MA 5037: Optimization Methods and Applications Convex Sets

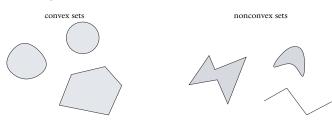
Suh-Yuh Yang (楊肅煜)

Department of Mathematics, National Central University Jhongli District, Taoyuan City 320317, Taiwan

First version: July 15, 2018/Last updated: June 16, 2025

Convex set

- **Definition:** A set $C \subseteq \mathbb{R}^n$ is called convex if for any $x, y \in C$ and $\lambda \in [0, 1]$, we have $\lambda x + (1 \lambda)y \in C$.
- Note 1: C is convex \iff for any $x, y \in C$, the line segment [x, y] is in C. i.e., $[x, y] \subseteq C$.
- Note 2: The empty set \varnothing is a convex set. (Suppose not, then $\exists ... \to \leftarrow$)
- **Example:** A line in \mathbb{R}^n is a set of the form, $L = \{z + td : t \in \mathbb{R}\}$, where $z, d \in \mathbb{R}^n$. Let $x = z + t_1d \in L$ and $y = z + t_2d \in L$. Then for any $\lambda \in [0, 1]$, $\lambda x + (1 \lambda)y = z + (\lambda t_1 + (1 \lambda)t_2)d \in L$. Therefore, L is a convex set.



Convexity of hyperplanes and half-spaces

- Note 1: For any $x, y \in \mathbb{R}^n$, the closed and open line segments [x, y] and (x, y) are convex sets.
- Note 2: The entire space \mathbb{R}^n is a convex set.
- Note 3: Let $a \in \mathbb{R}^n \setminus \{0\}$ and $b \in \mathbb{R}$. The following sets are convex:
 - (1) the hyperplane $H = \{x \in \mathbb{R}^n : a^{\top}x = b\};$
 - (2) the half-space $H^- = \{x \in \mathbb{R}^n : a^\top x \le b\};$
 - (3) the open half-space $\{x \in \mathbb{R}^n : a^\top x < b\}$.

Proof of (2): Let $x, y \in H^-$ and $\lambda \in [0, 1]$. We will show that $z = \lambda x + (1 - \lambda)y \in H^-$. Indeed,

$$a^{\top}z = a^{\top}(\lambda x + (1 - \lambda)y) = \lambda(a^{\top}x) + (1 - \lambda)(a^{\top}y)$$

 $\leq \lambda b + (1 - \lambda)b = b,$

which implies $z \in H^-$. \square

Convexity of balls

Let $c \in \mathbb{R}^n$ and r > 0. Let $\|\cdot\|$ be an arbitrary norm defined on \mathbb{R}^n . Then the open ball $B(c,r) := \{x \in \mathbb{R}^n : \|x - c\| < r\}$ and the closed ball $B[c,r] := \{x \in \mathbb{R}^n : \|x - c\| \le r\}$ are convex.

Proof: We will show the convexity of the closed ball. Let $x, y \in B[c, r]$ and $\lambda \in [0, 1]$. Then $||x - c|| \le r$ and $||y - c|| \le r$. Let $z = \lambda x + (1 - \lambda)y$. We will show that $z \in B[c, r]$. Indeed,

$$\begin{split} \|z - c\| &= \|\lambda x + (1 - \lambda)y - c\| = \|\lambda(x - c) + (1 - \lambda)(y - c)\| \\ &\leq \|\lambda(x - c)\| + \|(1 - \lambda)(y - c)\| \\ &= \lambda \|x - c\| + (1 - \lambda)\|y - c\| \\ &\leq \lambda r + (1 - \lambda)r \\ &= r. \end{split}$$

Therefore $z \in B[c, r]$, establishing the result. \square

Convexity of ellipsoids

An ellipsoid is a set of the form

$$E = \{ x \in \mathbb{R}^n : f(x) := x^{\top} Qx + 2b^{\top} x + c \le 0 \},$$

where $Q \in \mathbb{R}^{n \times n}$ is positive semidefinite, $b \in \mathbb{R}^n$, and $c \in \mathbb{R}$. Then E is a convex set.

