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Convex set

@ Definition: A set C C IR" is called convex if for any x,y € C and
A € [0,1], we have Ax + (1 — A)y € C.

@ Note 1: C is convex <= for any x,y € C, the line segment [x,y| is in
C.ie., [xy] CC
@ Note 2: The empty set & is a convex set. (Suppose not, then 3... —<—)

@ Example: A line in R" is a set of the form, L = {z +td : t € R},
where z,d € R". Letx =z+tjd € Landy = z+ t,d € L. Then
forany A € [0,1], Ax+ (1 = A)y =z+ (At + (1 — A)tp)d € L.
Therefore, L is a convex set.

convex sets nonconvex sets
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Convexity of hyperplanes and half-spaces

@ Note 1: For any x,y € R", the closed and open line segments [x, ]
and (x,y) are convex sets.

@ Note 2: The entire space R" is a convex set.

@ Note 3: Let a € R" \ {0} and b € R. The following sets are convex:
(1) the hyperplane H = {x € R" : a'x = b};
(2) the half-space H- = {x € R": a'x < b};
(3) the open half-space {x € R" : a'x < b}.
Proof of (2): Letx,y € H™ and A € [0, 1]. We will show that
z=Ax+ (1—A)y € H . Indeed,
a'z = a'Ax+(1-ANy) =Aa"x)+(1-A)(a"y)
< Ab+(1-Ab=b,

which impliesz € H-. O
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Convexity of balls

Let c € R" and r > 0. Let || - || be an arbitrary norm defined on R". Then
the open ball B(c,r) := {x € R" : ||x — ¢|| < r} and the closed ball
Blc,r] :=={x € R" : ||x — c]|| < r} are convex.

Proof: We will show the convexity of the closed ball. Let x,y € Bc, 7| and
A€0,1]. Then ||x —¢|| <rand ||ly —c|| < r. Letz = Ax + (1 — A)y. We will
show that z € Blc, r]. Indeed,

[z—cl = [Ax+0-Ay—c|=[Ax—c)+ (1 -A)(y -0
< M=ol + 111 =)y -2l
= AMx—cl[+ A=Ay —c]
< Ar+(1-A)r
= r

Therefore z € Blc, 1], establishing the result. [
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Convexity of ellipsoids

An ellipsoid is a set of the form
E={xe€R":f(x):=x'Qx+2b'x+c <0},

where Q € R™ ™ is positive semidefinite, b € R", and c € R. Then E is a
convex set.

Proof: Letx,y € E,A € [0,1],and z := Ax+ (1 — A)y. Thenf(x) <0,f(y) <0and
z'Qz (Ax+ (1= A)y) " Q(Ax + (1~ A)y)

= A% Qx+(1-2A)%y Qy+2A(1—A)x"Qy.

Since x' Qy = (Q'/?x) " (Q'/?y), by the Cauchy-Schwarz inequality, we have

¥ Qy < Q2 IQ 2y = /T QxyfyT @y < 3T 0 T Q)
Thus, z' Qz < Ax" Qx + (1 — A)y' Qy. Hence,
f(z) < ATQx+(1—-A)y Qy+2Ab x+2(1-Mb'y+c

AMxTQx+2b"x+¢)+ (1—A)(y"Qy+2bTy+c)

M)+ (1= A)f(y) <0,
establishing the desired result thatz € E.  [J
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Convexity is preserved under the intersection

@ Lemma: Let C; C R” be a convex set for any i € I, where I is an
arbitrary index set. Then M;c;C; is convex.

Proof: Letx,y € N;c;C;and A € [0,1]. Thenx,y € C;, Vi € I. Since C; is
convex, it follows that Ax + (1 — A)y € C;, Vi € L. Therefore,
Ax + (1= A)y € NigC;. Thatis, N;¢;C; is convex. [

@ Example (convex polytopes): A set P is called a convex polytope if it
has the form P = {x € R" : Ax < b}, where A € R™*" and b € R™.
The convexity of P follows from the fact that it is an intersection
of half-spaces and half-spaces are convex:

m
P= ﬂ{x e R" Ax < bl’},
i=1

where A; is the ith row of A.
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Preservation of convexity

Q@ LetCy,- -, Cx C R" be convex sets and let iy, - - - , px € R. Then the
following set is convex:

k
G+ u2Co + - - - + Gy := {Zyixi: x;i€C;, 1 Siﬁk}
i=1

@ IfC C R"isa convex set and b € R", then the following set is also
convex:
C+b:={x+b:xcC}

Q LetC; C Rk be a convex set foranyi=1,2,--- ,m. Then the
following Cartesian product is convex:

CixCyx -+ XCpy:= {(xl,xz,---,xm):xl-ECi,lgigm}

© Let M C R" be a convex set and let A € R™*™. Then the image set
A(M) := {Ax : x € M} is convex.

