MA 5037: Optimization Methods and Applications The KKT Conditions

Suh-Yuh Yang (楊肅煜)

Department of Mathematics, National Central University Jhongli District, Taoyuan City 320317, Taiwan

First version: April 20, 2023/Last updated: June 18, 2025

Inequality constrained problems

We begin our exploration into the KKT conditions by analyzing the inequality constrained problem:

(P)
$$\min f(x)$$
 subject to $g_i(x) \leq 0$, $i = 1, 2, ..., m$,

where f, g₁, . . . , g_m are continuously differentiable functions over \mathbb{R} ⁿ.

Definition (feasible descent direction): *Consider the problem*

(G)
$$\min f(x)$$
 subject to $x \in C$,

where f is continuously differentiable over the set $C \subseteq \mathbb{R}^n$. Then a vector $d \neq 0$ is called a feasible descent direction at $x \in C$ if $\nabla f(x)^{\top} d < 0$, and there exists $\varepsilon > 0$ such that $x + td \in C$ for all $t \in [0, \varepsilon]$.

A necessary local optimality condition and active constraints

Lemma 1: Consider the minimization problem (G). If x^* is a local minimum of problem (G), then there are no feasible descent directions at x^* .

Proof: Suppose that there is a feasible descent direction d at x^* . Then $\nabla f(x^*)^\top d < 0$ and there exists $\varepsilon_1 > 0$ such that $x^* + td \in C$ for all $t \in [0, \varepsilon_1]$.

By the definition of the descent direction, there is an $\varepsilon_2 > 0$ with $\varepsilon_2 < \varepsilon_1$ such that $f(x^* + td) < f(x^*)$ for all $t \in (0, \varepsilon_2]$, which is a contradiction to the local optimality of x^* . \square

The active constraints at \tilde{x} :

Definition: Assume that we are given a set of inequalities

$$g_i(x) \leq 0, \qquad i = 1, 2, \ldots, m,$$

where $g_i : \mathbb{R}^n \to \mathbb{R}$ are functions, and a vector $\widetilde{\mathbf{x}} \in \mathbb{R}^n$. Then

- (i) The active constraints at \tilde{x} are the constraints satisfied as equalities at \tilde{x} ; and
- (ii) The set of active constraints is denoted by $I(\tilde{x}) := \{i : g_i(\tilde{x}) = 0\}.$

Another necessary local optimality condition

Lemma 2: Let x^* be a local minimum of the inequality constrained problem

(P)
$$\min f(x)$$
 subject to $g_i(x) \leq 0$, $i = 1, 2, ..., m$,

where f, g_1 , ..., g_m are continuously differentiable functions over \mathbb{R}^n . Let $I(x^*)$ be the set of active constraints at x^* , i.e.,

$$I(\mathbf{x}^*) = \{i : g_i(\mathbf{x}^*) = 0\}.$$

Then there does not exist a vector $d \in \mathbb{R}^n$ *such that*

$$\nabla f(\mathbf{x}^*)^{\top} \mathbf{d} < 0 \quad \text{and} \quad \nabla g_i(\mathbf{x}^*)^{\top} \mathbf{d} < 0 \text{ for } i \in I(\mathbf{x}^*).$$
 (1)

Proof:

Suppose by contradiction that d satisfies the system of inequalities (1). Then it follows that there exists $\varepsilon_1 > 0$ such that $f(x^* + td) < f(x^*)$ and $g_i(x^* + td) < g_i(x^*) = 0$ for any $t \in (0, \varepsilon_1)$ and $i \in I(x^*)$.

Proof of Lemma 2 (cont'd)

For any $i \notin I(\mathbf{x}^*)$, we have that $g_i(\mathbf{x}^*) < 0$, and hence, by continuity of g_i for all i, it follows that there exists $\varepsilon_2 > 0$ such that $g_i(\mathbf{x}^* + t\mathbf{d}) < 0$ for any $t \in (0, \varepsilon_2)$ and $i \notin I(\mathbf{x}^*)$.

Now, no matter $i \in I(x^*)$ or not, we can conclude that

$$f(x^* + td) < f(x^*),$$

 $g_i(x^* + td) < 0, \quad i = 1, 2, ..., m,$
for all $t \in (0, \min\{\varepsilon_1, \varepsilon_2\}).$

This is a contradiction to the local optimality of x^* .