Proof: Let $x, y \in E$, $\lambda \in [0, 1]$, and $z := \lambda x + (1 - \lambda)y$. Then $f(x) \le 0$, $f(y) \le 0$ and

$$z^{\top}Qz = (\lambda x + (1 - \lambda)y)^{\top}Q(\lambda x + (1 - \lambda)y)$$
$$= \lambda^2 x^{\top}Qx + (1 - \lambda)^2y^{\top}Qy + 2\lambda(1 - \lambda)x^{\top}Qy.$$

Since $\mathbf{x}^{\top} Q \mathbf{y} = (Q^{1/2} \mathbf{x})^{\top} (Q^{1/2} \mathbf{y})$, by the Cauchy-Schwarz inequality, we have

$$x^{\top}Qy \le \|Q^{1/2}x\|\|Q^{1/2}y\| = \sqrt{x^{\top}Qx}\sqrt{y^{\top}Qy} \le \frac{1}{2}(x^{\top}Qx + y^{\top}Qy).$$

Thus, $\mathbf{z}^{\top}Q\mathbf{z} \leq \lambda \mathbf{x}^{\top}Q\mathbf{x} + (1-\lambda)\mathbf{y}^{\top}Q\mathbf{y}$. Hence,

$$f(z) \leq \lambda x^{\top} Q x + (1 - \lambda) y^{\top} Q y + 2\lambda b^{\top} x + 2(1 - \lambda) b^{\top} y + c$$

= $\lambda (x^{\top} Q x + 2b^{\top} x + c) + (1 - \lambda) (y^{\top} Q y + 2b^{\top} y + c)$
= $\lambda f(x) + (1 - \lambda) f(y) \leq 0$,

establishing the desired result that $z \in E$. \square

Convexity is preserved under the intersection

■ Lemma: Let $C_i \subseteq \mathbb{R}^n$ be a convex set for any $i \in I$, where I is an arbitrary index set. Then $\cap_{i \in I} C_i$ is convex.

Proof: Let $x, y \in \cap_{i \in I} C_i$ and $\lambda \in [0, 1]$. Then $x, y \in C_i$, $\forall i \in I$. Since C_i is convex, it follows that $\lambda x + (1 - \lambda)y \in C_i$, $\forall i \in I$. Therefore, $\lambda x + (1 - \lambda)y \in \cap_{i \in I} C_i$. That is, $\cap_{i \in I} C_i$ is convex. \square

• **Example** (convex polytopes): A set P is called a convex polytope if it has the form $P = \{x \in \mathbb{R}^n : Ax \leq b\}$, where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. The convexity of P follows from the fact that it is an intersection of half-spaces and half-spaces are convex:

$$P = \bigcap_{i=1}^m \{x \in \mathbb{R}^n : A_i x \le b_i\},\,$$

where A_i is the *i*th row of A.

Preservation of convexity

1 Let $C_1, \dots, C_k \subseteq \mathbb{R}^n$ be convex sets and let $\mu_1, \dots, \mu_k \in \mathbb{R}$. Then the following set is convex:

$$\mu_1 C_1 + \mu_2 C_2 + \dots + \mu_k C_k := \left\{ \sum_{i=1}^k \mu_i x_i : x_i \in C_i, 1 \le i \le k \right\}$$

2 If $C \subseteq \mathbb{R}^n$ is a convex set and $b \in \mathbb{R}^n$, then the following set is also convex:

$$C + \mathbf{b} := \{ \mathbf{x} + \mathbf{b} : \mathbf{x} \in C \}$$

3 Let $C_i \subseteq \mathbb{R}^{k_i}$ be a convex set for any $i = 1, 2, \dots, m$. Then the following Cartesian product is convex:

$$C_1 \times C_2 \times \cdots \times C_m := \{(x_1, x_2, \cdots, x_m) : x_i \in C_i, 1 \leq i \leq m\}$$

- Let $M \subseteq \mathbb{R}^n$ be a convex set and let $A \in \mathbb{R}^{m \times n}$. Then the image set $A(M) := \{Ax : x \in M\}$ is convex.
- **5** Let $D \subseteq \mathbb{R}^m$ be a convex set and let $A \in \mathbb{R}^{m \times n}$. Then the inverse image set, $A^{-1}(D) := \{x \in \mathbb{R}^n : Ax \in D\}$, is convex.

Convex combinations

- **Definition:** Given $x_1, x_2, \dots, x_k \in \mathbb{R}^n$, a convex combination of these k vectors is a vector of the form $\lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_k x_k$, where $\lambda_i \in \mathbb{R}$ and $\lambda_i \geq 0$ for $1 \leq i \leq k$, satisfying $\lambda_1 + \lambda_2 + \dots + \lambda_k = 1$, i.e., $\lambda := (\lambda_1, \lambda_2, \dots, \lambda_k)^\top \in \Delta_k$.
- **Note:** A convex set can be defined by the property that any convex combination of two points from the set is also in the set.
- **Theorem:** Let $C \subseteq \mathbb{R}^n$ be a convex set and let $x_1, x_2, \dots, x_m \in C$. Then for any $\lambda = (\lambda_1, \dots, \lambda_m)^\top \in \Delta_m := \{\alpha \in \mathbb{R}_+^m : \sum_{i=1}^m \alpha_i = 1\}$, we have $\sum_{i=1}^m \lambda_i x_i \in C$. That is, a convex combination of any finite number of points from a convex set is in the set.

