# MA 5037: Optimization Methods and Applications Convex Sets



Suh-Yuh Yang (楊肅煜)

Department of Mathematics, National Central University Jhongli District, Taoyuan City 320317, Taiwan

First version: July 15, 2018/Last updated: June 16, 2025

#### Convex set

- **Definition:** A set  $C \subseteq \mathbb{R}^n$  is called convex if for any  $x, y \in C$  and  $\lambda \in [0, 1]$ , we have  $\lambda x + (1 \lambda)y \in C$ .
- Note 1: C is convex  $\iff$  for any  $x, y \in C$ , the line segment [x, y] is in C. i.e.,  $[x, y] \subseteq C$ .
- Note 2: The empty set  $\varnothing$  is a convex set. (Suppose not, then  $\exists ... \to \leftarrow$ )
- **Example:** A line in  $\mathbb{R}^n$  is a set of the form,  $L = \{z + td : t \in \mathbb{R}\}$ , where  $z, d \in \mathbb{R}^n$ . Let  $x = z + t_1d \in L$  and  $y = z + t_2d \in L$ . Then for any  $\lambda \in [0, 1]$ ,  $\lambda x + (1 \lambda)y = z + (\lambda t_1 + (1 \lambda)t_2)d \in L$ . Therefore, L is a convex set.



# Convexity of hyperplanes and half-spaces

- Note 1: For any  $x, y \in \mathbb{R}^n$ , the closed and open line segments [x, y] and (x, y) are convex sets.
- Note 2: The entire space  $\mathbb{R}^n$  is a convex set.
- Note 3: Let  $a \in \mathbb{R}^n \setminus \{0\}$  and  $b \in \mathbb{R}$ . The following sets are convex:
  - (1) the hyperplane  $H = \{x \in \mathbb{R}^n : a^{\top}x = b\};$
  - (2) the half-space  $H^- = \{x \in \mathbb{R}^n : a^\top x \le b\};$
  - (3) the open half-space  $\{x \in \mathbb{R}^n : a^\top x < b\}$ .

*Proof of (2):* Let  $x, y \in H^-$  and  $\lambda \in [0, 1]$ . We will show that  $z = \lambda x + (1 - \lambda)y \in H^-$ . Indeed,

$$a^{\top}z = a^{\top}(\lambda x + (1 - \lambda)y) = \lambda(a^{\top}x) + (1 - \lambda)(a^{\top}y)$$
  
  $\leq \lambda b + (1 - \lambda)b = b,$ 

which implies  $z \in H^-$ .  $\square$ 

# Convexity of balls

Let  $c \in \mathbb{R}^n$  and r > 0. Let  $\|\cdot\|$  be an arbitrary norm defined on  $\mathbb{R}^n$ . Then the open ball  $B(c,r) := \{x \in \mathbb{R}^n : \|x - c\| < r\}$  and the closed ball  $B[c,r] := \{x \in \mathbb{R}^n : \|x - c\| \le r\}$  are convex.

*Proof:* We will show the convexity of the closed ball. Let  $x, y \in B[c, r]$  and  $\lambda \in [0, 1]$ . Then  $||x - c|| \le r$  and  $||y - c|| \le r$ . Let  $z = \lambda x + (1 - \lambda)y$ . We will show that  $z \in B[c, r]$ . Indeed,

$$\begin{split} \|z - c\| &= \|\lambda x + (1 - \lambda)y - c\| = \|\lambda(x - c) + (1 - \lambda)(y - c)\| \\ &\leq \|\lambda(x - c)\| + \|(1 - \lambda)(y - c)\| \\ &= \lambda \|x - c\| + (1 - \lambda)\|y - c\| \\ &\leq \lambda r + (1 - \lambda)r \\ &= r. \end{split}$$

Therefore  $z \in B[c, r]$ , establishing the result.  $\square$ 

# **Convexity of ellipsoids**

An ellipsoid is a set of the form

$$E = \{ x \in \mathbb{R}^n : f(x) := x^{\top} Qx + 2b^{\top} x + c \le 0 \},$$

where  $Q \in \mathbb{R}^{n \times n}$  is positive semidefinite,  $b \in \mathbb{R}^n$ , and  $c \in \mathbb{R}$ . Then E is a convex set.