Fritz John conditions for inequality constrained problems

Theorem (Fritz John conditions): Let x^* be a local minimum of the inequality constrained problem

(P) $\min f(\mathbf{x})$ subject to $g_i(\mathbf{x}) \leq 0$, i = 1, 2, ..., m, where $f, g_1, ..., g_m$ are continuously differentiable functions over \mathbb{R}^n . Then there exist multipliers $\lambda_0, \lambda_1, ..., \lambda_m \geq 0$, which are not all zeros, such that

$$\lambda_0 \nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i \nabla g_i(\mathbf{x}^*) = \mathbf{0}, \qquad (2)$$
$$\lambda_i g_i(\mathbf{x}^*) = \mathbf{0}, \quad i = 1, 2, \dots, m.$$

Proof:

Let $I(x^*) = \{i : g_i(x^*) = 0\} := \{i_1, i_2, ..., i_k\}$. By Lemma 2, it follows that the following system of inequalities *does not have a solution d*:

$$\nabla f(\mathbf{x}^*)^{\top} \mathbf{d} < 0, \quad \nabla g_i(\mathbf{x}^*)^{\top} \mathbf{d} < 0, \quad i \in I(\mathbf{x}^*).$$
 (3)

System (3) can be rewritten as Ad < 0, where

$$A := egin{pmatrix}
abla f(x^*)^{ op} \
abla g_{i_1}(x^*)^{ op} \
operator \
operato$$

Proof of the theorem on the Fritz John conditions (cont'd)

By Gordan's alternative theorem, system (3) is *infeasible* if and only if there exists a vector $\boldsymbol{\eta} = (\lambda_0, \lambda_{i_1}, \dots, \lambda_{i_k})^\top \neq \mathbf{0}$ such that

$$A^{\top}\eta=0, \quad \eta\geq 0,$$

which is the same as

$$\lambda_0 \nabla f(\mathbf{x}^*) + \sum_{i \in I(\mathbf{x}^*)} \lambda_i \nabla g_i(\mathbf{x}^*) = \mathbf{0}, \quad \lambda_i \ge 0.$$

Define $\lambda_i = 0$ for any $i \notin I(\mathbf{x}^*)$. Then we obtain that

$$\lambda_0 \nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i \nabla g_i(\mathbf{x}^*) = \mathbf{0}$$

and $\lambda_i g_i(x^*) = 0$ for any $i \in \{1, 2, ..., m\}$ as required.

A major drawback of the Fritz John conditions

• The Fritz-John conditions allow λ_0 to be zero, which is not particularly informative since condition (2) then becomes

$$\sum_{i=1}^m \lambda_i \nabla g_i(\mathbf{x}^*) = \mathbf{0},$$

implying the gradients of the active constraints $\{\nabla g_i(x^*)\}_{i\in I(x^*)}$ are linearly dependent.

This condition has nothing to do with the objective function, implying that there might be a lot of points satisfying the Fritz John conditions which are not local minimum points.

• If we add an assumption that the gradients of the active constraints are linearly independent at x^* , then we can establish the KKT conditions, which are the same as the Fritz John conditions with $\lambda_0 = 1$.

KKT conditions for inequality constrained problems

Theorem (KKT conditions): Let x^* be a local minimum of the inequality constrained problem

(P)
$$\min f(\mathbf{x})$$
 subject to $g_i(\mathbf{x}) \leq 0$, $i = 1, 2, ..., m$,

where $f, g_1, ..., g_m$ are continuously differentiable functions over \mathbb{R}^n . Let $I(x^*)$ be the set of active constraints at x^* , i.e.,

$$I(\mathbf{x}^*) = \{i : g_i(\mathbf{x}^*) = 0\}.$$

Suppose that $\{\nabla g_i(\mathbf{x}^*)\}_{i\in I(\mathbf{x}^*)}$ are linearly independent. Then there exist multipliers $\lambda_1, \lambda_2, \ldots, \lambda_m \geq 0$ such that

$$\nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i \nabla g_i(\mathbf{x}^*) = \mathbf{0},$$

$$\lambda_i g_i(\mathbf{x}^*) = \mathbf{0}, \quad i = 1, 2, \dots, m.$$

Proof of the theorem on the KKT conditions

By the Fritz John conditions, there exist $\tilde{\lambda}_0, \tilde{\lambda}_1, \dots, \tilde{\lambda}_m \geq 0$, not all zeros, such that

