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Descent direction methods

We consider the unconstrained minimization problem:
min{f(x) : x € R"},

where the objective function f is continuously differentiable over R". We
will consider an iterative algorithm for finding stationary points of f.
The iterative algorithm takes the form

X1 =x+hHd, k=0,1,---,

where dj is the direction and # is the stepsize.

Definition: Lef f : R" — R be a continuously differentiable function. A
vector 0 # d € R" is called a descent direction of f at x if the directional
derivative f'(x;d) < 0. (Note that f'(x;d) = Vf(x) " d)

Descent property: If d is a descent direction of f at x, then 3 & > 0 such
that f(x +td) < f(x) forany t € (0,¢]. O

Taking small enough steps along these descent directions lead to a
decrease of the objective function.
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Schematic descent direction method

Initialization: Pick xy € R".
General step: Forany k =0,1,-- -, set

(a) Pick a descent direction dj.
(b) Find a stepsize t; satisfying f (xy + tidy) < f(xx).
(C) Set Xir1 = X + tkdk

(d) If a stopping criterion is satisfied then stop, x¢. 1 is the output.

The descent direction method remains “conceptual” and cannot be
implemented. Many details are missing in the above description:

@ What is the starting point xo?

@ How to choose the descent direction d;?
@ What stepsize should be taken t;.?

© What is the stopping criterion?
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Three popular choices of stepsize t;

The process of finding t is called line search, since it is essentially a
minimization procedure on the 1-D function g(t) := f(xy + tdy).

@ constant stepsize: f; = f for any k.

@ exact line search: f; is a minimizer of f along the ray xj + tdy:
ty € arg minf (x; + tdy).
>0
@ backtracking: The method requires three parameters: s > 0 (not
too small), o, B € (0,1).
set t < s f(xisdy)
——
while f(x) — f(xk + tedy) < —at VF(xe) dje do
set fy ‘Bi’k
Therefore, the stepsize is chosen as f;, = sﬁik, where i is the
smallest nonnegative integer for which (%) is satisfied:

f(x) — f g + spdy) > —aspVf (x;) ' dy. (*)

The third option is in a sense a compromise between the other twos.
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Validity of the sufficient decrease condition (x)

Theorem: Let f : R" — R be a continuously differentiable function and
x € R™. Assume that 0 # d € R" is a descent direction of f at x and let
a € (0,1). Then 3 € > 0 such that for all t € [0, €], we have

f(x) = f(x+td) > —atVf(x) " d.

Proof: Since f is continuously differentiable it follows that

e+ td) = f(x) + tVf(x) T d +o(t] d]]),
and hence
f(x) —fx+td) = —atVf(x) "d — (1 — a)tVf(x) " d —o(t]|d])).
Since d is a descent direction of f at x, we have

tg%l 7(1 — ﬂ()tVf(J;)Td* O(tHd”) — _(1 _ a)Vf(x)Td > 0.

Hence, 3 ¢ > 0 such that for all t € (0, ¢], we have
—(1—a)tVf(x)'d—o(t|d]) >0,

which implies the desired result. [
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Example: exact line search for quadratic functions

Letf(x) = x' Ax +2b " x + ¢, where A € R"*" is a symmetric positive
definite matrix, b € R”,and ¢ € R. Letx € R" and letd € R" be a
descent direction of f at x. The exact line search for the stepsize can be
obtained by considering

min{g(t) == f(x + td) }.

By a direct computation, we have

g(t) =flx+td) = (d'AD)P +2(d"Ax+d " b)t+x"Ax+2b x+c
= (d"Ad) +2(d"Ax + d " b)t +f(x).

Since ¢'(t) = 2(d " Ad)t +2d" (Ax + b) and Vf(x) = 2(Ax + b), it
follows that ¢’ (¢) = 0 if and only if
-
t =t = _w >0,
2d ' Ad
where since d is a descent direction of f at x, f'(x;d) = d' Vf(x) < 0.
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In which direction does the function f decrease most rapidly?

@ Making an observation, for n = 2, we have

[ (x; die) = (Vf(xi), di) = || VF (xi0) ||| || cos b,

where 6y is the angle between the vectors Vf(xy) and dj.
Therefore, f decreases most rapidly when 6, = 7, i.e., in the
direction of —Vf(xy) whenever Vf(x;) # 0.

