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The primal problem and its Lagrangian function

We explore the dual problem by considering the general model:

f ∗ = min f (x)
subject to gi(x) ≤ 0, i = 1, 2, · · · , m, (1)

hj(x) = 0, j = 1, 2, · · · , p,
x ∈ X,

where f , gi, hj(i = 1, 2, · · · , m, j = 1, 2, · · · , p) are functions defined on the
set X ⊆ Rn. Problem (1) will be referred to as the primal problem.

The Lagrangian function of the problem is defined as

L(x, λ, µ) = f (x) +
m

∑
i=1

λigi(x) +
p

∑
j=1

µjhj(x), (x ∈ X, λ ∈ Rm
+, µ ∈ Rp)

where λ1, λ2, · · · , λm are nonnegative Lagrange multipliers associated with
the inequality constraints, and µ1, µ2, · · · , µp are the Lagrange multipliers
associated with the equality constraints.
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Definition of the dual problem

The dual objective function q : Rm
+ ×Rp → R

⋃{−∞} is defined to be

q(λ, µ) = min
x∈X

L(x, λ, µ). (2)

There may be values of (λ, µ) for which q(λ, µ) = −∞, we define the
domain of the dual objective function as

dom(q) = {(λ, µ) ∈ Rm
+ ×Rp : q(λ, µ) > −∞}.

Then the dual problem is given by

q∗ = max q(λ, µ) subject to (λ, µ) ∈ dom(q). (3)

That is,
q∗ = max

(λ,µ)∈dom(q)
min
x∈X

L(x, λ, µ).
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Convexity of the dual problem

Theorem: Consider the problem (1) with f , gi, hj (i = 1, 2, · · · , m,
j = 1, 2, · · · , p) being functions defined on the set X ⊆ Rn, and let q be the
function defined in (2). Then we have

(a) dom(q) = {(λ, µ) ∈ Rm
+ ×Rp : q(λ, µ) > −∞} is a convex set,

(b) q(λ, µ) = minx∈X L(x, λ, µ) is a concave function over dom(q).

Proof:
(a) Taking (λ1, µ1), (λ2, µ2) ∈ dom(q) and α ∈ [0, 1], we have

min
x∈X

L(x, λ1, µ1) > −∞ and min
x∈X

L(x, λ2, µ2) > −∞.

Since L(x, λ, µ) is affine with respect to λ and µ, we obtain

q(αλ1 + (1− α)λ2, αµ1 + (1− α)µ2)

= min
x∈X

L(x, αλ1 + (1− α)λ2, αµ1 + (1− α)µ2)

= min
x∈X

(
αL(x, λ1, µ1) + (1− α)L(x, λ2, µ2)

)
.
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Proof of the convexity of the dual problem

Therefore, we have

q(αλ1 + (1− α)λ2, αµ1 + (1− α)µ2)

≥ α min
x∈X

L(x, λ1, µ1) + (1− α)min
x∈X

L(x, λ2, µ2)

= αq(λ1, µ1) + (1− α)q(λ2, µ2) > −∞.

Hence, α(λ1, µ1) + (1− α)(λ2, µ2) ∈ dom(q), and the convexity of dom(q) is
established.

(b) As noted in the proof of part (a), L(x, λ, µ) is an affine function with
respect to (λ, µ). In particular, it is a concave function with respect to (λ, µ).
Since q(λ, µ) is the minimum of concave functions, it must be concave. �
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Weak duality theorem

Theorem: Consider the primal problem (1) and its dual problem (3). Then
q∗ ≤ f ∗, where q∗ and f ∗ are optimal dual and primal values, respectively.

Proof: Let us denote the feasible set of the primal problem by

S = {x ∈ X : gi(x) ≤ 0, hj(x) = 0, 1 ≤ i ≤ m, 1 ≤ j ≤ p}.

Then for any (λ, µ) ∈ Rm
+ ×Rp, we have

q(λ, µ) = min
x∈X

L(x, λ, µ) ≤ min
x∈S

L(x, λ, µ)

= min
x∈S

(
f (x) +

m

∑
i=1

λigi(x) +
p

∑
j=1

µjhj(x)
)

≤ min
x∈S

f (x).

We thus obtain that
q(λ, µ) ≤ min

x∈S
f (x) = f ∗

for any (λ, µ) ∈ Rm
+ ×Rp. By taking the maximum over (λ, µ), we have

q∗ ≤ f ∗. �
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Supporting hyperplane theorem

Theorem: Let C ⊆ Rn be a convex set with nonempty interior and let
y /∈ C. Then there exists 0 6= p ∈ Rn such that

p>x ≤ p>y for any x ∈ C.