Proof: We prove the theorem by induction on m. The case m=1 is trivial. Suppose that m=k holds. Let $x_1,x_2,\cdots,x_{k+1}\in C$ and $\lambda\in\Delta_{k+1}$. If $\lambda_{k+1}=1$, then $\sum_{i=1}^{k+1}\lambda_ix_i=x_{k+1}\in C$. If $\lambda_{k+1}<1$, then

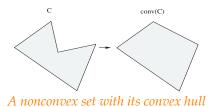
$$z := \sum_{i=1}^{k+1} \lambda_i x_i = \sum_{i=1}^k \lambda_i x_i + \lambda_{k+1} x_{k+1} = (1 - \lambda_{k+1}) \sum_{i=1}^k \frac{\lambda_i}{1 - \lambda_{k+1}} x_i + \lambda_{k+1} x_{k+1}.$$
Since
$$\sum_{i=1}^k \frac{\lambda_i}{1 - \lambda_{k+1}} = \frac{\sum_{i=1}^k \lambda_i}{1 - \lambda_{k+1}} = 1$$
, we have $v \in C$ and hence, $z \in C$. \square

Convex hull

• **Definition of convex hull:** Let $S \subseteq \mathbb{R}^n$. Then the convex hull of S is the set comprising all the convex combinations of vectors from S, i.e.,

$$\operatorname{conv}(S) := \Big\{ \sum_{i=1}^{K} \lambda_i x_i \Big| x_1, x_2, \cdots, x_k \in S, \lambda \in \Delta_k, k \in \mathbb{N} \Big\}.$$

- **Note:** The convex $h\overline{u}\overline{l}$ conv(S) is a convex set (**Exercise!**). In fact, conv(S) is the "smallest" convex set containing S, pls see below.
- **Lemma:** Let $S \subseteq \mathbb{R}^n$. If $S \subseteq T$ and T is convex, then $\operatorname{conv}(S) \subseteq T$. Proof: Let $z \in \operatorname{conv}(S)$. Then we have $z = \sum_{i=1}^k \lambda_i x_i$, for some $x_1, \dots, x_k \in S \subseteq T$ and $\lambda = (\lambda_1, \dots, \lambda_k)^\top \in \Delta_k$. That is, z is a convex combination of elements from T. Since T is convex, by the previous theorem, we obtain $z \in T$. □



Carathéodory Theorem

Let $S \subseteq \mathbb{R}^n$ and let $\mathbf{x} \in \text{conv}(S)$. Then $\exists \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_{n+1} \in S$ such that $\mathbf{x} \in \text{conv}(\{\mathbf{x}_1, \dots, \mathbf{x}_{n+1}\})$. That is, $\exists \lambda = (\lambda_1, \lambda_2, \dots, \lambda_{n+1}) \in \Delta_{n+1}$ such that $\mathbf{x} = \sum_{i=1}^{n+1} \lambda_i \mathbf{x}_i$.

Proof: Let $x \in \text{conv}(S)$. Then $\exists x_1, \cdots, x_k \in S$, $\lambda \in \Delta_k$ s.t. $x = \sum_{i=1}^k \lambda_i x_i$ with $\lambda_i > 0 \ \forall i$. If $k \leq n+1$, the result is proven. If $k \geq n+2$, then $x_2 - x_1, \cdots, x_k - x_1$ are linearly dependent. Therefore, $\exists \ \mu_2, \cdots, \mu_k$ not all zeros such that $\sum_{i=2}^k \mu_i (x_i - x_1) = \mathbf{0}$. Let $\mu_1 := -\sum_{i=2}^k \mu_i$, we obtain $\sum_{i=1}^k \mu_i x_i = \mathbf{0}$ and $\sum_{i=1}^k \mu_i = 0$, where $\exists \ i$ for which $\mu_i < 0$. Let $\alpha \in \mathbb{R}_+$. Then

$$x = \sum_{i=1}^k \lambda_i x_i = \sum_{i=1}^k \lambda_i x_i + \alpha \sum_{i=1}^k \mu_i x_i = \sum_{i=1}^k (\lambda_i + \alpha \mu_i) x_i \quad \text{and} \quad \sum_{i=1}^k (\lambda_i + \alpha \mu_i) = 1.$$