*Proof*: Let  $x, y \in E$ ,  $\lambda \in [0, 1]$ , and  $z := \lambda x + (1 - \lambda)y$ . Then  $f(x) \le 0$ ,  $f(y) \le 0$  and

$$z^{\top}Qz = (\lambda x + (1 - \lambda)y)^{\top}Q(\lambda x + (1 - \lambda)y)$$
$$= \lambda^2 x^{\top}Qx + (1 - \lambda)^2y^{\top}Qy + 2\lambda(1 - \lambda)x^{\top}Qy.$$

Since  $\mathbf{x}^{\top} Q \mathbf{y} = (Q^{1/2} \mathbf{x})^{\top} (Q^{1/2} \mathbf{y})$ , by the Cauchy-Schwarz inequality, we have

$$x^{\top}Qy \le \|Q^{1/2}x\|\|Q^{1/2}y\| = \sqrt{x^{\top}Qx}\sqrt{y^{\top}Qy} \le \frac{1}{2}(x^{\top}Qx + y^{\top}Qy).$$

Thus,  $\mathbf{z}^{\top}Q\mathbf{z} \leq \lambda \mathbf{x}^{\top}Q\mathbf{x} + (1-\lambda)\mathbf{y}^{\top}Q\mathbf{y}$ . Hence,

$$f(z) \leq \lambda x^{\top} Q x + (1 - \lambda) y^{\top} Q y + 2\lambda b^{\top} x + 2(1 - \lambda) b^{\top} y + c$$
  
=  $\lambda (x^{\top} Q x + 2b^{\top} x + c) + (1 - \lambda) (y^{\top} Q y + 2b^{\top} y + c)$   
=  $\lambda f(x) + (1 - \lambda) f(y) \leq 0$ ,

establishing the desired result that  $z \in E$ .  $\square$ 

# Convexity is preserved under the intersection

**■ Lemma:** Let  $C_i \subseteq \mathbb{R}^n$  be a convex set for any  $i \in I$ , where I is an arbitrary index set. Then  $\cap_{i \in I} C_i$  is convex.

*Proof*: Let  $x, y \in \cap_{i \in I} C_i$  and  $\lambda \in [0, 1]$ . Then  $x, y \in C_i$ ,  $\forall i \in I$ . Since  $C_i$  is convex, it follows that  $\lambda x + (1 - \lambda)y \in C_i$ ,  $\forall i \in I$ . Therefore,  $\lambda x + (1 - \lambda)y \in \cap_{i \in I} C_i$ . That is,  $\cap_{i \in I} C_i$  is convex.  $\square$ 

• **Example** (convex polytopes): A set P is called a convex polytope if it has the form  $P = \{x \in \mathbb{R}^n : Ax \leq b\}$ , where  $A \in \mathbb{R}^{m \times n}$  and  $b \in \mathbb{R}^m$ . The convexity of P follows from the fact that it is an intersection of half-spaces and half-spaces are convex:

$$P = \bigcap_{i=1}^m \{x \in \mathbb{R}^n : A_i x \le b_i\},\,$$

where  $A_i$  is the *i*th row of A.

# Preservation of convexity

**1** Let  $C_1, \dots, C_k \subseteq \mathbb{R}^n$  be convex sets and let  $\mu_1, \dots, \mu_k \in \mathbb{R}$ . Then the following set is convex:

$$\mu_1 C_1 + \mu_2 C_2 + \dots + \mu_k C_k := \left\{ \sum_{i=1}^k \mu_i x_i : x_i \in C_i, 1 \le i \le k \right\}$$

**2** If  $C \subseteq \mathbb{R}^n$  is a convex set and  $b \in \mathbb{R}^n$ , then the following set is also convex:

$$C + \mathbf{b} := \{ \mathbf{x} + \mathbf{b} : \mathbf{x} \in C \}$$

**3** Let  $C_i \subseteq \mathbb{R}^{k_i}$  be a convex set for any  $i = 1, 2, \dots, m$ . Then the following Cartesian product is convex:

$$C_1 \times C_2 \times \cdots \times C_m := \{(x_1, x_2, \cdots, x_m) : x_i \in C_i, 1 \leq i \leq m\}$$

- Let  $M \subseteq \mathbb{R}^n$  be a convex set and let  $A \in \mathbb{R}^{m \times n}$ . Then the image set  $A(M) := \{Ax : x \in M\}$  is convex.
- **5** Let  $D \subseteq \mathbb{R}^m$  be a convex set and let  $A \in \mathbb{R}^{m \times n}$ . Then the inverse image set,  $A^{-1}(D) := \{x \in \mathbb{R}^n : Ax \in D\}$ , is convex.

#### **Convex combinations**

- **Definition:** Given  $x_1, x_2, \dots, x_k \in \mathbb{R}^n$ , a convex combination of these k vectors is a vector of the form  $\lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_k x_k$ , where  $\lambda_i \in \mathbb{R}$  and  $\lambda_i \geq 0$  for  $1 \leq i \leq k$ , satisfying  $\lambda_1 + \lambda_2 + \dots + \lambda_k = 1$ , i.e.,  $\lambda := (\lambda_1, \lambda_2, \dots, \lambda_k)^\top \in \Delta_k$ .
- **Note:** A convex set can be defined by the property that any convex combination of two points from the set is also in the set.
- **Theorem:** Let  $C \subseteq \mathbb{R}^n$  be a convex set and let  $x_1, x_2, \dots, x_m \in C$ . Then for any  $\lambda = (\lambda_1, \dots, \lambda_m)^\top \in \Delta_m := \{\alpha \in \mathbb{R}_+^m : \sum_{i=1}^m \alpha_i = 1\}$ , we have  $\sum_{i=1}^m \lambda_i x_i \in C$ . That is, a convex combination of any finite number of points from a convex set is in the set.