$$\tilde{\lambda}_0 \nabla f(\mathbf{x}^*) + \sum_{i=1}^m \tilde{\lambda}_i \nabla g_i(\mathbf{x}^*) = \mathbf{0}, \tag{4}$$

$$\tilde{\lambda}_i g_i(\mathbf{x}^*) = 0, \quad i = 1, 2, \dots, m. \tag{5}$$

Moreover, we have $\tilde{\lambda}_0 > 0$, since if $\tilde{\lambda}_0 = 0$, by (4) and (5), it follows that

$$\sum_{i\in I(\mathbf{x}^*)}\tilde{\lambda}_i\nabla g_i(\mathbf{x}^*)=\mathbf{0},$$

where not all the scalars $\tilde{\lambda}_i$, $i \in I(x^*)$ are zeros, leading to a contradiction to that $\{\nabla g_i(x^*)\}_{i \in I(x^*)}$ are linearly independent.

Now, by defining $\lambda_i := \frac{\tilde{\lambda}_i}{\tilde{\lambda}_0}$ for $i = 0, 1, \dots, m$, the KKT conditions directly follow from (4) and (5).

KKT conditions for inequality/equality constrains

Theorem (KKT conditions): Let x^* be a local minimum of the problem

$$\min f(\mathbf{x}) \quad \text{subject to} \quad \left\{ \begin{array}{ll} g_i(\mathbf{x}) \leq 0, & i = 1, 2, \dots, m, \\ h_j(\mathbf{x}) = 0, & j = 1, 2, \dots, p, \end{array} \right. \tag{6}$$

where f, g_1 , ..., g_m , h_1 , h_2 , ..., h_p are continuously differentiable functions over \mathbb{R}^n . Suppose that the gradients of the active constraints and the equality constraints

$$\{\nabla g_i(\mathbf{x}^*): i \in I(\mathbf{x}^*)\} \cup \{\nabla h_j(\mathbf{x}^*): j = 1, 2, \dots, p\}$$

are linearly independent. Then there exist multipliers $\lambda_1, \lambda_2, \ldots, \lambda_m \geq 0$ and $\mu_1, \mu_2, \ldots, \mu_p \in \mathbb{R}$ such that

$$\nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i \nabla g_i(\mathbf{x}^*) + \sum_{j=1}^p \mu_j \nabla h_j(\mathbf{x}^*) = \mathbf{0},$$

$$\lambda_i g_i(\mathbf{x}^*) = \mathbf{0}, \quad i = 1, 2, \dots, m.$$

KKT points

Definition (KKT points): Consider the minimization problem (6), where $f, g_1, \ldots, g_m, h_1, \ldots, h_p$ are continuously differentiable functions over \mathbb{R}^n .

A feasible point x^* is called a KKT point if there exist $\lambda_1, \lambda_2, \ldots, \lambda_m \geq 0$ and $\mu_1, \mu_2, \ldots, \mu_p \in \mathbb{R}$ such that

$$\nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i \nabla g_i(\mathbf{x}^*) + \sum_{j=1}^p \mu_j \nabla h_j(\mathbf{x}^*) = \mathbf{0},$$

$$\lambda_i g_i(\mathbf{x}^*) = \mathbf{0}, \quad i = 1, 2, \dots, m.$$

Regular points

Definition (Regularity): Consider the minimization problem (6), where $f, g_1, \ldots, g_m, h_1, \ldots, h_p$ are continuously differentiable functions over \mathbb{R}^n .

A feasible point x^* is called regular if the gradients of the active constraints among the inequality constraints and of the equality constraints

$$\{\nabla g_i(\mathbf{x}^*): i \in I(\mathbf{x}^*)\} \cup \{\nabla h_j(\mathbf{x}^*): j = 1, 2, \dots, p\}$$

are linearly independent.

Note: In the terminologies of the KKT point and regular point:

- A necessary optimality condition for local optimality of a regular point is that it is a KKT point.
- The additional requirement of regularity is not required in the linearly constrained case in which no such assumption is needed; see Chapter 10, Theorem on the KKT conditions for linearly constrained problems.

KKT conditions for convex optimization problems

When problem is convex, the KKT conditions are always sufficient.