The above representation is a convex combination if and only if

$$\lambda_i + \alpha \mu_i \geq 0, \quad \forall i = 1, \cdots, k.$$

Since $\lambda_i > 0 \ \forall i$, the above set of inequalities is satisfied for all $\alpha \in [0, \varepsilon]$, where $\varepsilon = \min_{i: \ \mu_i < 0} \left\{ \frac{-\lambda_i}{\mu_i} \right\}$. Taking $\alpha = \varepsilon$, then $\lambda_j + \alpha \mu_j = 0$ for $j = \operatorname{argmin}_{i: \ \mu_i < 0} \left\{ \frac{-\lambda_i}{\mu_i} \right\}$. This means that we have found a representation of x as a convex combination of k-1 vectors. This process can be carried on until a representation of x as a convex combination of no more than x = 0 vectors is derived. \square

Example: n = 2

Let $S = \{x_1, x_2, x_3, x_4\} \subseteq \mathbb{R}^2$, where

$$x_1 = (1,1)^{\top}, \quad x_2 = (1,2)^{\top}, \quad x_3 = (2,1)^{\top}, \quad x_4 = (2,2)^{\top}.$$

Let $x \in \text{conv}(S)$ be given by

$$x = \frac{1}{8}x_1 + \frac{1}{4}x_2 + \frac{1}{2}x_3 + \frac{1}{8}x_4 = (\frac{13}{8}, \frac{11}{8})^{\top}$$

By the Carathéodory Theorem, x can be expressed as a convex combination of three of the four vectors x_1, x_2, x_3, x_4 . The vectors

$$x_2 - x_1 = (0, 1)^{\top}, \quad x_3 - x_1 = (1, 0)^{\top}, \quad x_4 - x_1 = (1, 1)^{\top}$$

are linearly dependent, and $(x_2 - x_1) + (x_3 - x_1) - (x_4 - x_1) = 0$. i.e., $-x_1 + x_2 + x_3 - x_4 = 0$. Therefore, for any $\alpha \ge 0$ we have

$$x = (\frac{1}{8} - \alpha)x_1 + (\frac{1}{4} + \alpha)x_2 + (\frac{1}{2} + \alpha)x_3 + (\frac{1}{8} - \alpha)x_4.$$

We need guarantee that $\frac{1}{8} - \alpha \ge 0$, $\frac{1}{4} + \alpha \ge 0$, $\frac{1}{2} + \alpha \ge 0$, $\frac{1}{8} - \alpha \ge 0$, which combined with $\alpha \ge 0$ yields that $0 \le \alpha \le 1/8$. Now taking $\alpha = 1/8$, we obtain the convex combination $x = (3/8)x_2 + (5/8)x_3$.

Convex cones

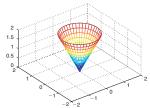
- **Definition:** A set S is called a cone if for any $x \in S$ and $\lambda \geq 0$, we have $\lambda x \in S$.
- **Lemma:** A set S is a convex cone if and only if the following properties hold: (1) $x, y \in S \Rightarrow x + y \in S$; (2) $x \in S$, $\lambda \ge 0 \Rightarrow \lambda x \in S$. *Proof*:
 - (⇒) Let $x, y \in S$. By the convexity, we have $\frac{1}{2}x + (1 \frac{1}{2})y \in S$. Since S is a cone, we have $2 \times \frac{1}{2}(x + y) = x + y \in S$, i.e., property (1) holds. Property (2) is true because S is a cone.
 - (\Leftarrow) By property (2), *S* is a cone. Let $x, y \in S$ and $\lambda \in [0, 1]$. Since *S* is a cone, we have $\lambda x \in S$ and $(1 \lambda)y \in S$. By property (1), we further have $\lambda x + (1 \lambda)y \in S$, establishing the convexity. □
- **Example:** Consider the convex polytope $C = \{x \in \mathbb{R}^n : Ax \leq 0\}$, where $A \in \mathbb{R}^{m \times n}$. The set C is clearly a convex set, see page 6. It is also a cone since

$$x \in C, \lambda \ge 0 \Rightarrow Ax \le 0, \lambda \ge 0 \Rightarrow A(\lambda x) \le 0 \Rightarrow \lambda x \in C.$$

Lorentz cone (ice cream cone)

The Lorentz cone, also called the ice cream cone, is given by

$$L^n := \left\{ (x,t)^\top \in \mathbb{R}^{n+1} : x \in \mathbb{R}^n, t \in \mathbb{R}, \text{ and } ||x|| \le t \right\}.$$



