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Inequality constrained problems

We begin our exploration into the KKT conditions by analyzing the
inequality constrained problem:

(P) min f (x) subject to gi(x) ≤ 0, i = 1, 2, . . . , m,

where f , g1, . . . , gm are continuously differentiable functions over Rn.

Definition (feasible descent direction): Consider the problem

(G) min f (x) subject to x ∈ C,

where f is continuously differentiable over the set C ⊆ Rn. Then a vector
d ̸= 0 is called a feasible descent direction at x ∈ C if ∇f (x)⊤d < 0, and
there exists ε > 0 such that x + td ∈ C for all t ∈ [0, ε].
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A necessary local optimality condition and active constraints

Lemma 1: Consider the minimization problem (G). If x∗ is a local
minimum of problem (G), then there are no feasible descent directions at x∗.

Proof: Suppose that there is a feasible descent direction d at x∗. Then
∇f (x∗)⊤d < 0 and there exists ε1 > 0 such that x∗ + td ∈ C for all t ∈ [0, ε1].

By the definition of the descent direction, there is an ε2 > 0 with ε2 < ε1 such
that f (x∗ + td) < f (x∗) for all t ∈ (0, ε2], which is a contradiction to the local
optimality of x∗. □

The active constraints at x̃:

Definition: Assume that we are given a set of inequalities

gi(x) ≤ 0, i = 1, 2, . . . , m,

where gi : Rn → R are functions, and a vector x̃ ∈ Rn. Then

(i) The active constraints at x̃ are the constraints satisfied as equalities at
x̃; and

(ii) The set of active constraints is denoted by I(x̃) := {i : gi(x̃) = 0}.
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Another necessary local optimality condition

Lemma 2: Let x∗ be a local minimum of the inequality constrained problem

(P) min f (x) subject to gi(x) ≤ 0, i = 1, 2, . . . , m,

where f , g1, . . . , gm are continuously differentiable functions over Rn. Let
I(x∗) be the set of active constraints at x∗, i.e.,

I(x∗) = {i : gi(x∗) = 0}.

Then there does not exist a vector d ∈ Rn such that

∇f (x∗)⊤d < 0 and ∇gi(x∗)⊤d < 0 for i ∈ I(x∗). (1)

Proof:
Suppose by contradiction that d satisfies the system of inequalities (1). Then
it follows that there exists ε1 > 0 such that f (x∗ + td) < f (x∗) and
gi(x∗ + td) < gi(x∗) = 0 for any t ∈ (0, ε1) and i ∈ I(x∗).
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Proof of Lemma 2 (cont’d)

For any i /∈ I(x∗), we have that gi(x∗) < 0, and hence, by continuity of gi for
all i, it follows that there exists ε2 > 0 such that gi(x∗ + td) < 0 for any
t ∈ (0, ε2) and i /∈ I(x∗).

Now, no matter i ∈ I(x∗) or not, we can conclude that

f (x∗ + td) < f (x∗),
gi(x

∗ + td) < 0, i = 1, 2, . . . , m,

for all t ∈ (0, min{ε1, ε2}).

This is a contradiction to the local optimality of x∗. □
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Fritz John conditions for inequality constrained problems

Theorem (Fritz John conditions): Let x∗ be a local minimum of the
inequality constrained problem

(P) min f (x) subject to gi(x) ≤ 0, i = 1, 2, . . . , m,
where f , g1, . . . , gm are continuously differentiable functions over Rn. Then
there exist multipliers λ0, λ1, . . . , λm ≥ 0, which are not all zeros, such that

λ0∇f (x∗) +
m

∑
i=1

λi∇gi(x∗) = 0, (2)

λigi(x∗) = 0, i = 1, 2, . . . , m.
Proof:
Let I(x∗) = {i : gi(x∗) = 0} := {i1, i2, . . . , ik}. By Lemma 2, it follows that the
following system of inequalities does not have a solution d:

∇f (x∗)⊤d < 0, ∇gi(x
∗)⊤d < 0, i ∈ I(x∗). (3)

System (3) can be rewritten as Ad < 0, where

A :=


∇f (x∗)⊤

∇gi1 (x
∗)⊤

...
∇gik (x

∗)⊤

 .