Theorem (sufficiency of the KKT conditions): Let x^* be a feasible solution of the constrained minimization problem,

min
$$f(x)$$
 subject to
$$\begin{cases} g_i(x) \le 0, & i = 1, 2, \dots, m, \\ h_j(x) = 0, & j = 1, 2, \dots, p, \end{cases}$$
 (7)

where $f, g_1, ..., g_m$ are continuously differentiable convex functions over \mathbb{R}^n and $h_1, ..., h_p$ are affine functions. Suppose there exist multipliers $\lambda_1, \lambda_2, ..., \lambda_m \geq 0$ and $\mu_1, \mu_2, ..., \mu_p \in \mathbb{R}$ such that

$$\nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i \nabla g_i(\mathbf{x}^*) + \sum_{j=1}^p \mu_j \nabla h_j(\mathbf{x}^*) = \mathbf{0},$$

$$\lambda_i g_i(\mathbf{x}^*) = \mathbf{0}, \quad i = 1, 2, \dots, m.$$

Then x^* is an optimal solution of problem (7).

Proof of the sufficiency theorem of the KKT conditions

Let x be a feasible solution of problem (7). It suffices to show that $f(x) \ge f(x^*)$. Note that the following function is convex:

$$s(\mathbf{x}) := f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x}) + \sum_{j=1}^{p} \mu_j h_j(\mathbf{x}), \quad \forall \mathbf{x} \in \mathbb{R}^n.$$

Since $\nabla s(\mathbf{x}^*) = \nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i \nabla g_i(\mathbf{x}^*) + \sum_{j=1}^p \mu_j \nabla h_j(\mathbf{x}^*) = 0$, it follows that \mathbf{x}^* is a minimizer of s, i.e., $s(\mathbf{x}^*) \leq s(\mathbf{x})$, $\forall \mathbf{x} \in \mathbb{R}^n$. We can conclude that

$$f(\mathbf{x}^*) = f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i g_i(\mathbf{x}^*) + \sum_{j=1}^p \mu_j h_j(\mathbf{x}^*) \quad (\because \lambda_i g_i(\mathbf{x}^*) = 0 = h_j(\mathbf{x}^*))$$

$$= s(\mathbf{x}^*) \le s(\mathbf{x})$$

$$= f(\mathbf{x}) + \sum_{i=1}^m \lambda_i g_i(\mathbf{x}) + \sum_{j=1}^p \mu_j h_j(\mathbf{x}), \quad \forall \mathbf{x} \in \mathbb{R}^n$$

$$\le f(\mathbf{x}), \quad \forall \mathbf{x} \text{ feasible solution.} \quad \Box$$

Slater's condition

Definition: We say that Slater's condition is satisfied for a set of convex inequalities

$$g_i(\mathbf{x}) \leq 0, \quad i = 1, 2, \ldots, m,$$

where g_1, g_2, \ldots, g_m are given convex functions, if there exists $\hat{x} \in \mathbb{R}^n$ such that

$$g_i(\hat{x}) < 0, \quad i = 1, 2, \dots, m.$$

Note: Slater's condition requires that there exists a point that strictly satisfies the constraints, and does not require, like in the regularity condition, an a priori knowledge on the point that is a candidate to be an optimal solution.

This is the reason why checking the validity of Slater's condition is usually a much easier task than checking regularity.

Necessity of the KKT conditions under Slater's condition

Theorem: Let x^* be an optimal solution of the problem

$$\min f(x)$$
 subject to $g_i(x) \leq 0$, $i = 1, 2, ..., m$,

where f, g_1, \ldots, g_m are continuously differentiable functions over \mathbb{R}^n . In addition, g_1, g_2, \ldots, g_m are convex functions over \mathbb{R}^n . Suppose that there exists $\hat{\mathbf{x}} \in \mathbb{R}^n$ such that

$$g_i(\hat{x}) < 0, i = 1, 2, ..., m,$$

Then there exist multipliers $\lambda_1, \lambda_2, \ldots, \lambda_m \geq 0$ *such that*

$$\nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i \nabla g_i(\mathbf{x}^*) = \mathbf{0},$$

$$\lambda_i g_i(\mathbf{x}^*) = \mathbf{0}, \quad i = 1, 2, \dots, m.$$
(8)

Proof of the theorem

Since x^* is an optimal solution of f(x), then the Fritz John conditions are satisfied. That is, there exist $\tilde{\lambda}_0, \tilde{\lambda}_1, \dots, \tilde{\lambda}_m \geq 0$, which are not all zeros, such that

$$\tilde{\lambda}_0 \nabla f(\mathbf{x}^*) + \sum_{i=1}^m \tilde{\lambda}_i \nabla g_i(\mathbf{x}^*) = \mathbf{0},$$

$$\tilde{\lambda}_i g_i(\mathbf{x}^*) = \mathbf{0}, \ i = 1, 2, \dots, m.$$
(9)