The boundary of the ice cream cone L^2

The Lorentz cone is in fact a convex cone:

- (1). Let $(x,t)^{\top}$, $(y,s)^{\top} \in L^n$. Then $\|x\| \le t$ and $\|y\| \le s$. The triangle inequality implies that $\|x+y\| \le \|x\| + \|y\| \le t + s$. That is, $(x,t)^{\top} + (y,s)^{\top} = (x+y,t+s)^{\top} \in L^n$.
- (2). Taking $(x, t)^{\top} \in L^n$ and $\lambda \ge 0$, we obtain $\|\lambda x\| = \lambda \|x\| \le \lambda t$, so $\lambda (x, t)^{\top} = (\lambda x, \lambda t)^{\top} \in L^n$.

Conic combination

- **Definition:** Given $x_1, x_2, \dots, x_k \in \mathbb{R}^n$, a conic combination of these k vectors is a vector of the form $\lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_k x_k$, where $\lambda_i \geq 0$ for all $i = 1, 2, \dots, k$.
- **Lemma:** Let C be a convex cone, and let $x_1, x_2, \dots, x_k \in C$ and $\lambda_1, \lambda_2, \dots, \lambda_k \geq 0$. Then the conic combination $\sum_{i=1}^k \lambda_i x_i \in C$. Proof: Since C is a convex cone, by property (2), we have $\lambda_i x_i \in C$, $\forall i$. By property (1), $\sum_{i=1}^k \lambda_i x_i \in C$. \square
- **Definition:** (conic hull) Let $S \subseteq \mathbb{R}^n$. Then the conic hull of S is the set comprising all the conic combinations of vectors from S, i.e.,

$$cone(S) := \Big\{ \sum_{i=1}^k \lambda_i x_i \, \Big| \, x_1, x_2, \cdots, x_k \in S, \lambda \in \mathbb{R}_+^k, k \in \mathbb{N} \Big\}.$$

Note that cone(S) *is a convex cone.* (Exercise!) In fact, we have

• **Lemma:** Let $S \subseteq \mathbb{R}^n$. If $S \subseteq T$ for some convex cone T, then $cone(S) \subseteq T$, i.e., the conic hull of S is the smallest convex cone containing S. (**Exercise!**)

Conic representation theorem

Let $S \subseteq \mathbb{R}^n$ and let $x \in \text{cone}(S)$. Then $\exists k$ linearly independent vectors $x_1, x_2, \dots, x_k \in S$ such that $x \in \text{cone}(\{x_1, \dots, x_k\})$; that is, $\exists \lambda = (\lambda_1, \lambda_2, \dots, \lambda_k) \in \mathbb{R}^k_+$ such that $x = \sum_{i=1}^k \lambda_i x_i$ and $k \leq n$.

Proof: Let $x \in \text{cone}(S)$. Then $\exists x_1, \cdots, x_m \in S$, $\lambda \in \mathbb{R}_+^m$ s.t. $x = \sum_{i=1}^m \lambda_i x_i$ with $\lambda_i > 0 \ \forall i$. If x_1, \cdots, x_m are linearly independent, then $k := m \le n$ and the result is proven. Otherwise, $\exists \ \mu_1, \cdots, \mu_m \in \mathbb{R}$ not all zeros such that $\sum_{i=1}^m \mu_i x_i = \mathbf{0}$. Let $\alpha \in \mathbb{R}$. Then

$$x = \sum_{i=1}^m \lambda_i x_i = \sum_{i=1}^m \lambda_i x_i + \alpha \sum_{i=1}^m \mu_i x_i = \sum_{i=1}^m (\lambda_i + \alpha \mu_i) x_i.$$

The above representation is a conic combination if and only if

$$\lambda_i + \alpha \mu_i \geq 0$$
, $\forall i = 1, \dots, m$.

Since $\lambda_i > 0$ for all i, we can find $\widetilde{\alpha} \in \mathbb{R}$ s.t. $\lambda_j + \widetilde{\alpha}\mu_j = 0$ for some j and $\lambda_i + \widetilde{\alpha}\mu_i \geq 0$ for the others. Thus we obtain a representation of x as a conic combination of at most m-1 vectors. Continuing this process, we can obtain k linearly independent vectors $x_1, x_2, \cdots, x_k \in S$ with $k \leq n$ such that $x \in \text{cone}(\{x_1, \cdots, x_k\})$. \square (Please see textbook page 107 for more details)

Basic feasible solution (BFS)

Linear systems consisting of linear equalities and nonnegativity constraints often appear as constraints in standard formulations of *linear programming problems*.