@ Letf : R" — R be a continuously differentiable function and let
x € R" be a nonstationary point, Vf(x) # 0. Then an optimal

. . . v
solution Of.?ellll?n{f/(X;d) Ddll =1}isd = *ijf(%'

Proof: By the Cauchy-Schwarz inequality, for ||d|| = 1, we have

fl(x:d) = Vf(xe)"d > || V()| |d]| = —||Vf(x)|| < alowerbound
. __ Vflx) .
Taking d = INVIOIE we attain the lower bound. [
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The gradient method

@ In the gradient method, we take di = —Vf(xy), provided Vf (x;) # 0.

f (2 = Vf () = =V (x) V() = — | Vf(x) > < 0.

@ The gradient method
Input: Tolerance parameter € > 0.

Initialization: Pick xy € R" arbitrarily.
General step: Forany k =0, 1, - - -, execute

(a) Pick a stepsize t; by a line search procedure on the function

8(8) == f(x — £Vf (xc))-

(b) Setxyiq = xx — 1 Vf ().
(c) If [[Vf(xry1)]| < e then stop and x 1 is the output.
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Example

Consider the 2-D minimization problem rgcliyn(x2 +2y%) whose

optimal solution is (x,y) = (0,0) with corresponding optimal value 0.
@ MATLAB function: gradient method_quadratic(---)
For solving min,crs {x' Ax +2b"x}, A >~ 0, exact line search.

_

@ MATLAB function: gradient method_constant (---)

@ MATLAB function: gradient _method._backtracking (---)

In computational experience, backtracking does not have real
disadvantages in comparison to exact line search!
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The gradient method: zig-zag effect

The zig-zag effect: Let {x; } be the sequence generated by the gradient
method with exact line search for solving a problem of minimizing a
continuously differentiable function f. Then forany k = 0,1,2,. ..

-
(%12 = x%11) (g1 —x) = 0.
Proof: By the definition of the gradient method, we have

X1 — X = B V(%) Ko — X1 = —ben V(%)

Therefore, we wish to prove that Vf(x;) T Vf(x;,1) = 0. Since

8(t) :=f(xx — tVf(xx)),
we have
0=g'(tr) = —Vf () Vf (x — 5V (x0))-
That is,
~Vf(x0) " Vf(xi41) =0,
which is the desired result. [ (see the figure on page 9)
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A quadratic minimization problem

Consider the simple quadratic minimization problem

. T
=x Ax},
min{f(x) := x Ax}

where A € R"*", A > 0. The optimal solution is obviously x* = 0.
The gradient method with exact line search takes the form

d d,
X =x +td, d=—-Vf(x)=-2Ax, t =—X .
k1 = X + bedy,  dy f (k) kot 2] Ad,

Assume that x; # 0. Then we have
fee1) = 2 qAx00 = (% + tedy) A+ tedy)

x) Axi + 24 d] Axy + £2d] Ady

= kaAxk — tkd;dk + t%d;—Adk

1 (d} di)?
_ T L {dy ay
1 (d] d;)?
_ T k Ak
— xk Axk (1 - Z T T 71 )
(dy Ady)(x, AA™ Axy)
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Kantorovich inequality

Since d;, = —2Ax;, we have
(dy dy)?

X =(1- Xk)-
floa) = (1= A AT ) ()
Kantorovich inequality: Let A € R"" and A >~ 0. Then V 0 # x € R",
(x"x)? 4Amax (A) Amin(A)
(xTAx) (xTA’lx) ()lmax (A) =+ /\min (A))2 .

Proof: Let m := Amin(A) > 0 and M := Amax(A) > 0. Then the eigenvalues of

A+ MmA™" are A;(A) + /\N(IZ) ,i=1,2,--- ,n. The maximum value of the 1-D function
@(t) = t+ M2 on [m, M] can be attained at f = m and t = M and the value is M + m.

Therefore, the eigenvalues of A + MmA~! are smaller than M + m. Thus

>

A+MmA™ < (M+m),
which implies that
xT Ax + Mm(xT A7 %) < (M4 m)(x"x).
Using the inequality a8 < % (a4 B)?, we obtain the desired result

M +m)?

