MA 5037: Optimization Methods and Applications Duality

Suh-Yuh Yang (楊肅煜)

Department of Mathematics, National Central University Jhongli District, Taoyuan City 320317, Taiwan

First version: August 03, 2023/Last updated: June 22, 2025

The primal problem and its Lagrangian function

We explore the dual problem by considering the general model:

$$f^* = \min f(x)$$

subject to $g_i(x) \le 0$, $i = 1, 2, \cdots, m$, $h_j(x) = 0$, $j = 1, 2, \cdots, p$, $x \in X$, (1)

where f, g_i , h_j ($i = 1, 2, \dots, m, j = 1, 2, \dots, p$) are functions defined on the set $X \subseteq \mathbb{R}^n$. Problem (1) will be referred to as the primal problem.

The Lagrangian function of the problem is defined as

$$L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x}) + \sum_{j=1}^{p} \mu_j h_j(\mathbf{x}), \quad (\mathbf{x} \in \mathbf{X}, \boldsymbol{\lambda} \in \mathbb{R}_+^m, \boldsymbol{\mu} \in \mathbb{R}^p)$$

where $\lambda_1, \lambda_2, \dots, \lambda_m$ are nonnegative Lagrange multipliers associated with the inequality constraints, and $\mu_1, \mu_2, \dots, \mu_p$ are the Lagrange multipliers associated with the equality constraints.

Definition of the dual problem

The dual objective function $q: \mathbb{R}^m_+ \times \mathbb{R}^p \to \mathbb{R} \cup \{-\infty\}$ is defined to be

$$q(\lambda, \mu) = \min_{x \in X} L(x, \lambda, \mu). \tag{2}$$

There may be values of (λ, μ) for which $q(\lambda, \mu) = -\infty$, we define the domain of the dual objective function as

$$dom(q) = \{(\lambda, \mu) \in \mathbb{R}^m_+ \times \mathbb{R}^p : q(\lambda, \mu) > -\infty\}.$$

Then the dual problem is given by

$$q^* = \max q(\lambda, \mu) \quad \text{subject to } (\lambda, \mu) \in dom(q).$$
 (3)

That is,

$$q^* = \max_{(\lambda,\mu) \in dom(q)} \min_{x \in X} L(x,\lambda,\mu).$$

Convexity of the dual problem

Theorem: Consider the problem (1) with f, g_i , h_j ($i = 1, 2, \dots, m$, $j = 1, 2, \dots, p$) being functions defined on the set $X \subseteq \mathbb{R}^n$, and let q be the function defined in (2). Then we have

(a)
$$dom(q) = \{(\lambda, \mu) \in \mathbb{R}^m_+ \times \mathbb{R}^p : q(\lambda, \mu) > -\infty\}$$
 is a convex set,

(b)
$$q(\lambda, \mu) = \min_{x \in X} L(x, \lambda, \mu)$$
 is a concave function over $dom(q)$.

Proof:

(a) Taking (λ_1, μ_1) , $(\lambda_2, \mu_2) \in dom(q)$ and $\alpha \in [0, 1]$, we have

$$\min_{\mathbf{x} \in X} L(\mathbf{x}, \lambda_1, \mu_1) > -\infty \quad \text{and} \quad \min_{\mathbf{x} \in X} L(\mathbf{x}, \lambda_2, \mu_2) > -\infty.$$

Since $L(x, \lambda, \mu)$ is affine with respect to λ and μ , we obtain

$$\begin{split} q(\alpha \lambda_1 + (1-\alpha)\lambda_2, \alpha \mu_1 + (1-\alpha)\mu_2) \\ &= \min_{x \in X} L(x, \alpha \lambda_1 + (1-\alpha)\lambda_2, \alpha \mu_1 + (1-\alpha)\mu_2) \\ &= \min_{x \in X} \left(\alpha L(x, \lambda_1, \mu_1) + (1-\alpha)L(x, \lambda_2, \mu_2)\right). \end{split}$$

Proof of the convexity of the dual problem

Therefore, we have

$$\begin{split} q(\alpha \lambda_1 + (1-\alpha)\lambda_2, \alpha \mu_1 + (1-\alpha)\mu_2) \\ &\geq \alpha \min_{x \in X} L(x, \lambda_1, \mu_1) + (1-\alpha) \min_{x \in X} L(x, \lambda_2, \mu_2) \\ &= \alpha q(\lambda_1, \mu_1) + (1-\alpha)q(\lambda_2, \mu_2) > -\infty. \end{split}$$

Hence, $\alpha(\lambda_1, \mu_1) + (1 - \alpha)(\lambda_2, \mu_2) \in dom(q)$, and the convexity of dom(q) is established.

