0 VxeC
That is, x* is a stationary point of the problem (P). [
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The gradient projection method

The stationarity condition x* = Pc(x* — sVf(x*)) naturally motivates
the following algorithm for solving problem (P):

The gradient projection method:

Input: ¢ > 0, tolerance parameter.

Initialization: Pick xy € R" arbitrarily.

General step: Forany k =0, 1, - - -, execute the following steps
(a) Pick a stepsize t; by a line search procedure.
(b) Setxyi 1 = Pc(x — i Vf(xx)).
(c) if ||xgq — x%|| < e then stop, and xy 1 is the output.

Note:

(1) In the unconstrained case, that is, when C = R", the gradient
projection method is just the gradient method.

(2) There are several strategies for choosing the stepsizes t;.. Two
choices are (i) constant stepsize t; = f for all k. (ii) backtracking.
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To be continued!

@ Backtracking
@ Convergence of the gradient projection method

@ Sparsity constrained problems
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