(xTAx)(Mm(x"A7lx)) < %(xTAx—O—Mm(xTAflx))2 < ( 1 (x'x)2. O
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Convergence rate analysis

Returning to the convergence rate analysis of the gradient method for
the quadratic minimization problem, we have

(1 (dy d)* .
fla) = (1= G s )

< (1= G )P0 = () £,

which implies a linear rate to the optimal value,

(k1) = O] = flxisn) < ¢f (x) = clf(x) — 0] and f(x) < ¥ (x0),
_ (M=m\2_ rx—1)2 _ M _ Amax(A)
€= <M+m) _(x+1) <Lx= Amin(A)’
where x(A) = x3(A) := ||Al]2||A7 1|2 is the condition number of A.
A2 AT 2 = VEAA) (A7) AT = \Jp(a2)y/o((a7)2)

and p(M) denotes the spectral radius of matrix M.
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Nonquadratic objective functions

@ Matrices with large condition number are called ill-conditioned.
Matrices with small condition number are called well-conditioned.

@ The entire discussion until now was on the restrictive class of
quadratic objective functions, where the Hessian matrix is
constant, but the notion of condition number also appears in the
context of nonquadratic objective functions. In that case, it is well
known that the rate of convergence of xy to a given stationary point x*
depends on the condition number of x(V2f(x*)).

@ We will not focus on these theoretical results, but will illustrate it
on a well-known ill-conditioned problem, the Rosenbrock
function, see next page.
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The Rosenbrock function (control theory)

The Rosenbrock function is f(x1,x2) := 100(x — x3)2 4 (1 — x1)2.

The optimal solution (global minimum) is (x1,x2) = (1,1) with
corresponding optimal value 0.
The gradient and Hessian of f are respectively

—400x1 (xp — x3) —2(1 — xl)}
Vi(x1,x) = 1 ,
£l x2) { 200(x; —x%)
By _ [—400x; +1200x3 +2  —400x;
Viinx) = { —400x, 200
(x1,%2) = (1,1) is the unique stationary point and

) ~[802 —400
Vf(l'l)_{féxoo 200]'

>> A = [802, -400; -400, 200];
>> cond (A)
ans = 2.5080e+003

A condition number of more than 2500 (ill-conditioned) should have severe
effects on the convergence speed of the gradient method (with backtracking,
~ 6890 iterations).
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Sensitivity of solutions to linear systems

@ We are given a linear system Ax = b, where A € R"*" is
symmetric, A > 0 and b € R". Then the solution is x = A~ 1lp.

@ We consider a perturbation b + Ab in the RHS. The new solution
is denoted by x + Ax, i.e.,, A(x + Ax) = b + Ab. We have
x+Ax =AYb+ Ab) = x + A"'Ab. Then

Ax]| _ A~TAB|| _ ATT][Ab] _ Amax(A1)[[AD]

B~ [l x| a [l

1 Ab_ 1 jab] 1 ™
Amin(A) HxH mm( ) HA_ll’H o /\min(A) )\min(A_l)HbH
_ Amax(A) [[Ab]| _ |Ab|

= ,  where we have used
Amin(@) 6]~ 5]

[A~10]| = VB A72b > \/Amin(A72)||B]|2 = Amin (A~ 1) ||B].

@ We can therefore deduce that the sensitivity of the solution of the linear
system to right-hand-side perturbations depends on the condition
number of the coefficients matrix.
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Scaling for ill-conditioned problems

We consider the unconstrained minimization problem:
min{f(x) :x € R"}.

Let S € R"*" be a nonsingular matrix. Let y := S~ 'x. Then x = Sy
and we obtain the equivalent problem:

min{g(y) :=f(Sy) : y € R"}.

Since Vyg(y) = S Vf(Sy) = S Vf(x), the gradient method for
solving mgl ¢(y) takes the form:
yeR”
Y1 = Y — &S Vf(Syy)-
Multiplying S and letting x; := Sy,, we have

X1 =% — i SS Vf(xi) = x; — KDV (xp).
=D
Then we obtain the scaled gradient method with scaling matrix D.
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The scaled gradient

@ The matrix D = SS' is positive definite (cf. Exercise 2.6). The
direction —DV/f(xy) is a descent of f at x; when Vf (x;) # 0 since

f'(x; —DVf(x)) = —Vf(x) ' DVf(x;) < 0.