@ Let D C R™ be a convex set and let A € R™*", Then the inverse
image set, A"}(D) := {x € R" : Ax € D}, is convex.
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Convex combinations

@ Definition: Given xq,x2, - - - ,x;, € R", a convex combination of these
k vectors is a vector of the form A1x1 + Ayxp + - - - + Agxy, where
Ai€Rand A; > 0for1 <i <k satisfying Ay + Ao +---+ A, =1,
ie, A := ()\1,)\2, B ,/\k)T (S Ak'

@ Note: A convex set can be defined by the property that any convex
combination of two points from the set is also in the set.

@ Theorem: Let C C R" be a convex set and let x1,x5,- -+ ,x, € C.
Then forany A = (Ay, -+ ,Am) | € Ay i={a € R : Y1 oy =1},
we have )" 1 Aix; € C. That is, a convex combination of any finite
number of points from a convex set is in the set.

Proof: We prove the theorem by induction on m. The case m = 1 is trivial.
Suppose that m = k holds. Letxj,xp,- - ,x41 € Cand A € Apyq. If Apyq =1,
then Zf;rll Aix; = x31 € C. If Ajq < 1, then

v

—N—
k+1 k k )L
z:= ) Aixi = Y A+ AaXierr = (1= M) ) 79& + A1t
i1 i1 1= Ak
k k
Since Z Ai = Li1 A =1,wehavev € Cand hence,z € C. O

1M1 1= M
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Convex hull

@ Definition of convex hull: Let S C R". Then the convex hull of S is
the set comprising all the convex combinations of vectors from S, i.e.,

conv(S) := {ZAix,- X1,X2, X% € S,A € Ak € ]N}.

e Note: The convex Hill conv(S) is a convex set (Exercise!). In fact,
conv(S) is the “smallest” convex set containing S, pls see below.

@ Lemma: Let S C R". IfS C T and T is convex, then conv(S) C T.

Proof: Let z € conv(S). Then we have z = YX_; A;x;, for somex,--- ,x, €SC T

and A = (Aq,-- -, Ak)T € Ay. That is, z is a convex combination of elements from
T. Since T is convex, by the previous theorem, we obtainz € T. [

C conv(C)

A nonconvex set with its convex hull
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Carathéodory Theorem

Let S C R" and let x € conv(S). Then 3 xq,xo,- -+ ,x,11 € S such that
x € conv({xy, -, xy41}). Thatis, IA = (A, Ay, -+, Ayi1) € Ay
such that x = Y1 A

Proof: Let x € conv(S). Then 3 x1,--- ,x, € S,A € Ap st x = z{.;l Aix; with A; >0V i.
If k < n+1, the result is proven. If k > n + 2, then x, — x1, - - - ,x; — x7 are linearly
dependent. Therefore, 3 jup, - - -, py not all zeros such that Zé(:z ui(xi —x1) = 0. Let

== Zé‘:z Ui, we obtain Zé‘:l uix; = 0 and ):fle u; = 0, where 3 i for which y; < 0.
Leta € R;. Then

k k k
x:E/\ix, Z)\xz-i-zxzy,xzf (Ai 4+ ap;)x; and Z(/\i+"‘}4i):1
i=1 i=1 i=1
The above representation is a convex combination if and only if
Ai+ap; >0, Vi=1,---,k

Since A; > 0 Vi, the above set of inequalities is satisfied for all « € [0, ¢], where

. —A; A .

e= in;}l?o{ m } Taking & = ¢, then A; 4 ap;j = 0 for j = argmin;. <0{T)i\1}‘ This
N 1

means that we have found a representation of x as a convex combination of k — 1

vectors. This process can be carried on until a representation of x as a convex

combination of no more than n + 1 vectors is derived. O
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Example: n =2

Let S = {x1,%,%3,%} C R?, where
x=11D", %=012", =217, x»=22".
Let x € conv(S) be given by
x = 1x1 + 1xz + 1xg, + 1x4 = (E, E)T
8 4 2 8 8§ 8