*Proof*: We prove the theorem by induction on m. The case m=1 is trivial. Suppose that m=k holds. Let  $x_1,x_2,\cdots,x_{k+1}\in C$  and  $\lambda\in\Delta_{k+1}$ . If  $\lambda_{k+1}=1$ , then  $\sum_{i=1}^{k+1}\lambda_ix_i=x_{k+1}\in C$ . If  $\lambda_{k+1}<1$ , then

$$z := \sum_{i=1}^{k+1} \lambda_i x_i = \sum_{i=1}^k \lambda_i x_i + \lambda_{k+1} x_{k+1} = (1 - \lambda_{k+1}) \sum_{i=1}^k \frac{\lambda_i}{1 - \lambda_{k+1}} x_i + \lambda_{k+1} x_{k+1}.$$
Since 
$$\sum_{i=1}^k \frac{\lambda_i}{1 - \lambda_{k+1}} = \frac{\sum_{i=1}^k \lambda_i}{1 - \lambda_{k+1}} = 1$$
, we have  $v \in C$  and hence,  $z \in C$ .  $\square$ 

#### Convex hull

• **Definition of convex hull:** Let  $S \subseteq \mathbb{R}^n$ . Then the convex hull of S is the set comprising all the convex combinations of vectors from S, i.e.,

$$\operatorname{conv}(S) := \Big\{ \sum_{i=1}^{K} \lambda_i x_i \Big| x_1, x_2, \cdots, x_k \in S, \lambda \in \Delta_k, k \in \mathbb{N} \Big\}.$$

- **Note:** The convex  $h\overline{u}\overline{l}$  conv(S) is a convex set (**Exercise!**). In fact, conv(S) is the "smallest" convex set containing S, pls see below.
- **Lemma:** Let  $S \subseteq \mathbb{R}^n$ . If  $S \subseteq T$  and T is convex, then  $\operatorname{conv}(S) \subseteq T$ . Proof: Let  $z \in \operatorname{conv}(S)$ . Then we have  $z = \sum_{i=1}^k \lambda_i x_i$ , for some  $x_1, \dots, x_k \in S \subseteq T$  and  $\lambda = (\lambda_1, \dots, \lambda_k)^\top \in \Delta_k$ . That is, z is a convex combination of elements from T. Since T is convex, by the previous theorem, we obtain  $z \in T$ . □



## Carathéodory Theorem

Let  $S \subseteq \mathbb{R}^n$  and let  $\mathbf{x} \in \text{conv}(S)$ . Then  $\exists \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_{n+1} \in S$  such that  $\mathbf{x} \in \text{conv}(\{\mathbf{x}_1, \dots, \mathbf{x}_{n+1}\})$ . That is,  $\exists \lambda = (\lambda_1, \lambda_2, \dots, \lambda_{n+1}) \in \Delta_{n+1}$  such that  $\mathbf{x} = \sum_{i=1}^{n+1} \lambda_i \mathbf{x}_i$ .

*Proof:* Let  $x \in \text{conv}(S)$ . Then  $\exists x_1, \cdots, x_k \in S$ ,  $\lambda \in \Delta_k$  s.t.  $x = \sum_{i=1}^k \lambda_i x_i$  with  $\lambda_i > 0 \ \forall i$ . If  $k \leq n+1$ , the result is proven. If  $k \geq n+2$ , then  $x_2 - x_1, \cdots, x_k - x_1$  are linearly dependent. Therefore,  $\exists \ \mu_2, \cdots, \mu_k$  not all zeros such that  $\sum_{i=2}^k \mu_i (x_i - x_1) = \mathbf{0}$ . Let  $\mu_1 := -\sum_{i=2}^k \mu_i$ , we obtain  $\sum_{i=1}^k \mu_i x_i = \mathbf{0}$  and  $\sum_{i=1}^k \mu_i = 0$ , where  $\exists \ i$  for which  $\mu_i < 0$ . Let  $\alpha \in \mathbb{R}_+$ . Then

$$x = \sum_{i=1}^k \lambda_i x_i = \sum_{i=1}^k \lambda_i x_i + \alpha \sum_{i=1}^k \mu_i x_i = \sum_{i=1}^k (\lambda_i + \alpha \mu_i) x_i \quad \text{and} \quad \sum_{i=1}^k (\lambda_i + \alpha \mu_i) = 1.$$