Proof: Since y /∈ C ⊇ int(C) = int(cl(C)), it follows that y /∈ int(cl(C)).
Therefore, there exists a sequence {yk}k≥1 satisfying yk /∈ cl(C) such that
yk → y as k→ ∞.

Since cl(C) is convex and closed, it follows by the strict separation theorem
(Theorem 10.1) that there exists 0 6= pk ∈ Rn such that

p>k x < p>k yk, ∀ x ∈ cl(C).

Dividing the latter inequality by ‖pk‖ 6= 0, we obtain

p>k
‖pk‖

(x− yk) < 0, ∀ x ∈ cl(C). (4)
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Proof of the supporting hyperplane theorem (cont’d)

Since the sequence { pk
‖pk‖
}k≥1 is bounded, it follows that there exists a

subsequence { pk
‖pk‖
}k∈T such that pk

‖pk‖
→ p as k T−→ ∞ for some p ∈ Rn.

Hence, ‖p‖ = 1 and in particular p 6= 0. Taking the limit as k T−→ ∞ in
inequality (4), we obtain that

p>(x− y) ≤ 0, ∀ x ∈ cl(C),

which implies the result since C ⊆ cl(C). �
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Separation of two convex sets

Theorem: Let C1, C2 ⊆ Rn be two convex sets with nonempty interior
such that C1 ∩ C2 = ∅. Then there exists 0 6= p ∈ Rn for which

p>x ≤ p>y, ∀ x ∈ C1, y ∈ C2.

Proof: The set C1 − C2 is a convex set with nonempty interior, and since
C1 ∩ C2 = ∅, it follows that 0 /∈ C1 − C2. By the supporting hyperplane
theorem, it follows that there exists 0 6= p ∈ Rn such that

p>(x− y) ≤ p>0 = 0, ∀ x ∈ C1, y ∈ C2,

which is the same as the desired result. �
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A nonlinear version of Farkas lemma

Theorem (nonlinear Farkas lemma): Let X ⊆ Rn be a convex set and let
f , g1, g2, · · · , gm be convex functions over X. Assume that there exists
x̂ ∈ X such that

gi(x̂) < 0, i = 1, 2, · · · , m.

Let c ∈ R. Then the following two claims are equivalent.

(a) The following implication holds :

x ∈ X, gi(x) ≤ 0, i = 1, 2, · · · , m =⇒ f (x) ≥ c.

(b) There exist λ1, λ2, · · · , λm ≥ 0 such that

min
x∈X

(
f (x) +

m

∑
i=1

λigi(x)
)
≥ c. (5)
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Proof of the nonlinear Farkas lemma

(b)⇒ (a): Suppose that there exist λ1, λ2, · · · , λm ≥ 0 such that (5) holds. Let
x ∈ X satisfy gi(x) ≤ 0, i = 1, 2, · · · , m. Then by (5) we have

f (x) +
m

∑
i=1

λigi(x) ≥ c.

Since gi(x) ≤ 0 and λi ≥ 0 for i = 1, 2, · · · , m,

f (x) ≥ c−
m

∑
i=1

λigi(x) ≥ c.

(a)⇒ (b): Assume that (a) holds. Consider the following two sets:

S := {u = (u0, u1, · · · , um) : ∃ x ∈ X s.t. f (x) ≤ u0, gi(x) ≤ ui, 1 ≤ i ≤ m},
T := {(u0, u1, · · · , um) : u0 < c, u1 ≤ 0, u2 ≤ 0, · · · , um ≤ 0}.

c© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan MA 5037: Duality – 11/17



Proof of the nonlinear Farkas lemma (cont’d)

Note that S and T are convex with nonempty interiors and by (a), S∩ T = ∅.
Therefore, by the separation theorem of two convex sets, it follows that there
exists a vector a = (a0, a1, · · · , am)> 6= 0 such that

min
(u0,u1,··· ,um)∈S

m

∑
j=0

ajuj ≥ max
(u0,u1,··· ,um)∈T

m

∑
j=0

ajuj. (6)

Claim: a ≥ 0. Consider the RHS of (6). Suppose that there exists an ai < 0.
By taking ui to be a negative number tending to −∞ while fixing all the other
components as zeros, we obtain that the RHS of (6) is ∞, which is a
contradiction.