- **Definition:** (basic feasible solution) Let $P := \{x \in \mathbb{R}^n : Ax = b, x \geq 0\}$, where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. Suppose that the rows of A are linearly independent. Then $\bar{x} \in P$ is a basic feasible solution (BFS) of P if the columns of A corresponding to the indices of the positive values of \bar{x} are linearly independent.
- **Note:** Since the columns of A reside in \mathbb{R}^m , it follows that a BFS has at most m nonzero elements.
- Example: Consider the linear system

$$x_1 + x_2 + x_3 = 6$$
, $x_2 + x_3 = 3$, $x_1, x_2, x_3 \ge 0$.

A BFS of the system is (3,3,0). It satisfies all the constraints and the columns corresponding to the positive elements, $(1,0)^{\top}$, $(1,1)^{\top}$ are linearly independent.

Existence of a BFS in P

Theorem: Let $P := \{x \in \mathbb{R}^n : Ax = b, x \geq 0\}$, where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. If $P \neq \emptyset$, then it contains at least one BFS.

Proof: Let $x \in P \neq \emptyset$. Then Ax = b and $x \ge 0$. It follows that $b = x_1a_1 + x_2a_2 + \cdots + x_na_n$, i.e., $b \in \text{cone}(\{a_1, a_2, \cdots, a_n\})$, where a_i denotes the ith column of A. By the conic representation theorem, there exist indices $i_1 < i_2 < \cdots < i_k$ and k numbers $x_{i_1}, x_{i_2}, \cdots, x_{i_k} > 0$ such that $b = \sum_{i=1}^k x_{i_i}a_{i_i}$ and $a_{i_1}, a_{i_2}, \cdots, a_{i_k}$ are linearly independent.

Denote $\bar{x} := \sum_{j=1}^k x_{i_j} e_{i_j}$. Then $\bar{x} \geq \mathbf{0}$ and

$$A\bar{x} = \sum_{j=1}^k x_{i_j} A e_{i_j} = \sum_{j=1}^k x_{i_j} a_{i_j} = b.$$

Therefore, $\bar{x} \in P$ and satisfies that the columns of A corresponding to the indices of the positive components of \bar{x} are linearly independent. That is, P contains at least one BFS. \square

Closure and interior of a convex set

• **Theorem:** Let $C \subseteq \mathbb{R}^n$ be a convex set. Then the closure cl(C) is convex.

Proof: Let $x, y \in \operatorname{cl}(C)$ and $\lambda \in [0, 1]$. Then \exists sequences $\{x_k\}$, $\{y_k\} \subseteq C$ such that $x_k \to x$ and $y_k \to y$ as $k \to \infty$. By the convexity of C, $\lambda x_k + (1 - \lambda)y_k \in C$ for any k.

Since $\lambda x_k + (1 - \lambda)y_k \to \lambda x + (1 - \lambda)y$, we can conclude that $\lambda x + (1 - \lambda)y \in cl(C)$, which implies that cl(C) is convex.

- (line segment principle): Let $C \subseteq \mathbb{R}^n$ be a convex set, and assume that $\operatorname{int}(C) \neq \emptyset$. Suppose that $x \in \operatorname{int}(C)$, $y \in \operatorname{cl}(C)$. Then $(1 \lambda)x + \lambda y \in \operatorname{int}(C)$ for any $\lambda \in (0, 1)$. (Please see textbook page 109 for the proof)
- **Theorem:** Let $C \subseteq \mathbb{R}^n$ be a convex set. Then the interior int(C) is convex.

Proof: If $\operatorname{int}(C) = \emptyset$, then $\operatorname{int}(C)$ is convex. Let $x, y \in \operatorname{int}(C)$ and $\lambda \in (0,1)$. Then by the line segment principle, $(1-\lambda)x + \lambda y \in \operatorname{int}(C)$. We can conclude that $\operatorname{int}(C)$ is convex. \square

Other topological properties

Let $C \subseteq \mathbb{R}^n$ be a convex set and $int(C) \neq \emptyset$. Then we have

- $\operatorname{cl}(\operatorname{int}(C)) = \operatorname{cl}(C)$.
 - Proof:
 - (\subseteq): Since int(C) \subseteq C, we have cl(int(C)) \subseteq cl(C).
 - (⊇): Let $x \in cl(C)$. We take $y \in int(C)$. Then by the line segment principle, we have $x_k := \frac{1}{k}y + (1 \frac{1}{k})x \in int(C)$ for any $k \ge 1$. Since $x_k \to x$ as $k \to \infty$, we obtain $x \in cl(int(C))$. \square
- int(cl(C)) = int(C).