@ To summarize the above discussion, we have shown that the
scaled gradient method with scaling matrix D > 0 is equivalent
to the gradient method employed on the function

g(y) = f(D'?y),

where y := D~1/2x (<= x = D'/2y). We note that the gradient
and Hessian of g are given by

Vigly) = D'2Vf(D'?y) = D'2Vif(x),
VZg(y) _ D1/2v2f(Dl/2y)D1/2:Dl/Zv)ZC]c(x)Dl/Z'
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The scaled gradient method

Input: Tolerance parameter ¢ > 0.

Initialization: Pick xy € R" arbitrarily.

General step: Forany k =0, 1, - - -, execute
(a) Pick a scaling matrix Dy > 0.

(b) Pick a stepsize t; by a line search procedure on the function
h(t) := f(x — DRV (xi))-

(c) Setxyi1 = x; — HDEVf (%)
(d) If |Vf(xkr1)]|| < e then stop and xy, 4 is the output.

It is often beneficial to choose the scaling matrix differently at each iteration.
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How to choose the D;? damped Newton’s method

@ To accelerate the rate of convergence of {xy }, which depends on the

condition number of the scaled Hessian D;/szf(xk)Dim. The
scaling matrix is often chosen to make this scaled Hessian to be as close
as possible to the identity matrix.

@ When V?f(x;) = 0, we choose Dy = (V2f(x;)) ™! and the scaled
Hessian becomes the identity matrix. The resulting method is the
so-called damped Newton’s method:

X1 = x5 — b(V2f () "V (%)

One difficulty associated with damped Newton's method is that it
requires full knowledge of the Hessian.

@ The term (V2f(x;)) ' Vf(x;) suggests that a linear system of the
form V2f(x;)d = Vf(x;) needs to be solved at each iteration,
which might be costly from a computational point of view.

@ The simplest of all scaling matrices are diagonal matrices. A natural
choice for diagonal elements is D;; = (V*f(x;)) ;!

ii

© Suh-Yuh Yang ( Wi 1E), Math. Dept., NCU, Taiwan MA 5037: The Gradient Method —20/35



The Gauss-Newton method

We consider the nonlinear least squares (NLS) problem:

min {g(x) Z(fz
where f1,fo, -+, fm are contmuously differentiable over R” and

c1,¢2, -+ ,cm € R. The problem can be reformulated as
. F 2,
min [|F(x)]

where the vector-valued function F is given by

filx) —c1
F(x) i fz(x)'* c2
m (x) —Cm

The Gauss-Newton method (A linearization method):
Given the iterate xy, find

m

%1 = argmin{ ) (£(x) + V(e (x—x) ) 1

xeR" i=1
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The Gauss-Newton method (cont’d)

The minimization problem is essentially a linear LS problem:
min ||Agx — by|?,
x€R"

where
Vi (x) "

Vi ()T
4 = fz(: %) — (x),

Vfm (xk)T
is the so-called Jacobian matrix and
Vi () " — fi(x) 41

v T, _ c
f2(xx) xk. fa(x) +c2 = J (o) — Fxy).

Sx
S
I

Vo (%) T2 ;fm(xk) + cm

The underlying assumption is that J(xy) is of a full column rank; otherwise
the minimization will not produce a unique minimizer.
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The Gauss-Newton method (cont’d)

We write an explicit expression for the Gauss-Newton iterates (see
Chapter 3) 1 = (J(x) T () () Ty
The method can also be written as
e = (T0) TT(x) () Ty

= (J(x) T () () T (T () xe — F(xi))

= x— () T () () T F (k).
The Gauss-Newton direction is therefore

d = —(J(x) ()T () TF ().
Noting that Vg(x) = 2] (x) "F(x), we can conclude that

i = 5 (1e) (%) 'V (x)

meaning that the Gauss-Newton method is essentially a scaled gradient
method with t; = 1 and the following positive definite scaling matrix:

Dy = (76 T (v)
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The damped Gauss-Newton method

The method described so far is also called the pure Gauss-Newton
method since no stepsize is really involved. To transform this method
into a practical algorithm, a stepsize is introduced, leading to the damped
Gauss-Newton method.

The damped Gauss-Newton method

Input: Tolerance parameter € > 0.
Initialization: Pick xy € R" arbitrarily.
General step: Forany k =0, 1, - - -, execute

(a) Setdy = —(J(x) (%)) " () TF ().

(b) Set stepsize t; by a line search procedure on the function

h(t) := g(x + tdy).
(c) Setxy,1 = xp + tydy.
(d) If |Vg(xr1)|l < € then stop and xy 4 is the output.
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Lipschitz property of the gradient

We consider the following unconstrained minimization problem
min{f(x) : x € R"},
where the objective function f is continuously differentiable.