The above representation is a convex combination if and only if

$$\lambda_i + \alpha \mu_i \geq 0, \quad \forall i = 1, \cdots, k.$$

Since  $\lambda_i > 0 \ \forall i$ , the above set of inequalities is satisfied for all  $\alpha \in [0, \varepsilon]$ , where  $\varepsilon = \min_{i: \ \mu_i < 0} \left\{ \frac{-\lambda_i}{\mu_i} \right\}$ . Taking  $\alpha = \varepsilon$ , then  $\lambda_j + \alpha \mu_j = 0$  for  $j = \operatorname{argmin}_{i: \ \mu_i < 0} \left\{ \frac{-\lambda_i}{\mu_i} \right\}$ . This means that we have found a representation of x as a convex combination of k-1 vectors. This process can be carried on until a representation of x as a convex combination of no more than x = 0 vectors is derived.  $\square$ 

## Example: n = 2

Let  $S = \{x_1, x_2, x_3, x_4\} \subseteq \mathbb{R}^2$ , where

$$x_1 = (1,1)^{\top}, \quad x_2 = (1,2)^{\top}, \quad x_3 = (2,1)^{\top}, \quad x_4 = (2,2)^{\top}.$$

Let  $x \in \text{conv}(S)$  be given by

$$x = \frac{1}{8}x_1 + \frac{1}{4}x_2 + \frac{1}{2}x_3 + \frac{1}{8}x_4 = (\frac{13}{8}, \frac{11}{8})^{\top}$$

By the Carathéodory Theorem, x can be expressed as a convex combination of three of the four vectors  $x_1, x_2, x_3, x_4$ . The vectors

$$x_2 - x_1 = (0, 1)^{\top}, \quad x_3 - x_1 = (1, 0)^{\top}, \quad x_4 - x_1 = (1, 1)^{\top}$$

are linearly dependent, and  $(x_2 - x_1) + (x_3 - x_1) - (x_4 - x_1) = 0$ . i.e.,  $-x_1 + x_2 + x_3 - x_4 = 0$ . Therefore, for any  $\alpha \ge 0$  we have

$$x = (\frac{1}{8} - \alpha)x_1 + (\frac{1}{4} + \alpha)x_2 + (\frac{1}{2} + \alpha)x_3 + (\frac{1}{8} - \alpha)x_4.$$

We need guarantee that  $\frac{1}{8} - \alpha \ge 0$ ,  $\frac{1}{4} + \alpha \ge 0$ ,  $\frac{1}{2} + \alpha \ge 0$ ,  $\frac{1}{8} - \alpha \ge 0$ , which combined with  $\alpha \ge 0$  yields that  $0 \le \alpha \le 1/8$ . Now taking  $\alpha = 1/8$ , we obtain the convex combination  $x = (3/8)x_2 + (5/8)x_3$ .

#### **Convex cones**

- **Definition:** A set S is called a cone if for any  $x \in S$  and  $\lambda \geq 0$ , we have  $\lambda x \in S$ .
- **Lemma:** A set S is a convex cone if and only if the following properties hold: (1)  $x, y \in S \Rightarrow x + y \in S$ ; (2)  $x \in S$ ,  $\lambda \ge 0 \Rightarrow \lambda x \in S$ . *Proof*:
  - (⇒) Let  $x, y \in S$ . By the convexity, we have  $\frac{1}{2}x + (1 \frac{1}{2})y \in S$ . Since S is a cone, we have  $2 \times \frac{1}{2}(x + y) = x + y \in S$ , i.e., property (1) holds. Property (2) is true because S is a cone.
  - ( $\Leftarrow$ ) By property (2), *S* is a cone. Let  $x, y \in S$  and  $\lambda \in [0, 1]$ . Since *S* is a cone, we have  $\lambda x \in S$  and  $(1 \lambda)y \in S$ . By property (1), we further have  $\lambda x + (1 \lambda)y \in S$ , establishing the convexity. □
- **Example:** Consider the convex polytope  $C = \{x \in \mathbb{R}^n : Ax \leq 0\}$ , where  $A \in \mathbb{R}^{m \times n}$ . The set C is clearly a convex set, see page 6. It is also a cone since

$$x \in C, \lambda \ge 0 \Rightarrow Ax \le 0, \lambda \ge 0 \Rightarrow A(\lambda x) \le 0 \Rightarrow \lambda x \in C.$$

#### Lorentz cone (ice cream cone)

The Lorentz cone, also called the ice cream cone, is given by

$$L^n := \left\{ (x,t)^\top \in \mathbb{R}^{n+1} : x \in \mathbb{R}^n, t \in \mathbb{R}, \text{ and } ||x|| \le t \right\}.$$



The boundary of the ice cream cone  $L^2$ 

#### *The Lorentz cone is in fact a convex cone:*

- (1). Let  $(x,t)^{\top}$ ,  $(y,s)^{\top} \in L^n$ . Then  $\|x\| \le t$  and  $\|y\| \le s$ . The triangle inequality implies that  $\|x+y\| \le \|x\| + \|y\| \le t + s$ . That is,  $(x,t)^{\top} + (y,s)^{\top} = (x+y,t+s)^{\top} \in L^n$ .
- (2). Taking  $(x, t)^{\top} \in L^n$  and  $\lambda \ge 0$ , we obtain  $\|\lambda x\| = \lambda \|x\| \le \lambda t$ , so  $\lambda (x, t)^{\top} = (\lambda x, \lambda t)^{\top} \in L^n$ .