Proof:

- (\supseteq): Since *C* ⊆ cl(*C*), we have int(cl(*C*)) \supseteq int(*C*).
- (\subseteq): Let $x \in \operatorname{int}(\operatorname{cl}(C))$. Then $\exists \ \varepsilon > 0 \ \operatorname{s.t.} \ B(x, \varepsilon) \subseteq \operatorname{cl}(C)$. Let $y \in \operatorname{int}(C)$. If y = x, then the result is proved. Otherwise, define $z := x + \alpha(x y)$, where $\alpha = \frac{\varepsilon}{2\|x y\|}$. Since $\|z x\| = \frac{\varepsilon}{2}$, we have $z \in \operatorname{cl}(C)$. By the line segment principle, we have $(1 \lambda)y + \lambda z \in \operatorname{int}(C)$ for $\lambda \in [0, 1)$. Taking $\lambda = \frac{1}{1+\alpha} \in (0, 1)$, we obtain $(1 \lambda)y + \lambda z = x \in \operatorname{int}(C)$. \square

Convex hull of compact set

Theorem: Let $S \subseteq \mathbb{R}^n$ be a compact set. Then conv(S) is compact.

Proof:

• (Boundedness) Since S is bounded, $\exists M > 0$ such that $||x|| \le M$ for any $x \in S$. Let $y \in \text{conv}(S)$. By the Carathéodory theorem it follows that $\exists x_1, \dots, x_{n+1} \in S$ and $\lambda \in \Delta_{n+1}$ s.t. $y = \sum_{i=1}^{n+1} \lambda_i x_i$. Therefore,

$$\|y\| = \|\sum_{i=1}^{n+1} \lambda_i x_i\| \le \sum_{i=1}^{n+1} \lambda_i \|x_i\| \le M \sum_{i=1}^{n+1} \lambda_i = M.$$

• (Closedness) Let y_k be a sequence in $\operatorname{conv}(S)$ and $y_k \to y$ as $k \to \infty$. We wish to show that $y \in \operatorname{conv}(S)$. By the Carathéodory theorem it follows that $\exists \ x_1^k, \cdots, x_{n+1}^k \in S$ and $\lambda^k \in \Delta_{n+1}$ s.t. $y_k = \sum_{i=1}^{n+1} \lambda_i^k x_i^k$. By the compactness of S and Δ_{n+1} , the sequence $\{(\lambda^k, x_1^k, \cdots, x_{n+1}^k)\}$ has a subsequence such that

$$\lim_{j\to\infty}(\lambda^{k_j},x_1^{k_j},\cdots,x_{n+1}^{k_j})=(\lambda,x_1,\cdots,x_{n+1})$$

with $\lambda \in \Delta_{n+1}$ and $x_1, \dots, x_{n+1} \in S$. Therefore, we have

$$\mathbf{y} = \lim_{j \to \infty} \mathbf{y}_{k_j} = \lim_{j \to \infty} \sum_{i=1}^{n+1} \lambda_i^{k_j} \mathbf{x}_i^{k_j} = \sum_{i=1}^{n+1} \lambda_i \mathbf{x}_i,$$

which means that $y \in \text{conv}(S)$.

Conic hull of a finite set

Theorem: Let $S := \{a_1, a_2, \dots, a_k\} \subseteq \mathbb{R}^n$. Then cone(S) is closed.

Proof:

• By the conic representation theorem, each element of cone(S) can be represented as a conic combination of a linearly independent subset of $\{a_1, a_2, \cdots, a_k\}$. Let S_1, \cdots, S_N be all the subsets of S comprising linearly independent vectors, then

$$cone(S) = \bigcup_{i=1}^{N} cone(S_i).$$

It suffices to show that $cone(S_i)$ is closed for all i. Let $i \in \{1, 2, \dots, N\}$. Then $S_i = \{b_1, b_2, \dots, b_m\}$ for some linearly independent vectors b_1, b_2, \dots, b_m . We can write $cone(S_i) = \{By : y \in \mathbb{R}_+^m\}$, where matrix $B := [b_1, b_2, \dots, b_m]_{n \times m}$.