(b) As noted in the proof of part (a), $L(x, \lambda, \mu)$ is an affine function with respect to (λ, μ) . In particular, it is a concave function with respect to (λ, μ) . Since $q(\lambda, \mu)$ is the minimum of concave functions, it must be concave.

Weak duality theorem

Theorem: Consider the primal problem (1) and its dual problem (3). Then $q^* \le f^*$, where q^* and f^* are optimal dual and primal values, respectively.

Proof: Let us denote the feasible set of the primal problem by

$$S = \{x \in X : g_i(x) \le 0, h_j(x) = 0, 1 \le i \le m, 1 \le j \le p\}.$$

Then for any $(\lambda, \mu) \in \mathbb{R}^m_+ \times \mathbb{R}^p$, we have

$$q(\lambda, \mu) = \min_{x \in X} L(x, \lambda, \mu) \le \min_{x \in S} L(x, \lambda, \mu)$$
$$= \min_{x \in S} \left(f(x) + \sum_{i=1}^{m} \lambda_i g_i(x) + \sum_{j=1}^{p} \mu_j h_j(x) \right)$$
$$\le \min_{x \in S} f(x).$$

We thus obtain that

$$q(\lambda, \mu) \leq \min_{x \in S} f(x) = f^*$$

for any $(\lambda, \mu) \in \mathbb{R}^m_+ \times \mathbb{R}^p$. By taking the maximum over (λ, μ) , we have $q^* \leq f^*$. \square

Supporting hyperplane theorem

Theorem: Let $C \subseteq \mathbb{R}^n$ be a convex set with nonempty interior and let $y \notin C$. Then there exists $\mathbf{0} \neq p \in \mathbb{R}^n$ such that

$$p^{\top}x \leq p^{\top}y$$
 for any $x \in C$.

Proof: Since $y \notin C \supseteq int(C) = int(cl(C))$, it follows that $y \notin int(cl(C))$. Therefore, there exists a sequence $\{y_k\}_{k\geq 1}$ satisfying $y_k \notin cl(C)$ such that $y_k \to y$ as $k \to \infty$.

Since cl(C) is convex and closed, it follows by the strict separation theorem (Theorem 10.1) that there exists $\mathbf{0} \neq p_k \in \mathbb{R}^n$ such that

$$p_k^{\top} x < p_k^{\top} y_k, \quad \forall \ x \in cl(C).$$

Dividing the latter inequality by $||p_k|| \neq 0$, we obtain

$$\frac{\boldsymbol{p}_k^{\top}}{\|\boldsymbol{p}_k\|}(\boldsymbol{x} - \boldsymbol{y}_k) < 0, \quad \forall \, \boldsymbol{x} \in cl(\boldsymbol{C}). \tag{4}$$

Proof of the supporting hyperplane theorem (cont'd)

Since the sequence $\{\frac{p_k}{\|p_k\|}\}_{k\geq 1}$ is bounded, it follows that there exists a subsequence $\{\frac{p_k}{\|\mathbf{p}_k\|}\}_{k\in T}$ such that $\frac{p_k}{\|\mathbf{p}_k\|} \to p$ as $k \xrightarrow{T} \infty$ for some $p \in \mathbb{R}^n$.

Hence, $\|p\| = 1$ and in particular $p \neq 0$. Taking the limit as $k \xrightarrow{T} \infty$ in inequality (4), we obtain that

$$p^{\top}(x-y) \leq 0, \quad \forall \ x \in cl(C),$$

which implies the result since $C \subseteq cl(C)$.

Separation of two convex sets

Theorem: Let $C_1, C_2 \subseteq \mathbb{R}^n$ be two convex sets with nonempty interior such that $C_1 \cap C_2 = \emptyset$. Then there exists $0 \neq p \in \mathbb{R}^n$ for which

$$p^{\top}x \leq p^{\top}y$$
, $\forall x \in C_1, y \in C_2$.