#### **Conic combination**

- **Definition:** Given  $x_1, x_2, \dots, x_k \in \mathbb{R}^n$ , a conic combination of these k vectors is a vector of the form  $\lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_k x_k$ , where  $\lambda_i \geq 0$  for all  $i = 1, 2, \dots, k$ .
- **Lemma:** Let C be a convex cone, and let  $x_1, x_2, \dots, x_k \in C$  and  $\lambda_1, \lambda_2, \dots, \lambda_k \geq 0$ . Then the conic combination  $\sum_{i=1}^k \lambda_i x_i \in C$ . Proof: Since C is a convex cone, by property (2), we have  $\lambda_i x_i \in C$ ,  $\forall i$ . By property (1),  $\sum_{i=1}^k \lambda_i x_i \in C$ .  $\square$
- **Definition:** (conic hull) Let  $S \subseteq \mathbb{R}^n$ . Then the conic hull of S is the set comprising all the conic combinations of vectors from S, i.e.,

$$cone(S) := \Big\{ \sum_{i=1}^k \lambda_i x_i \, \Big| \, x_1, x_2, \cdots, x_k \in S, \lambda \in \mathbb{R}_+^k, k \in \mathbb{N} \Big\}.$$

*Note that* cone(S) *is a convex cone.* (Exercise!) In fact, we have

• **Lemma:** Let  $S \subseteq \mathbb{R}^n$ . If  $S \subseteq T$  for some convex cone T, then  $cone(S) \subseteq T$ , i.e., the conic hull of S is the smallest convex cone containing S. (**Exercise!**)

## Conic representation theorem

Let  $S \subseteq \mathbb{R}^n$  and let  $x \in \text{cone}(S)$ . Then  $\exists k$  linearly independent vectors  $x_1, x_2, \dots, x_k \in S$  such that  $x \in \text{cone}(\{x_1, \dots, x_k\})$ ; that is,  $\exists \lambda = (\lambda_1, \lambda_2, \dots, \lambda_k) \in \mathbb{R}^k_+$  such that  $x = \sum_{i=1}^k \lambda_i x_i$  and  $k \leq n$ .

*Proof:* Let  $x \in \text{cone}(S)$ . Then  $\exists x_1, \cdots, x_m \in S$ ,  $\lambda \in \mathbb{R}_+^m$  s.t.  $x = \sum_{i=1}^m \lambda_i x_i$  with  $\lambda_i > 0 \ \forall i$ . If  $x_1, \cdots, x_m$  are linearly independent, then  $k := m \le n$  and the result is proven. Otherwise,  $\exists \ \mu_1, \cdots, \mu_m \in \mathbb{R}$  not all zeros such that  $\sum_{i=1}^m \mu_i x_i = \mathbf{0}$ . Let  $\alpha \in \mathbb{R}$ . Then

$$x = \sum_{i=1}^m \lambda_i x_i = \sum_{i=1}^m \lambda_i x_i + \alpha \sum_{i=1}^m \mu_i x_i = \sum_{i=1}^m (\lambda_i + \alpha \mu_i) x_i.$$

The above representation is a conic combination if and only if

$$\lambda_i + \alpha \mu_i \geq 0$$
,  $\forall i = 1, \dots, m$ .

Since  $\lambda_i > 0$  for all i, we can find  $\widetilde{\alpha} \in \mathbb{R}$  s.t.  $\lambda_j + \widetilde{\alpha}\mu_j = 0$  for some j and  $\lambda_i + \widetilde{\alpha}\mu_i \geq 0$  for the others. Thus we obtain a representation of x as a conic combination of at most m-1 vectors. Continuing this process, we can obtain k linearly independent vectors  $x_1, x_2, \cdots, x_k \in S$  with  $k \leq n$  such that  $x \in \text{cone}(\{x_1, \cdots, x_k\})$ .  $\square$  (Please see textbook page 107 for more details)

### **Basic feasible solution (BFS)**

Linear systems consisting of linear equalities and nonnegativity constraints often appear as constraints in standard formulations of *linear programming problems*.