Since a ≥ 0, it follows that RHS of (6) = a0c, and we thus obtain

min
(u0,u1,··· ,um)∈S

m

∑
j=0

ajuj ≥ a0c. (7)
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Proof of the nonlinear Farkas lemma (cont’d)

We will show that a0 > 0. Suppose in contradiction that a0 = 0. Then

min
(u0,u1,··· ,um)∈S

m

∑
j=1

ajuj ≥ 0.

Since we can take ui = gi(x̂), i = 1, 2, · · · , m, it leads to

m

∑
j=1

ajgj(x̂) ≥ 0.

which is impossible since gj(x̂) < 0 ∀ j and a = (a0, a1, · · · , am)> 6= 0.

Now we can divide (7) by a0 > 0 to obtain

min
(u0,u1,··· ,um)∈S

(
u0 +

m

∑
j=1

ãjuj

)
≥ c, ãj :=

aj

a0
. (8)
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Proof of the nonlinear Farkas lemma (cont’d)

Define a subset S̃ ⊆ S by

S̃ := {u = (u0, u1, · · · , um) : ∃ x ∈ X s.t. f (x) = u0, gi(x) = ui, 1 ≤ i ≤ m}
= {(f (x), g1(x), · · · , gm(x)) : x ∈ X}. (?)

Then we have

min
(u0,u1,··· ,um)∈S

(
u0 +

m

∑
j=1

ãjuj

)
≤ min

(u0,u1,··· ,um)∈S̃

(
u0 +

m

∑
j=1

ãjuj

)
by (?) = min

x∈X

(
f (x) +

m

∑
j=1

ãjgj(x)
)

,

which combined with (8) yields the desired result

min
x∈X

(
f (x) +

m

∑
j=1

ãjgj(x)
)
≥ c. �
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Strong duality of convex problems (inequality constraints)

Theorem: Consider the optimization problem

f ∗ = min f (x)
subject to gi(x) ≤ 0, i = 1, 2, · · · , m, (9)

x ∈ X,

where X is a convex set and f , gi, i = 1, 2, · · · , m, are convex functions over
X. Suppose that there exists x̂ ∈ X for which gi(x̂) < 0, i = 1, 2, · · · , m.
Suppose that problem (9) has a finite optimal value. Then the optimal value
of the dual problem

q∗ = max{q(λ) : λ ∈ dom(q)}, (10)

where
q(λ) = min

x∈X
L(x, λ),

is attained, and the optimal values of the primal and dual problems are the
same:

f ∗ = q∗.
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Proof of the strong duality of convex problems

Since problem (9) has a finite optimal value, we have f ∗ > −∞. It follows
that the following implication holds:

x ∈ X, gi(x) ≤ 0, i = 1, 2, · · · , m =⇒ f (x) ≥ f ∗.

By the nonlinear Farkas’s lamma, there exist λ̃1, λ̃2, · · · , λ̃m ≥ 0 such that

q(λ̃) = min
x∈X

(
f (x) +

m

∑
j=1

λ̃jgj(x)
)
≥ f ∗,

which combined with the weak duality theorem yields

q∗ ≥ q(λ̃) ≥ f ∗ ≥ q∗.

Hence, f ∗ = q∗ and λ̃ is an optimal solution of the dual problem. �
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Complementary slackness conditions

Theorem: Consider problem (9) and assume that f ∗ = q∗, where q∗ is the
optimal value of the dual problem given by (10). If x∗ and λ∗ are optimal
solutions of the primal and dual problems, respectively, then

x∗ ∈ arg min L(x, λ∗),
λ∗i gi(x∗) = 0, i = 1, 2. · · · , m.

Proof: First, we have

q∗ = q(λ∗) = min
x∈X

L(x, λ∗) ≤ L(x∗, λ∗)

= f (x∗) +
m

∑
i=1

λ∗i gi(x
∗) ≤ f (x∗) = f ∗.

Since f ∗ = q∗, all the inequalities in the above chain are satisfied as equalities.
It follows that x∗ ∈ arg min L(x, λ∗), ∑m

i=1 λ∗i gi(x∗) = 0. Because of λ∗i ≥ 0
and gi(x∗) ≤ 0 ∀ i = 1, 2. · · · , m, we obtain λ∗i gi(x∗) = 0 ∀ i = 1, 2. · · · , m. �

c© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan MA 5037: Duality – 17/17