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan MA 5037: The KKT Conditions – 6/21



Proof of the theorem on the Fritz John conditions (cont’d)

By Gordan’s alternative theorem, system (3) is infeasible if and only if there
exists a vector η = (λ0, λi1 , . . . , λik )

⊤ ̸= 0 such that

A⊤η = 0, η ≥ 0,

which is the same as

λ0∇f (x∗) + ∑
i∈I(x∗)

λi∇gi(x
∗) = 0, λi ≥ 0.

Define λi = 0 for any i /∈ I(x∗). Then we obtain that

λ0∇f (x∗) +
m

∑
i=1

λi∇gi(x
∗) = 0

and λigi(x∗) = 0 for any i ∈ {1, 2, . . . , m} as required. □
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A major drawback of the Fritz John conditions

The Fritz-John conditions allow λ0 to be zero, which is not
particularly informative since condition (2) then becomes

m

∑
i=1

λi∇gi(x∗) = 0,

implying the gradients of the active constraints {∇gi(x∗)}i∈I(x∗)
are linearly dependent.

This condition has nothing to do with the objective function, implying
that there might be a lot of points satisfying the Fritz John conditions
which are not local minimum points.

If we add an assumption that the gradients of the active constraints are
linearly independent at x∗, then we can establish the KKT conditions,
which are the same as the Fritz John conditions with λ0 = 1.
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KKT conditions for inequality constrained problems

Theorem (KKT conditions): Let x∗ be a local minimum of the inequality
constrained problem

(P) min f (x) subject to gi(x) ≤ 0, i = 1, 2, . . . , m,

where f , g1, . . . , gm are continuously differentiable functions over Rn. Let
I(x∗) be the set of active constraints at x∗, i.e.,

I(x∗) = {i : gi(x∗) = 0}.

Suppose that {∇gi(x∗)}i∈I(x∗) are linearly independent. Then there exist
multipliers λ1, λ2, . . . , λm ≥ 0 such that

∇f (x∗) +
m

∑
i=1

λi∇gi(x∗) = 0,

λigi(x∗) = 0, i = 1, 2, . . . , m.
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Proof of the theorem on the KKT conditions

By the Fritz John conditions, there exist λ̃0, λ̃1, . . . , λ̃m ≥ 0, not all zeros, such
that

λ̃0∇f (x∗) +
m

∑
i=1

λ̃i∇gi(x
∗) = 0, (4)

λ̃igi(x
∗) = 0, i = 1, 2, . . . , m. (5)

Moreover, we have λ̃0 > 0, since if λ̃0 = 0, by (4) and (5), it follows that

∑
i∈I(x∗)

λ̃i∇gi(x
∗) = 0,

where not all the scalars λ̃i, i ∈ I(x∗) are zeros, leading to a contradiction to
that {∇gi(x∗)}i∈I(x∗) are linearly independent.

Now, by defining λi := λ̃i
λ̃0

for i = 0, 1, . . . , m, the KKT conditions directly
follow from (4) and (5). □
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KKT conditions for inequality/equality constrains

Theorem (KKT conditions): Let x∗ be a local minimum of the problem

min f (x) subject to
{

gi(x) ≤ 0, i = 1, 2, . . . , m,
hj(x) = 0, j = 1, 2, . . . , p, (6)

where f , g1, . . . , gm, h1, h2, . . . , hp are continuously differentiable functions
over Rn. Suppose that the gradients of the active constraints and the
equality constraints

{∇gi(x∗) : i ∈ I(x∗)} ∪ {∇hj(x∗) : j = 1, 2, . . . , p}

are linearly independent. Then there exist multipliers λ1, λ2, . . . , λm ≥ 0
and µ1, µ2, . . . , µp ∈ R such that

∇f (x∗) +
m

∑
i=1

λi∇gi(x∗) +
p

∑
j=1

µj∇hj(x∗) = 0,

λigi(x∗) = 0, i = 1, 2, . . . , m.
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KKT points

Definition (KKT points): Consider the minimization problem (6), where
f , g1, . . . , gm, h1, . . . , hp are continuously differentiable functions over Rn.