Proof: The set $C_1 - C_2$ is a convex set with nonempty interior, and since $C_1 \cap C_2 = \emptyset$, it follows that $\mathbf{0} \notin C_1 - C_2$. By the supporting hyperplane theorem, it follows that there exists $\mathbf{0} \neq p \in \mathbb{R}^n$ such that

$$p^{\top}(x-y) \leq p^{\top}\mathbf{0} = 0, \quad \forall \ x \in C_1, y \in C_2,$$

which is the same as the desired result. \Box

A nonlinear version of Farkas lemma

Theorem (nonlinear Farkas lemma): Let $X \subseteq \mathbb{R}^n$ be a convex set and let f, g_1, g_2, \dots, g_m be convex functions over X. Assume that there exists $\hat{x} \in X$ such that

$$g_i(\hat{\mathbf{x}}) < 0, \quad i = 1, 2, \cdots, m.$$

Let $c \in \mathbb{R}$ *. Then the following two claims are equivalent.*

(a) The following implication holds:

$$x \in X$$
, $g_i(x) \le 0$, $i = 1, 2, \cdots, m \implies f(x) \ge c$.

(b) There exist $\lambda_1, \lambda_2, \cdots, \lambda_m \geq 0$ such that

$$\min_{\mathbf{x} \in \mathbf{X}} \left(f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x}) \right) \ge c. \tag{5}$$

Proof of the nonlinear Farkas lemma

(b) \Rightarrow (a): Suppose that there exist $\lambda_1, \lambda_2, \dots, \lambda_m \ge 0$ such that (5) holds. Let $x \in X$ satisfy $g_i(x) \le 0$, $i = 1, 2, \dots, m$. Then by (5) we have

$$f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x}) \ge c.$$

Since $g_i(x) \leq 0$ and $\lambda_i \geq 0$ for $i = 1, 2, \dots, m$,

$$f(x) \ge c - \sum_{i=1}^{m} \lambda_i g_i(x) \ge c.$$

(a) \Rightarrow (b): Assume that (a) holds. Consider the following two sets:

$$S := \{ \mathbf{u} = (u_0, u_1, \dots, u_m) : \exists \ \mathbf{x} \in \mathbf{X} \text{ s.t. } f(\mathbf{x}) \le u_0, g_i(\mathbf{x}) \le u_i, 1 \le i \le m \},$$

$$T := \{ (u_0, u_1, \dots, u_m) : u_0 < c, u_1 < 0, u_2 < 0, \dots, u_m < 0 \}.$$

Proof of the nonlinear Farkas lemma (cont'd)

Note that S and T are convex with nonempty interiors and by (a), $S \cap T = \emptyset$. Therefore, by the separation theorem of two convex sets, it follows that there exists a vector $\mathbf{a} = (a_0, a_1, \dots, a_m)^\top \neq \mathbf{0}$ such that

$$\min_{(u_0, u_1, \dots, u_m) \in S} \sum_{j=0}^m a_j u_j \ge \max_{(u_0, u_1, \dots, u_m) \in T} \sum_{j=0}^m a_j u_j.$$
 (6)

Claim: $a \ge 0$. Consider the RHS of (6). Suppose that there exists an $a_i < 0$. By taking u_i to be a negative number tending to $-\infty$ while fixing all the other components as zeros, we obtain that the RHS of (6) is ∞ , which is a contradiction.

Since $a \ge 0$, it follows that RHS of (6) = a_0c , and we thus obtain

$$\min_{(u_0, u_1, \dots, u_m) \in S} \sum_{j=0}^m a_j u_j \ge a_0 c. \tag{7}$$

Proof of the nonlinear Farkas lemma (cont'd)

We will show that $a_0 > 0$. Suppose in contradiction that $a_0 = 0$. Then

$$\min_{(u_0,u_1,\cdots,u_m)\in S}\sum_{j=1}^m a_ju_j\geq 0.$$

Since we can take $u_i = g_i(\hat{x}), i = 1, 2, \dots, m$, it leads to

$$\sum_{j=1}^{m} a_j g_j(\hat{x}) \ge 0.$$

which is impossible since $g_i(\hat{x}) < 0 \ \forall j \text{ and } a = (a_0, a_1, \cdots, a_m)^\top \neq \mathbf{0}$.