- **Definition:** (basic feasible solution) Let  $P := \{x \in \mathbb{R}^n : Ax = b, x \geq 0\}$ , where  $A \in \mathbb{R}^{m \times n}$  and  $b \in \mathbb{R}^m$ . Suppose that the rows of A are linearly independent. Then  $\bar{x} \in P$  is a basic feasible solution (BFS) of P if the columns of A corresponding to the indices of the positive values of  $\bar{x}$  are linearly independent.
- **Note:** Since the columns of A reside in  $\mathbb{R}^m$ , it follows that a BFS has at most m nonzero elements.
- Example: Consider the linear system

$$x_1 + x_2 + x_3 = 6$$
,  $x_2 + x_3 = 3$ ,  $x_1, x_2, x_3 \ge 0$ .

A BFS of the system is (3,3,0). It satisfies all the constraints and the columns corresponding to the positive elements,  $(1,0)^{\top}$ ,  $(1,1)^{\top}$  are linearly independent.

#### Existence of a BFS in P

**Theorem:** Let  $P := \{x \in \mathbb{R}^n : Ax = b, x \geq 0\}$ , where  $A \in \mathbb{R}^{m \times n}$  and  $b \in \mathbb{R}^m$ . If  $P \neq \emptyset$ , then it contains at least one BFS.

*Proof:* Let  $x \in P \neq \emptyset$ . Then Ax = b and  $x \ge 0$ . It follows that  $b = x_1a_1 + x_2a_2 + \cdots + x_na_n$ , i.e.,  $b \in \text{cone}(\{a_1, a_2, \cdots, a_n\})$ , where  $a_i$  denotes the ith column of A. By the conic representation theorem, there exist indices  $i_1 < i_2 < \cdots < i_k$  and k numbers  $x_{i_1}, x_{i_2}, \cdots, x_{i_k} > 0$  such that  $b = \sum_{i=1}^k x_{i_i}a_{i_i}$  and  $a_{i_1}, a_{i_2}, \cdots, a_{i_k}$  are linearly independent.

Denote  $\bar{x} := \sum_{j=1}^k x_{i_j} e_{i_j}$ . Then  $\bar{x} \geq \mathbf{0}$  and

$$A\bar{x} = \sum_{j=1}^k x_{i_j} A e_{i_j} = \sum_{j=1}^k x_{i_j} a_{i_j} = b.$$

Therefore,  $\bar{x} \in P$  and satisfies that the columns of A corresponding to the indices of the positive components of  $\bar{x}$  are linearly independent. That is, P contains at least one BFS.  $\square$ 

#### Closure and interior of a convex set

• **Theorem:** Let  $C \subseteq \mathbb{R}^n$  be a convex set. Then the closure cl(C) is convex.

*Proof:* Let  $x, y \in \operatorname{cl}(C)$  and  $\lambda \in [0, 1]$ . Then  $\exists$  sequences  $\{x_k\}$ ,  $\{y_k\} \subseteq C$  such that  $x_k \to x$  and  $y_k \to y$  as  $k \to \infty$ . By the convexity of C,  $\lambda x_k + (1 - \lambda)y_k \in C$  for any k.

Since  $\lambda x_k + (1 - \lambda)y_k \to \lambda x + (1 - \lambda)y$ , we can conclude that  $\lambda x + (1 - \lambda)y \in cl(C)$ , which implies that cl(C) is convex.

- (line segment principle): Let  $C \subseteq \mathbb{R}^n$  be a convex set, and assume that  $\operatorname{int}(C) \neq \emptyset$ . Suppose that  $x \in \operatorname{int}(C)$ ,  $y \in \operatorname{cl}(C)$ . Then  $(1 \lambda)x + \lambda y \in \operatorname{int}(C)$  for any  $\lambda \in (0, 1)$ . (Please see textbook page 109 for the proof)
- **Theorem:** Let  $C \subseteq \mathbb{R}^n$  be a convex set. Then the interior int(C) is convex.

*Proof:* If  $\operatorname{int}(C) = \emptyset$ , then  $\operatorname{int}(C)$  is convex. Let  $x, y \in \operatorname{int}(C)$  and  $\lambda \in (0,1)$ . Then by the line segment principle,  $(1-\lambda)x + \lambda y \in \operatorname{int}(C)$ . We can conclude that  $\operatorname{int}(C)$  is convex.  $\square$ 

# Other topological properties

Let  $C \subseteq \mathbb{R}^n$  be a convex set and  $int(C) \neq \emptyset$ . Then we have

- $\operatorname{cl}(\operatorname{int}(C)) = \operatorname{cl}(C)$ .
  - Proof:
  - ( $\subseteq$ ): Since int(C)  $\subseteq$  C, we have cl(int(C))  $\subseteq$  cl(C).
  - (⊇): Let  $x \in cl(C)$ . We take  $y \in int(C)$ . Then by the line segment principle, we have  $x_k := \frac{1}{k}y + (1 \frac{1}{k})x \in int(C)$  for any  $k \ge 1$ . Since  $x_k \to x$  as  $k \to \infty$ , we obtain  $x \in cl(int(C))$ .  $\square$
- int(cl(C)) = int(C).