@ Definition: Vf is Lipschitz continuous over R" < 3 L > 0 such that
IVf(x) = Vi)l < Lllx = yll, V¥ y € R"

° Ci’l (R") or Ci’l or CVH(IR™) or CH!: the class of functions over
R" with Lipschitz gradient with constant L.

° Ci’l (D): the set of all functions over D C R” whose gradient
satisfies the above Lipschitz condition for any x, y € D.

@ Examples:
(1) Linear functions: given a € R", f(x) = a' xis in Cy".
(2) Quadratic functions: let A € R™*" be symmetric, b € R"

and ¢ € R. Then f(x) = x' Ax +2b ' x + cis in C%’l, since

IVf(x) = Vi)l = 2[(Ax+b) - (Ay + b)|
< 2|Allllx—y

| :=Ljx —yll.
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The Fundamental Theorem of Calculus (FTC)

The FTC: Let f : [a,b] — R be a real-valued function.

Part 1: Let f € R[a,b]. Define F(x) := [ f(t)dt, x € [a,b]. Then (i) F(x) is
continuous on |a, b]; (ii) F'(x) :f( )for x € (a,b) where f is continuous.

Part 2: If f' € R[a, b], then f f'(x)dx = f(b) — f(a).

Application: Let f : R” — R be a continuously differentiable function over D C R".
Letx,y € Dand [x,y] C D. Define g(t) := f((1 — t)x + ty) for t € [0,1]. Using the chain
rule and the FTC, we respectively obtain ¢’(t) = Vf((1 —t)x + ty) - (y — x) and

1 1
f)—fx) = s =g(0) = [ gWdt= [ VA(-x+ty)- (y -
/01<Vf(x+ Hy —x)), y—x)dt.

In addition, if f is twice continuously differentiable over D C IR", then

fi(y) —fr(x) = /01 V) (x+ty—x)) - (y—x)dt, fori=1,2,---,n

That is, we have

V)~ VAW = [ Vet iy 0) (g - .
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Boundedness of the Hessian

Theorem: Let f be a twice continuously differentiable function over IR".
Then
feC (RY) <= |VH(x)| <L, VxeR"

Proof: (<) By the fundamental theorem of calculus, V x,y € R", we have
1 1
V) = V@) = [ Vet tly =)y 0t = [ VF(x+ - x)dt (v — ).

Thus, we have

IVf(y) = V=)l

IN

| [ 9ttty oty )

IN

1
([ 192 e+ g =) ) |y = ] < Llly =]
(=) By the fundamental theorem of calculus, V d € R" and & > 0, we have

V(x + ad) — Vf(x) = /O V2 (x4 td) ddt.

Thus, we have

H(/ V2 (x+ td)dt)d| = | VF (x+ ad) — VF()| < aL|d].

Dividing by « and taking the limit & — 0%, we obtain || V?f(x)d|| < L||d||, where we have
used the mean value theorem for definite integrals for each matrix component of V2f (x + td).0
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The descent lemma

The following descent lemma is fundamental in convergence proofs
of gradient-based methods.

The descent lemma: Let D C R" and f € Ci’l (D) for some L > 0. Then
forany x, y € D satisfying [x,y] C D it holds that

L
fy) <F00)+ V@) (v —2) + 5 1y — =l
Proof: By the fundamental theorem of calculus, we have
1
f)=fx) = [ (Tl tly =)y =)t

= (W0 + [V Hy =) - ),y -
Therefore, we have

F@) )~ (Vg -0l = | [t ity -2) - Ty -

< [Ty ) - F 0,y - o)
< [ty - 0) - Ty -l
< [y —xlPae=Zly -+, O
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A sufficient decrease lemma

@ Note that the proof of the descent lemma actually shows both
upper and lower bounds on the function:

Fx) + V) Ty —x) — 5 lly — P

<) < FG)+ V) (v~ + 5y~

o A sufficient decrease lemma: Suppose that f € C;" (R"). Then
Vx e R"and t > 0, we have

£ —f = 19f ) = 11— 2 ) [ )1

Proof: By the descent lemma we have
2
flx—tVf(x) < fx) —tIVF@)|*+ %IIVf(x)IIZ
= f) - t(1- 2)IvF) I