By the Carathéodory Theorem, x can be expressed as a convex combination
of three of the four vectors x1, x5, x3, x4. The vectors

n-1=01", xB-xn=(10", x-x=(11"

are linearly dependent, and (x; —x7) + (x3 —x1) — (x4 —x7) = 0. i.e.,
—x1 + x2 + x3 — x4 = 0. Therefore, for any & > 0 we have
1 1 1 1
x = (g —a)xy + (Z +a)x + (5 +a)x3 + (g —a)xy.
We need guarantee that % —u >0, % +a>0, % +a >0, % —a > 0, which
combined with &« > 0 yields that 0 < a« < 1/8. Now taking « = 1/8, we obtain
the convex combination x = (3/8)xy + (5/8)xs.
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Convex cones

@ Definition: A set S is called a cone if for any x € S and A > 0, we
have Ax € S.

@ Lemma: A set S is a convex cone if and only if the following properties
hold: (1)x,y € S=x4+y€S5;,(2)x€S,A>0= Ax€S.
Proof:
(=) Letx,y € S. By the convexity, we have %x +(1- %)y € S. Since S
is a cone, we have 2 x % (x+y) = x+y € S, i.e., property (1) holds.
Property (2) is true because S is a cone.
(<) By property (2), Sis a cone. Letx,y € Sand A € [0,1]. Since Sis a
cone, we have Ax € Sand (1 — A)y € S. By property (1), we further
have Ax + (1 — A)y € S, establishing the convexity. O

@ Example: Consider the convex polytope C = {x € R" : Ax < 0},
where A € R™*". The set C is clearly a convex set, see page 6. It
is also a cone since

x€CA>0=> Ax<0,A1>0 = A(Ax) <0 = AxeC.
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Lorentz cone (ice cream cone)

The Lorentz cone, also called the ice cream cone, is given by

Ln = {(x,t)T € ]Rn+l X E an,t S IR/ al’ld ||xH S t}

. - . )
The boundary of the ice cream cone L=

The Lorentz cone is in fact a convex cone:

(1). Let (x,t) ", (y,5) " € L™. Then ||x|| < tand ||y|| < s. The triangle
inequality implies that ||x + y|| < [|x|| + ||y|| <t +s. That s,

()" +(ys)" = @x+yt+s) ' el

(2). Taking (x,t)" € L and A > 0, we obtain || Ax| = Al|x|| < At, so
Mx, )T = (Ax, AT € L™,
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Conic combination

@ Definition: Given xq,xy, - - - ,x, € R", a conic combination of these k
vectors is a vector of the form A1xq + Axxpy + - - - + Agxy, where
Ai>0foralli=1,2,--- k.

@ Lemma: Let C be a convex cone, and let x1,x»,- - - ,x;, € C and
A1, Ao, -+, Ay > 0. Then the conic combination Zile Aix; € C.

Proof: Since C is a convex cone, by property (2), we have Aix; € C, Vi.
By property (1), Z;‘Zl AixpeC. O

@ Definition: (conic hull) Let S C R™. Then the conic hull of S is the
set comprising all the conic combinations of vectors from S, i.e.,

cone(S) := {i Aix;

i=1

X1,X2, Xk €S, A E]Rk,kEIN}.

Note that cone(S) is a convex cone. (Exercise!) In fact, we have

@ Lemma: Let S C R™. If S C T for some convex cone T, then
cone(S) C T, i.e., the conic hull of S is the smallest convex cone
containing S. (Exercise!)
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Conic representation theorem

Let S C R" and let x € cone(S). Then 3 k linearly independent vectors
X1,%2, -+ , X € Ssuch that x € cone({x1,- - ,x}); that is,

IA = (A, Ay, A) € RE such that x = Y5 A and k < n.

Proof: Letx € cone(S). Then I xy,- - , x4 €S, A € R st x = Y1, Aix; with A; > 0V i

If x1,- - -, xy are linearly independent, then k := m < n and the result is proven.
Otherwise, 3 yy, - -+, um € R not all zeros such that 2;”:1 uix; = 0. Let « € R. Then

m

x=Y Axi=Y Aixi+a Z:y,xZ = Z()‘i + ap;)x;.

i=1 i=1 i=1 i=1
The above representation is a conic combination if and only if
Ait+ap; >0, Vi=1---,m

Since A; > 0 for all i, we can find & € R s.t. A; +&p; = 0 for some j and A; +ap; > 0 for
the others. Thus we obtain a representation of x as a conic combination of at most

m — 1 vectors. Continuing this process, we can obtain k linearly independent vectors
x1,%x2, X € Swithk < nsuch thatx € cone({xy, - ,x}). O

(Please see textbook page 107 for more details)

O Suh-Yuh Yang ( % ), Math. Dept., NCU, a MA 5037: Convex Sets — 15/24



Basic feasible solution (BFS)

Linear systems consisting of linear equalities and nonnegativity

constraints often appear as constraints in standard formulations of

linear programming problems.