Now we can divide (7) by $a_0 > 0$ to obtain

$$\min_{(u_0, u_1, \dots, u_m) \in S} \left(u_0 + \sum_{j=1}^m \tilde{a}_j u_j \right) \ge c, \quad \tilde{a}_j := \frac{a_j}{a_0}.$$
 (8)

Proof of the nonlinear Farkas lemma (cont'd)

Define a subset $\tilde{S} \subseteq S$ by

$$\tilde{S} := \{ u = (u_0, u_1, \dots, u_m) : \exists x \in X \text{ s.t. } f(x) = u_0, g_i(x) = u_i, 1 \le i \le m \} \\
= \{ (f(x), g_1(x), \dots, g_m(x)) : x \in X \}. \quad (\star)$$

Then we have

$$\min_{(u_0,u_1,\cdots,u_m)\in S} \left(u_0 + \sum_{j=1}^m \tilde{a}_j u_j\right) \leq \min_{(u_0,u_1,\cdots,u_m)\in \tilde{S}} \left(u_0 + \sum_{j=1}^m \tilde{a}_j u_j\right)$$

$$by (\star) = \min_{\mathbf{x}\in X} \left(f(\mathbf{x}) + \sum_{j=1}^m \tilde{a}_j g_j(\mathbf{x})\right),$$

which combined with (8) yields the desired result

$$\min_{\mathbf{x}\in\mathbf{X}}\Big(f(\mathbf{x})+\sum_{i=1}^m\tilde{a}_jg_j(\mathbf{x})\Big)\geq c.\quad \Box$$

Strong duality of convex problems (inequality constraints)

Theorem: *Consider the optimization problem*

$$f^* = \min f(x)$$

subject to $g_i(x) \le 0, i = 1, 2, \dots, m,$ (9)
 $x \in X,$

where X is a convex set and f, g_i , $i=1,2,\cdots$, m, are convex functions over X. Suppose that there exists $\hat{x} \in X$ for which $g_i(\hat{x}) < 0$, $i=1,2,\cdots$, m. Suppose that problem (9) has a finite optimal value. Then the optimal value of the dual problem

$$q^* = \max\{q(\lambda) : \lambda \in dom(q)\},\tag{10}$$

where

$$q(\lambda) = \min_{x \in X} L(x, \lambda),$$

is attained, and the optimal values of the primal and dual problems are the same:

$$f^* = q^*.$$

Proof of the strong duality of convex problems

Since problem (9) has a finite optimal value, we have $f^* > -\infty$. It follows that the following implication holds:

$$x \in X$$
, $g_i(x) \le 0$, $i = 1, 2, \cdots, m \Longrightarrow f(x) \ge f^*$.

By the nonlinear Farkas's lamma, there exist $\tilde{\lambda}_1, \tilde{\lambda}_2, \cdots, \tilde{\lambda}_m \geq 0$ such that

$$q(\tilde{\lambda}) = \min_{\mathbf{x} \in \mathbf{X}} \left(f(\mathbf{x}) + \sum_{j=1}^{m} \tilde{\lambda}_{j} g_{j}(\mathbf{x}) \right) \ge f^{*},$$

which combined with the weak duality theorem yields

$$q^* \ge q(\tilde{\lambda}) \ge f^* \ge q^*$$
.

Hence, $f^* = q^*$ and $\tilde{\lambda}$ is an optimal solution of the dual problem.

Complementary slackness conditions

Theorem: Consider problem (9) and assume that $f^* = q^*$, where q^* is the optimal value of the dual problem given by (10). If x^* and λ^* are optimal solutions of the primal and dual problems, respectively, then

$$x^* \in \arg\min L(x, \lambda^*),$$

 $\lambda_i^* g_i(x^*) = 0, \quad i = 1, 2, \cdots, m.$

Proof: First, we have

$$q^* = q(\lambda^*) = \min_{x \in X} L(x, \lambda^*) \le L(x^*, \lambda^*)$$

= $f(x^*) + \sum_{i=1}^{m} \lambda_i^* g_i(x^*) \le f(x^*) = f^*.$

Since $f^*=q^*$, all the inequalities in the above chain are satisfied as equalities. It follows that $x^*\in\arg\min\ L(x,\lambda^*)$, $\sum_{i=1}^m\lambda_i^*g_i(x^*)=0$. Because of $\lambda_i^*\geq 0$ and $g_i(x^*)\leq 0\ \forall\ i=1,2,\cdots,m$, we obtain $\lambda_i^*g_i(x^*)=0\ \forall\ i=1,2,\cdots,m$. \square