The result then follows by simple rearrangement of terms.  [J
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Sufficient decrease of the gradient method

Theorem: Let f € C;"' (R"). Let {x; }y=0 be generated by the gradient
method for solving mIiRn f (x) with one of the following stepsize strategies:
xeR"

(1) constant stepsize t € (0, ),

(2) exact line search,

(3) backtracking procedure with parameterss > 0, a, f € (0,1).
Then we have

fle) = f (1) = M|V () |12,

where
H1 - —) constant stepsize,
M := % exact line search,
2(1 —
amin{s, % } backtracking.
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Proof: constant stepsize and exact line search

(1) (constant stepsize) By the sufficient decrease lemma, we immediately have

f(xk)*f(xkﬂ)Zf<1fL;)HVf(xk)||220 forfe (0,7). O

Furthermore, if we wish to obtain the largest guaranteed bound on the decrease,
then we seek the maximum of

- Lt _ 2
i(1- 7)/ fe(0,5).
() ewd
One can show that this maximum is attained at f = % and we have
1

£o) — Flaken) = Flo) —F (m— 1 V() > o [ VF (e 2 (*)

(2) (exact line search) In the exact line search setting, f € argmin,.,  f (x; — tVf (x;)).
By the definition of t; we know that -

Flok ~ BVF () < Flo— 7 T (0)-

Therefore, we have
F) —faren) = )~ Flox— bVF ()
F) ~f (e~ 1Y) 2 5 IVF 0P,

where the last inequality comes from (x). O

(\Y
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Proof: backtracking

(3) (backtracking) In the backtracking setting we seek a small enough stepsize f; for
which we have

Fle) = f e = tVf (x0) = ate[VF ()2, @€ (0,2).

We would like to find a lower bound on t;. There are two options. Either t, = s
(the initial value of the stepsize) or the stepsize t;/f is not acceptable, i.e.,

floa) = flo — *Vf(xk)) < a% IVf (112 (x1)
By the sufficient decrease lemma with x = x; and t = %‘, we have
Lt
Flo) ~flos = §9Fe) = 5 (1= S2)IVFIE (42)

From (*1) and (%2), we obtain

t—k(l Lt") <at—<:>tk>72(l_“)ﬁ.

B 2 B L

> min s 202081,

Overall, we have

Finally, we obtain

0 o = 9 ) = i {5, 202 7 2.
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Convergence of the gradient method

Theorem: Let f € C;"' (R"). Let {x; }y=0 be generated by the gradient
method for solving mIiRn f (x) with one of the following stepsize strategies:
xeR"

(1) constant stepsize t € (0, ),

(2) exact line search,
(3) backtracking procedure with parameterss > 0, a, f € (0,1).

Assume that f is bounded below over R", i.e., 3 m € R such that f(x) > m
forall x € R™. Then we have the following:

(a) The sequence {f(xi)}r=q is nonincreasing. In addition, for any k > 0,
fxkr1) < f(xx) unless Vf(x;) = 0.

(b) Vf(xx) — 0ask — oo.
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Proof of the convergence theorem

(a) By the sufficient decrease of the gradient method, we have

F) = f (1) > MIVF ()%, ()

for some constant M > 0, and hence the equality f(x;) = f (¥ 1) can
hold only when Vf(x;) = 0.

(b) Since the sequence {f(x;) }x>¢ is nonincreasing, and bounded below, it
converges. Thus, in particular

flxx) —f(xs1) >0 as k— oo,

which combined with (xx) implies || Vf(x;)|| — 0 as k — oo, according
to the squeeze theorem. Therefore, we obtain

Vf(xx) =0 as k—oo. O
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“Rate of convergence” of gradient norms

Theorem: Under the setting of the previous theorem, let f* be the limit of
the convergent sequence {f (xy) }x>o. Then forany ¢ =0,1,2,. ..

min V()| < LB =S

k=0,1,- ¢ M(l+1)’
where 0
F1-1% ) constant stepsize,
M = zlL exact line search,
i mm{s 20-w)p } backtracking.

Proof: Summing the inequality (xx) on the previous page overk =0,1,--- , ¢, we
obtain the following inequality

I3
fx0) = f(xe41) = MY [IVF (i) |1
Since f(xp41) > f*, we can conclude that k=0

flxo) =f* >MkZ||fok)H2>M(€+1) _min | IVf e 112,
0

implying the desired result. [
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