A feasible point x∗ is called a KKT point if there exist λ1, λ2, . . . , λm ≥ 0
and µ1, µ2, . . . , µp ∈ R such that

∇f (x∗) +
m

∑
i=1

λi∇gi(x∗) +
p

∑
j=1

µj∇hj(x∗) = 0,

λigi(x∗) = 0, i = 1, 2, . . . , m.
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Regular points

Definition (Regularity): Consider the minimization problem (6), where
f , g1, . . . , gm, h1, . . . , hp are continuously differentiable functions over Rn.

A feasible point x∗ is called regular if the gradients of the active constraints
among the inequality constraints and of the equality constraints

{∇gi(x∗) : i ∈ I(x∗)} ∪ {∇hj(x∗) : j = 1, 2, . . . , p}

are linearly independent.

Note: In the terminologies of the KKT point and regular point:

A necessary optimality condition for local optimality of a regular point
is that it is a KKT point.

The additional requirement of regularity is not required in the linearly
constrained case in which no such assumption is needed; see Chapter
10, Theorem on the KKT conditions for linearly constrained problems.
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KKT conditions for convex optimization problems

When problem is convex, the KKT conditions are always sufficient.

Theorem (sufficiency of the KKT conditions): Let x∗ be a feasible
solution of the constrained minimization problem,

min f (x) subject to
{

gi(x) ≤ 0, i = 1, 2, . . . , m,
hj(x) = 0, j = 1, 2, . . . , p, (7)

where f , g1, . . . , gm are continuously differentiable convex functions over Rn

and h1, . . . , hp are affine functions. Suppose there exist multipliers
λ1, λ2, . . . , λm ≥ 0 and µ1, µ2, . . . , µp ∈ R such that

∇f (x∗) +
m

∑
i=1

λi∇gi(x∗) +
p

∑
j=1

µj∇hj(x∗) = 0,

λigi(x∗) = 0, i = 1, 2, . . . , m.

Then x∗ is an optimal solution of problem (7).
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Proof of the sufficiency theorem of the KKT conditions

Let x be a feasible solution of problem (7). It suffices to show that
f (x) ≥ f (x∗). Note that the following function is convex:

s(x) := f (x) +
m

∑
i=1

λigi(x) +
p

∑
j=1

µjhj(x), ∀x ∈ Rn.

Since ∇s(x∗) = ∇f (x∗) + ∑m
i=1 λi∇gi(x∗) + ∑

p
j=1 µj∇hj(x∗) = 0, it follows

that x∗ is a minimizer of s, i.e., s(x∗) ≤ s(x), ∀ x ∈ Rn. We can conclude that

f (x∗) = f (x∗) +
m

∑
i=1

λigi(x
∗) +

p

∑
j=1

µjhj(x
∗) (∵ λigi(x

∗) = 0 = hj(x
∗))

= s(x∗) ≤ s(x)

= f (x) +
m

∑
i=1

λigi(x) +
p

∑
j=1

µjhj(x), ∀x ∈ Rn

≤ f (x), ∀ x feasible solution. □
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Slater’s condition

Definition: We say that Slater’s condition is satisfied for a set of convex
inequalities

gi(x) ≤ 0, i = 1, 2, . . . , m,

where g1, g2, . . . , gm are given convex functions, if there exists x̂ ∈ Rn such
that

gi(x̂) < 0, i = 1, 2, . . . , m.

Note: Slater’s condition requires that there exists a point that strictly
satisfies the constraints, and does not require, like in the regularity
condition, an a priori knowledge on the point that is a candidate to be
an optimal solution.