@ Definition: (basic feasible solution)

Let P:={x e R": Ax =b,x > 0}, where A € R"*" and b € R™.
Suppose that the rows of A are linearly independent. Then x € Pisa
basic feasible solution (BES) of P if the columns of A corresponding to
the indices of the positive values of X are linearly independent.

@ Note: Since the columns of A reside in R™, it follows that a BFS has
at most m nonzero elements.

@ Example: Consider the linear system
X1+x+x3=6x+x3=3, x1,x,x3>0.

A BFS of the system is (3,3,0). It satisfies all the constraints and
the columns corresponding to the positive elements, (1, O)T,
(1,1) T are linearly independent.
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Existence of a BFS in P

Theorem: Let P := {x € R" : Ax = b,x > 0}, where A € R"™*" and
b € R™ IfP # @, then it contains at least one BFS.

Proof: Letx € P # @. Then Ax = b and x > 0. It follows that

b =x1a1 + xpap + - - - + Xpay, ie., b € cone({ay,ay, -+ ,a,}), where a;
denotes the ith column of A. By the conic representation theorem, there exist
indices i1 < ip < --- < § and k numbers x; , x;,, - - - ,x;, > 0 such that

b= Z;‘:l Xj @ and a; , a;,, - - - , a;_ are linearly independent.

Denote x := Z;-‘:l Xj €. Then X > 0 and

k k
AXx = lexilAe,-j = Zixijuil =b.
J= =

Therefore, ¥ € P and satisfies that the columns of A corresponding to the
indices of the positive components of ¥ are linearly independent. That is, P
contains at least one BFS. [
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Closure and interior of a convex set

@ Theorem: Let C C IR" be a convex set. Then the closure cl(C) is
convex.

Proof: Letx,y € cl(C) and A € [0,1]. Then 3 sequences {x}, {y,} € C
such thatxy — xand y;, — yask — 0.

By the convexity of C, Axx + (1 — A)y, € C for any k.

Since Ax + (1 — A)y, — Ax + (1 — A)y, we can conclude that
Ax+ (1 — A)y € cl(C), which implies that cl(C) is convex. [

@ (line segment principle): Let C C IR" be a convex set, and assuime
that int(C) # @. Suppose that x € int(C), y € cl(C). Then
(1—A)x+ Ay € int(C) forany A € (0,1).

(Please see textbook page 109 for the proof)

@ Theorem: Let C C IR" be a convex set. Then the interior int(C) is
convex.
Proof: If int(C) = &, then int(C) is convex. Let x,y € int(C) and
A € (0,1). Then by the line segment principle, (1 — A)x + Ay € int(C).
We can conclude that int(C) is convex. [
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Other topological properties

Let C C R" be a convex set and int(C) # &. Then we have

@ cl(int(C)) = cl(C).
Proof:
(9): Since int(C) C C, we have cl(int(C)) C cl(C).
(D): Letx € cl(C). We take y € int(C). Then by the line segment
t)

principle, we have x; := 1y + (1 — )x € int(C) for any k > 1. Since
Xx — x as k — oo, we obtain x € cl(mt(C)). O

@ int(cl(C)) = int(C).
Proof:
(2): Since C C cl(C), we have int(cl(C)) 2 int(C).
(©): Letx € int(cl(C)). Then 3 & > 0s.t. B(x,¢) C cl(C). Lety € int(C).
If y = x, then the result is proved. Otherwise, define z := x + a(x — y),

where o = . Since ||z — x|| = §, we have z € cI(C). By the line

€
2[lx—yll
segment principle, we have (1 — A)y + Az € int(C) for A € [0,1).

Taking A = Ha € (0,1), weobtain (1 —A)y+ Az =x €int(C). O
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Convex hull of compact set

Theorem: Let S C R" be a compact set. Then conv(S) is compact.
Proof:
@ (Boundedness) Since S is bounded, 3 M > 0 such that ||x|| < M for any x € S.