• Let $x_k \in \text{cone}(S_i)$ for $k \geq 1$ and $x_k \to \bar{x}$ as $k \to \infty$. We need to show that $\bar{x} \in \text{cone}(S_i)$. Since $x_k \in \text{cone}(S_i)$, $\exists y_k \in \mathbb{R}_+^m$ such that $x_k = By_k$. Since the columns of B are linearly independent, we can deduce that

$$\mathbf{y}_k = (\mathbf{B}^\top \mathbf{B})^{-1} \mathbf{B}^\top \mathbf{x}_k.$$

Thus, we have

$$\lim_{k\to\infty} \boldsymbol{y}_k = \lim_{k\to\infty} (\boldsymbol{B}^\top \boldsymbol{B})^{-1} \boldsymbol{B}^\top \boldsymbol{x}_k = (\boldsymbol{B}^\top \boldsymbol{B})^{-1} \boldsymbol{B}^\top \bar{\boldsymbol{x}} =: \bar{\boldsymbol{y}}$$

and $\bar{y} \in \mathbb{R}^m_+$. Therefore,

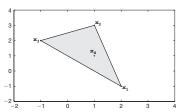
$$\bar{x} = \lim_{k \to \infty} x_k = \lim_{k \to \infty} By_k = B\bar{y} \in \text{cone}(S_i). \quad \Box$$

Extreme points

• **Definition:** (extreme points) Let $S \subseteq \mathbb{R}^n$ be a convex set. A point $x \in S$ is called an extreme point of S if there <u>do not</u> exist $x_1, x_2 \in S$, $x_1 \neq x_2$ and $\lambda \in (0,1)$ such that $x = \lambda x_1 + (1-\lambda)x_2$. The set of extreme points of S is denoted by ext(S).

That is, an extreme point is a point in S that cannot be represented as a nontrivial convex combination of two different points in S.

• **Example:** The set of extreme points of a convex polytope consists of all its vertices.



The convex set $S = \text{conv}\{x_1, x_2, x_3, x_4\}$. The extreme points set is $\text{ext}(S) = \{x_1, x_2, x_3\}$.

Extreme points and basic feasible solutions

Theorem: Let $P := \{x \in \mathbb{R}^n : Ax = b, x \geq 0\}$, where $A \in \mathbb{R}^{m \times n}$ has linearly independent rows and $b \in \mathbb{R}^m$. Then \bar{x} is a basic feasible solution of P if and only if it is an extreme point of P.

Proof:

(\Rightarrow). Let $\bar{x}=(\bar{x}_1,\bar{x}_2,\cdots,\bar{x}_n)^{\top}$ be a basic feasible solution of P. Without loss of generality, assume that $\bar{x}_1,\cdots,\bar{x}_k>0$ and $\bar{x}_{k+1}=\cdots=\bar{x}_n=0$, and the first k columns of A, denoted by a_1,\cdots,a_k , are linearly independent. Suppose that $\bar{x}\not\in \text{ext}(P)$. Then $\exists y,z\in P,y\neq z$, and $\lambda\in(0,1)$ such that $\bar{x}=\lambda y+(1-\lambda)z$. Note that the last n-k components in y and z are zeros. Therefore, we have

$$\sum_{i=1}^k y_i a_i = b \text{ and } \sum_{i=1}^k z_i a_i = b \Longrightarrow \sum_{i=1}^k (y_i - z_i) a_i = 0, y_i - z_i \neq 0 \text{ for some } i \in \{1, 2, \cdots, k\},$$

which implies that a_1, \dots, a_k are linearly dependent, a contradiction!

(\Leftarrow): Suppose that $\widetilde{x} \in P$ is an extreme point, but it is not a basic feasible solution. Thus, the columns corresponding to the positive components of \widetilde{x} are linearly dependent. WLOG, assume that the positive components of \widetilde{x} are exactly the first k components.

WLOG, assume that the positive components of x are exactly the first k components of $y \in \mathbb{R}^k$ s.t. $\sum_{i=1}^k y_i a_i = 0$, i.e., $A\widetilde{y} = 0$, where $\widetilde{y} = (y, 0)^{\top}$. Since the first k

components of \widetilde{x} are positive, $\exists \ \varepsilon > 0$ s.t. $x_1 := \widetilde{x} + \varepsilon \widetilde{y} \ge 0$ and $x_2 := \widetilde{x} - \varepsilon \widetilde{y} \ge 0$. Then we have $Ax_1 = A\widetilde{x} + \varepsilon A\widetilde{y} = b + \varepsilon 0 = b$ and $Ax_2 = b$. Therefore, $x_1, x_2 \in P$. Finally, we have $\widetilde{x} = \frac{1}{2}x_1 + \frac{1}{2}x_2$. This is a contradiction, because \widetilde{x} is an extreme point of P. \square

The Krein-Milman theorem

We will state this theorem without a proof.

Krein-Milman theorem: *Let* $S \subseteq \mathbb{R}^n$ *be a compact convex set. Then*

$$S = \operatorname{conv}(\operatorname{ext}(S)).$$

That is, a compact convex set is the convex hull of its extreme points.