This is the reason why checking the validity of Slater’s condition is usually a
much easier task than checking regularity.
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Necessity of the KKT conditions under Slater’s condition

Theorem: Let x∗ be an optimal solution of the problem

min f (x) subject to gi(x) ≤ 0, i = 1, 2, . . . , m,

where f , g1, . . . , gm are continuously differentiable functions over Rn. In
addition, g1, g2, . . . , gm are convex functions over Rn. Suppose that there
exists x̂ ∈ Rn such that

gi(x̂) < 0, i = 1, 2, . . . , m,

Then there exist multipliers λ1, λ2, . . . , λm ≥ 0 such that

∇f (x∗) +
m

∑
i=1

λi∇gi(x∗) = 0, (8)

λigi(x∗) = 0, i = 1, 2, . . . , m.
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Proof of the theorem

Since x∗ is an optimal solution of f (x), then the Fritz John conditions are
satisfied. That is, there exist λ̃0, λ̃1, . . . , λ̃m ≥ 0, which are not all zeros, such
that

λ̃0∇f (x∗) +
m

∑
i=1

λ̃i∇gi(x
∗) = 0,

λ̃igi(x
∗) = 0, i = 1, 2, . . . , m. (9)

All that we need to show is that λ̃0 > 0, and then the conditions (8) will be
satisfied with λi =

λ̃i
λ̃0

, i = 1, 2, . . . , m. To prove that λ̃0 > 0, assume in
contradiction that it is zero. Then we have

m

∑
i=1

λ̃i∇gi(x
∗) = 0. (10)
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Proof of the theorem (cont’d)

By the gradient inequality for convex functions, we have that for all
i = 1, 2, . . . , m,

0 > gi(x̂) ≥ gi(x
∗) +∇gi(x

∗)⊤(x̂ − x∗).

Multiplying the ith inequality by λ̃i and summing over i = 1, 2, . . . , m, we
obtain

0 >
m

∑
i=1

λ̃igi(x
∗) +

( m

∑
i=1

λ̃i∇gi(x
∗)
)⊤

(x̂ − x∗), (11)

where the inequality is strict since not all the λ̃i are zero. Plugging the
identities (9) and (10) into (11), we obtain the impossible statement that
0 > 0, thus establishing the result. □
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Generalized Slater’s condition (GSC)

Definition: Consider the system

gi(x) ≤ 0, i = 1, 2, . . . , m,
hj(x) ≤ 0, j = 1, 2, . . . , p,
sk(x) = 0, k = 1, 2, . . . , q,

where gi, i = 1, 2, . . . , m, are convex functions and hj, sk, j = 1, 2, . . . , p,
k = 1, 2, . . . , q, are affine functions. Then we say that the generalized
Slater’s condition (GSC) is satisfied if there exists x̂ ∈ Rn for which

gi(x̂) < 0, i = 1, 2, . . . , m,
hj(x̂) ≤ 0, j = 1, 2, . . . , p,
sk(x̂) = 0, k = 1, 2, . . . , q.
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Necessity of the KKT conditions under the GSC

Theorem: Let x∗ be an optimal solution of the problem

min f (x) subject to gi(x) ≤ 0, i = 1, 2, . . . , m,

hj(x) ≤ 0, j = 1, 2, . . . , p,

sk(x) = 0, k = 1, 2, . . . , q,

where f , g1, . . . , gm are continuously differentiable convex functions over Rn, and
hj, sk, j = 1, 2, . . . , p, k = 1, 2, . . . , q, are affine. Suppose that there exists x̂ ∈ Rn

such that
gi(x̂) < 0, i = 1, 2, . . . , m,

hj(x̂) ≤ 0, j = 1, 2, . . . , p,

sk(x̂) = 0, k = 1, 2, . . . , q.

Then there exist multipliers λ1, λ2, . . . , λm ≥ 0, η1, η2, . . . , ηp ≥ 0, and
µ1, µ2, . . . , µq ∈ R such that

∇f (x∗) +
m

∑
i=1

λi∇gi(x
∗) +

p

∑
j=1

ηj∇hj(x
∗) +

q

∑
k=1

µk∇sk(x
∗) = 0,

λigi(x
∗) = 0, i = 1, 2, . . . , m,

ηjhj(x
∗) = 0, i = 1, 2, . . . , p.
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