Lety € conv(S). By the Carathéodory theorem it follows that Ix1,- -+ ,x,41 € S
and A € Ayqpsty= Z*':“ Aix;. Therefore,

Iyl =1 ZMH < EAIIsz <MZA =

i=1

@ (Closedness) Let y, be a sequence in conv(S) and y, — y as k — co. We wish to
show thaty € conv(S). By the Carathéodory theorem it follows that

Ik, ka € Sand A € A, sit. yk Z"H Akxk. By the compactness of S

n
and A1, the sequence {(A ,x’l‘, BRI o +1)} has a subsequence such that

k; k;
JILTQ(A/ x e x] ) = (Ax, e xa)
withA € Ayq and xq, - -+ ,x,41 € S. Therefore, we have
n+1
y—hmyk—hmZA] Z/\xl,

oo

which means that y € conv(S). O
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Conic hull of a finite set

Theorem: Let S := {ay,a,- - ,ar} C R". Then cone(S) is closed.
Proof:

@ By the conic representation theorem, each element of cone(S) can be represented
as a conic combination of a linearly independent subset of {a3,ay, - - - ,ax}. Let
S1,- -+, SN be all the subsets of S comprising linearly independent vectors, then

cone(S) = UN, cone(S;).

It suffices to show that cone(S;) is closed for all i. Leti € {1,2,--- ,N}. Then
Si = {b1,by,- - - by} for some linearly independent vectors by, by, - - -, b,,. We
can write cone( i) = {By :y € R}, where matrix B := [by, by, - - -, bu|uxm-

@ Letx; € cone(S;) for k > 1 and x; — X as k — co. We need to show that

% € cone(S;). Since x; € cone(S;), 3y, € R such that x; = By,. Since the
columns of B are linearly independent, we can deduce that

v, = (B'B)"'B'x.
Thus, we have
lim y, = hm (BTB) BTy, =(B'B)"'B'x=:9

k—o0
and § € R’}. Therefore,
= limx; = hm Byk = By € cone(S;). O

k—c0
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Extreme points

@ Definition: (extreme points) Let S C R" be a convex set. A point
x € S is called an extreme point of S if there do not exist x1,xp € S,
x1 # xp and A € (0,1) such that x = Axy + (1 — A)xy. The set of
extreme points of S is denoted by ext(S).

That is, an extreme point is a point in S that cannot be represented as a
nontrivial convex combination of two different points in S.

@ Example: The set of extreme points of a convex polytope
consists of all its vertices.

© Suh-Yuh Yang (5

2 *3

1 1

-2
-2 -1 0 1 2 3 4

The convex set S = conv{xy, X2, x3,X4 }.
The extreme points set is ext(S) = {xq,x2,x3}.
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Extreme points and basic feasible solutions

Theorem: Let P:= {x € R" : Ax = b,x > 0}, where A € R"*" has
linearly independent rows and b € IR™. Then X% is a basic feasible solution of
P if and only if it is an extreme point of P.

Proof:
(=): Letx = (%,%,--- ,%y) | be abasic feasible solution of P. Without loss of
generality, assume that Xy, - - , X > 0and X1 = - - - = X, = 0, and the first k columns

of A, denoted by ay, - - -, ay, are linearly independent. Suppose that ¥ ¢ ext(P). Then
Jy,z€P,y#zand A € (0,1) such that ¥ = Ay + (1 — A)z. Note that the last n — k
components iny and Z are zeros. Therefore, we have

Zy,al =band ZZM; =b= Z i —z)a; =0, y; —z; # 0forsomei € {1,2,---,k},

Wthh implies that a,- - ,d;are hnearly dependent, a contradiction!

(<): Suppose that X € P is an extreme point, but it is not a basic feasible solution. Thus,
the columns corresponding to the positive components of ¥ are linearly dependent.
WLOG, assume that the positive components of ¥ are exactly the first k components.
Then 3y € R¥s.t. YX_, y;a; = 0, i.e., A = 0, where § = (y,0) . Since the first k
components of ¥ are positive, 3¢ > 0s.t. x; := ¥+ ey > 0and x := ¥ — ey > 0. Then
we have Ax; = AX + €Ay = b+ ¢0 = b and Axp, = b. Therefore, x1,x; € P. Finally, we
havex = %xl + %xz. This is a contradiction, because ¥ is an extreme point of P.  [J
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The Krein-Milman theorem

We will state this theorem without a proof.

Krein-Milman theorem: Let S C IR" be a compact convex set. Then
S = conv(ext(S)).

That is, a compact convex set is the convex hull of its extreme points.
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