All that we need to show is that $\tilde{\lambda}_0 > 0$, and then the conditions (8) will be satisfied with $\lambda_i = \frac{\tilde{\lambda}_i}{\tilde{\lambda}_0}$, $i = 1, 2, \ldots, m$. To prove that $\tilde{\lambda}_0 > 0$, assume in contradiction that it is zero. Then we have

$$\sum_{i=1}^{m} \tilde{\lambda}_i \nabla g_i(\mathbf{x}^*) = \mathbf{0}. \tag{10}$$

Proof of the theorem (cont'd)

By the gradient inequality for convex functions, we have that for all i = 1, 2, ..., m,

$$0 > g_i(\hat{x}) \ge g_i(x^*) + \nabla g_i(x^*)^{\top} (\hat{x} - x^*).$$

Multiplying the *i*th inequality by $\tilde{\lambda}_i$ and summing over i = 1, 2, ..., m, we obtain

$$0 > \sum_{i=1}^{m} \tilde{\lambda}_{i} g_{i}(\boldsymbol{x}^{*}) + \left(\sum_{i=1}^{m} \tilde{\lambda}_{i} \nabla g_{i}(\boldsymbol{x}^{*})\right)^{\top} (\hat{\boldsymbol{x}} - \boldsymbol{x}^{*}), \tag{11}$$

where the inequality is strict since not all the $\tilde{\lambda}_i$ are zero. Plugging the identities (9) and (10) into (11), we obtain the impossible statement that 0 > 0, thus establishing the result. \square

Generalized Slater's condition (GSC)

Definition: Consider the system

$$g_i(x) \le 0,$$
 $i = 1, 2, ..., m,$
 $h_j(x) \le 0,$ $j = 1, 2, ..., p,$
 $s_k(x) = 0,$ $k = 1, 2, ..., q,$

where g_i , i = 1, 2, ..., m, are convex functions and h_j , s_k , j = 1, 2, ..., p, k = 1, 2, ..., q, are affine functions. Then we say that the generalized Slater's condition (GSC) is satisfied if there exists $\hat{x} \in \mathbb{R}^n$ for which

$$g_i(\hat{x}) < 0,$$
 $i = 1, 2, ..., m,$
 $h_j(\hat{x}) \le 0,$ $j = 1, 2, ..., p,$
 $s_k(\hat{x}) = 0,$ $k = 1, 2, ..., q.$

Necessity of the KKT conditions under the GSC

Theorem: Let x^* be an optimal solution of the problem

$$\min f(x) \quad \text{subject to} \quad g_i(x) \leq 0, \qquad i = 1, 2, \dots, m,$$

$$h_j(x) \leq 0, \qquad j = 1, 2, \dots, p,$$

$$s_k(x) = 0, \qquad k = 1, 2, \dots, q,$$

where f, g_1, \ldots, g_m are continuously differentiable convex functions over \mathbb{R}^n , and $h_j, s_k, j = 1, 2, \ldots, p, k = 1, 2, \ldots, q$, are affine. Suppose that there exists $\hat{\mathbf{x}} \in \mathbb{R}^n$ such that

$$g_i(\hat{x}) < 0,$$
 $i = 1, 2, ..., m,$
 $h_j(\hat{x}) \le 0,$ $j = 1, 2, ..., p,$
 $s_k(\hat{x}) = 0,$ $k = 1, 2, ..., q.$

Then there exist multipliers $\lambda_1, \lambda_2, \dots, \lambda_m \geq 0, \eta_1, \eta_2, \dots, \eta_p \geq 0$, and $\mu_1, \mu_2, \dots, \mu_q \in \mathbb{R}$ such that

$$\nabla f(x^*) + \sum_{i=1}^{m} \lambda_i \nabla g_i(x^*) + \sum_{j=1}^{p} \eta_j \nabla h_j(x^*) + \sum_{k=1}^{q} \mu_k \nabla s_k(x^*) = \mathbf{0},$$

$$\lambda_i g_i(x^*) = 0, \quad i = 1, 2, \dots, m,$$

$$\eta_i h_i(x^*) = 0, \quad i = 1, 2, \dots, p.$$