Proof:

- ( $\supseteq$ ): Since *C* ⊆ cl(*C*), we have int(cl(*C*))  $\supseteq$  int(*C*).
- ( $\subseteq$ ): Let  $x \in \operatorname{int}(\operatorname{cl}(C))$ . Then  $\exists \ \varepsilon > 0 \ \operatorname{s.t.} \ B(x, \varepsilon) \subseteq \operatorname{cl}(C)$ . Let  $y \in \operatorname{int}(C)$ . If y = x, then the result is proved. Otherwise, define  $z := x + \alpha(x y)$ , where  $\alpha = \frac{\varepsilon}{2\|x y\|}$ . Since  $\|z x\| = \frac{\varepsilon}{2}$ , we have  $z \in \operatorname{cl}(C)$ . By the line segment principle, we have  $(1 \lambda)y + \lambda z \in \operatorname{int}(C)$  for  $\lambda \in [0, 1)$ . Taking  $\lambda = \frac{1}{1+\alpha} \in (0, 1)$ , we obtain  $(1 \lambda)y + \lambda z = x \in \operatorname{int}(C)$ .  $\square$

## Convex hull of compact set

**Theorem:** Let  $S \subseteq \mathbb{R}^n$  be a compact set. Then conv(S) is compact.

Proof:

• (Boundedness) Since S is bounded,  $\exists M > 0$  such that  $||x|| \le M$  for any  $x \in S$ . Let  $y \in \text{conv}(S)$ . By the Carathéodory theorem it follows that  $\exists x_1, \dots, x_{n+1} \in S$  and  $\lambda \in \Delta_{n+1}$  s.t.  $y = \sum_{i=1}^{n+1} \lambda_i x_i$ . Therefore,

$$\|y\| = \|\sum_{i=1}^{n+1} \lambda_i x_i\| \le \sum_{i=1}^{n+1} \lambda_i \|x_i\| \le M \sum_{i=1}^{n+1} \lambda_i = M.$$

• (Closedness) Let  $y_k$  be a sequence in  $\operatorname{conv}(S)$  and  $y_k \to y$  as  $k \to \infty$ . We wish to show that  $y \in \operatorname{conv}(S)$ . By the Carathéodory theorem it follows that  $\exists \ x_1^k, \cdots, x_{n+1}^k \in S$  and  $\lambda^k \in \Delta_{n+1}$  s.t.  $y_k = \sum_{i=1}^{n+1} \lambda_i^k x_i^k$ . By the compactness of S and  $\Delta_{n+1}$ , the sequence  $\{(\lambda^k, x_1^k, \cdots, x_{n+1}^k)\}$  has a subsequence such that

$$\lim_{j\to\infty}(\lambda^{k_j},x_1^{k_j},\cdots,x_{n+1}^{k_j})=(\lambda,x_1,\cdots,x_{n+1})$$

with  $\lambda \in \Delta_{n+1}$  and  $x_1, \dots, x_{n+1} \in S$ . Therefore, we have

$$\mathbf{y} = \lim_{j \to \infty} \mathbf{y}_{k_j} = \lim_{j \to \infty} \sum_{i=1}^{n+1} \lambda_i^{k_j} \mathbf{x}_i^{k_j} = \sum_{i=1}^{n+1} \lambda_i \mathbf{x}_i,$$

which means that  $y \in \text{conv}(S)$ .

#### Conic hull of a finite set

# **Theorem:** Let $S := \{a_1, a_2, \dots, a_k\} \subseteq \mathbb{R}^n$ . Then cone(S) is closed.

Proof:

• By the conic representation theorem, each element of cone(S) can be represented as a conic combination of a linearly independent subset of  $\{a_1, a_2, \cdots, a_k\}$ . Let  $S_1, \cdots, S_N$  be all the subsets of S comprising linearly independent vectors, then

$$cone(S) = \bigcup_{i=1}^{N} cone(S_i).$$

It suffices to show that  $cone(S_i)$  is closed for all i. Let  $i \in \{1, 2, \dots, N\}$ . Then  $S_i = \{b_1, b_2, \dots, b_m\}$  for some linearly independent vectors  $b_1, b_2, \dots, b_m$ . We can write  $cone(S_i) = \{By : y \in \mathbb{R}_+^m\}$ , where matrix  $B := [b_1, b_2, \dots, b_m]_{n \times m}$ .

• Let  $x_k \in \text{cone}(S_i)$  for  $k \geq 1$  and  $x_k \to \bar{x}$  as  $k \to \infty$ . We need to show that  $\bar{x} \in \text{cone}(S_i)$ . Since  $x_k \in \text{cone}(S_i)$ ,  $\exists y_k \in \mathbb{R}_+^m$  such that  $x_k = By_k$ . Since the columns of B are linearly independent, we can deduce that

$$\mathbf{y}_k = (\mathbf{B}^\top \mathbf{B})^{-1} \mathbf{B}^\top \mathbf{x}_k.$$

Thus, we have

$$\lim_{k\to\infty} \boldsymbol{y}_k = \lim_{k\to\infty} (\boldsymbol{B}^\top \boldsymbol{B})^{-1} \boldsymbol{B}^\top \boldsymbol{x}_k = (\boldsymbol{B}^\top \boldsymbol{B})^{-1} \boldsymbol{B}^\top \bar{\boldsymbol{x}} =: \bar{\boldsymbol{y}}$$

and  $\bar{y} \in \mathbb{R}^m_+$ . Therefore,

$$\bar{x} = \lim_{k \to \infty} x_k = \lim_{k \to \infty} By_k = B\bar{y} \in \text{cone}(S_i). \quad \Box$$

## **Extreme points**

• **Definition:** (extreme points) Let  $S \subseteq \mathbb{R}^n$  be a convex set. A point  $x \in S$  is called an extreme point of S if there <u>do not</u> exist  $x_1, x_2 \in S$ ,  $x_1 \neq x_2$  and  $\lambda \in (0,1)$  such that  $x = \lambda x_1 + (1-\lambda)x_2$ . The set of extreme points of S is denoted by ext(S).

That is, an extreme point is a point in S that cannot be represented as a nontrivial convex combination of two different points in S.

• **Example:** The set of extreme points of a convex polytope consists of all its vertices.



The convex set  $S = \text{conv}\{x_1, x_2, x_3, x_4\}$ . The extreme points set is  $\text{ext}(S) = \{x_1, x_2, x_3\}$ .

## Extreme points and basic feasible solutions

**Theorem:** Let  $P := \{x \in \mathbb{R}^n : Ax = b, x \geq 0\}$ , where  $A \in \mathbb{R}^{m \times n}$  has linearly independent rows and  $b \in \mathbb{R}^m$ . Then  $\bar{x}$  is a basic feasible solution of P if and only if it is an extreme point of P.

#### Proof:

( $\Rightarrow$ ). Let  $\bar{x}=(\bar{x}_1,\bar{x}_2,\cdots,\bar{x}_n)^{\top}$  be a basic feasible solution of P. Without loss of generality, assume that  $\bar{x}_1,\cdots,\bar{x}_k>0$  and  $\bar{x}_{k+1}=\cdots=\bar{x}_n=0$ , and the first k columns of A, denoted by  $a_1,\cdots,a_k$ , are linearly independent. Suppose that  $\bar{x}\not\in \text{ext}(P)$ . Then  $\exists y,z\in P,y\neq z$ , and  $\lambda\in(0,1)$  such that  $\bar{x}=\lambda y+(1-\lambda)z$ . Note that the last n-k components in y and z are zeros. Therefore, we have

$$\sum_{i=1}^k y_i a_i = b \text{ and } \sum_{i=1}^k z_i a_i = b \Longrightarrow \sum_{i=1}^k (y_i - z_i) a_i = 0, y_i - z_i \neq 0 \text{ for some } i \in \{1, 2, \cdots, k\},$$

which implies that  $a_1, \dots, a_k$  are linearly dependent, a contradiction!

( $\Leftarrow$ ): Suppose that  $\widetilde{x} \in P$  is an extreme point, but it is not a basic feasible solution. Thus, the columns corresponding to the positive components of  $\widetilde{x}$  are linearly dependent. WLOG, assume that the positive components of  $\widetilde{x}$  are exactly the first k components.

WLOG, assume that the positive components of x are exactly the first k components of  $y \in \mathbb{R}^k$  s.t.  $\sum_{i=1}^k y_i a_i = 0$ , i.e.,  $A\widetilde{y} = 0$ , where  $\widetilde{y} = (y, 0)^{\top}$ . Since the first k

components of  $\widetilde{x}$  are positive,  $\exists \ \varepsilon > 0$  s.t.  $x_1 := \widetilde{x} + \varepsilon \widetilde{y} \ge 0$  and  $x_2 := \widetilde{x} - \varepsilon \widetilde{y} \ge 0$ . Then we have  $Ax_1 = A\widetilde{x} + \varepsilon A\widetilde{y} = b + \varepsilon 0 = b$  and  $Ax_2 = b$ . Therefore,  $x_1, x_2 \in P$ . Finally, we have  $\widetilde{x} = \frac{1}{2}x_1 + \frac{1}{2}x_2$ . This is a contradiction, because  $\widetilde{x}$  is an extreme point of P.  $\square$ 

#### The Krein-Milman theorem

We will state this theorem without a proof.

**Krein-Milman theorem:** *Let*  $S \subseteq \mathbb{R}^n$  *be a compact convex set. Then* 

$$S = \operatorname{conv}(\operatorname{ext}(S)).$$

That is, a compact convex set is the convex hull of its extreme points.