

MA 5037: Optimization Methods and Applications

The Gradient Method

Suh-Yuh Yang (楊肅煜)

Department of Mathematics, National Central University
Jhongli District, Taoyuan City 320317, Taiwan

First version: May 21, 2018/Last updated: June 15, 2025

Descent direction methods

We consider the *unconstrained minimization problem*:

$$\min\{f(x) : x \in \mathbb{R}^n\},$$

where *the objective function f is continuously differentiable over \mathbb{R}^n* . We will consider an iterative algorithm for finding *stationary points of f* . The iterative algorithm takes the form

$$x_{k+1} = x_k + t_k d_k, \quad k = 0, 1, \dots,$$

where d_k is the direction and t_k is the stepsize.

Definition: Let $f : \mathbb{R}^n \rightarrow \mathbb{R}$ be a continuously differentiable function. A vector $\mathbf{0} \neq d \in \mathbb{R}^n$ is called a *descent direction of f at x* if the directional derivative $f'(x; d) < 0$. (Note that $f'(x; d) = \nabla f(x)^\top d$)

Descent property: If d is a descent direction of f at x , then $\exists \varepsilon > 0$ such that $f(x + t d) < f(x)$ for any $t \in (0, \varepsilon]$. \square

Taking small enough steps along these descent directions lead to a decrease of the objective function.

Schematic descent direction method

Initialization: Pick $x_0 \in \mathbb{R}^n$.

General step: For any $k = 0, 1, \dots$, set

- (a) Pick a descent direction d_k .
- (b) Find a stepsize t_k satisfying $f(x_k + t_k d_k) < f(x_k)$.
- (c) Set $x_{k+1} = x_k + t_k d_k$
- (d) If a stopping criterion is satisfied then stop, x_{k+1} is the output.

The descent direction method remains “*conceptual*” and cannot be implemented. Many details are missing in the above description:

- *What is the starting point x_0 ?*
- *How to choose the descent direction d_k ?*
- *What stepsize should be taken t_k ?*
- *What is the stopping criterion?*

Three popular choices of stepsize t_k

The process of finding t_k is called *line search*, since it is essentially a minimization procedure on the 1-D function $g(t) := f(x_k + t\mathbf{d}_k)$.

- **constant stepsize:** $t_k = \bar{t}$ for any k .
- **exact line search:** t_k is a minimizer of f along the ray $x_k + t\mathbf{d}_k$:

$$t_k \in \arg \min_{t \geq 0} f(x_k + t\mathbf{d}_k).$$

- **backtracking:** The method requires three parameters: $s > 0$ (*not too small*), $\alpha, \beta \in (0, 1)$.

```
set  $t_k \leftarrow s$ 
while  $f(x_k) - f(x_k + t_k \mathbf{d}_k) < -\alpha t_k \underbrace{\nabla f(x_k)^\top \mathbf{d}_k}_{f'(x_k; \mathbf{d}_k)}$  do
    set  $t_k \leftarrow \beta t_k$ 
```

Therefore, the stepsize is chosen as $t_k = s\beta^{i_k}$, where i_k is the smallest nonnegative integer for which (\star) is satisfied:

$$f(x_k) - f(x_k + s\beta^{i_k} \mathbf{d}_k) \geq -\alpha s \beta^{i_k} \nabla f(x_k)^\top \mathbf{d}_k. \quad (\star)$$

The third option is in a sense a compromise between the other two.

Validity of the sufficient decrease condition (\star)

Theorem: Let $f : \mathbb{R}^n \rightarrow \mathbb{R}$ be a continuously differentiable function and $x \in \mathbb{R}^n$. Assume that $\mathbf{0} \neq d \in \mathbb{R}^n$ is a descent direction of f at x and let $\alpha \in (0, 1)$. Then $\exists \varepsilon > 0$ such that for all $t \in [0, \varepsilon]$, we have

$$f(x) - f(x + t\mathbf{d}) \geq -\alpha t \nabla f(x)^\top \mathbf{d}.$$

Proof: Since f is continuously differentiable it follows that

$$f(x + t\mathbf{d}) = f(x) + t \nabla f(x)^\top \mathbf{d} + o(t\|\mathbf{d}\|),$$

and hence

$$f(x) - f(x + t\mathbf{d}) = -\alpha t \nabla f(x)^\top \mathbf{d} - (1 - \alpha)t \nabla f(x)^\top \mathbf{d} - o(t\|\mathbf{d}\|).$$

Since \mathbf{d} is a descent direction of f at x , we have

$$\lim_{t \rightarrow 0^+} \frac{-(1 - \alpha)t \nabla f(x)^\top \mathbf{d} - o(t\|\mathbf{d}\|)}{t} = -(1 - \alpha) \nabla f(x)^\top \mathbf{d} > 0.$$

Hence, $\exists \varepsilon > 0$ such that for all $t \in (0, \varepsilon]$, we have

$$-(1 - \alpha)t \nabla f(x)^\top \mathbf{d} - o(t\|\mathbf{d}\|) > 0,$$

which implies the desired result. \square

Example: exact line search for quadratic functions

Let $f(\mathbf{x}) = \mathbf{x}^\top \mathbf{A} \mathbf{x} + 2\mathbf{b}^\top \mathbf{x} + c$, where $\mathbf{A} \in \mathbb{R}^{n \times n}$ is a symmetric positive definite matrix, $\mathbf{b} \in \mathbb{R}^n$, and $c \in \mathbb{R}$. Let $\mathbf{x} \in \mathbb{R}^n$ and let $\mathbf{d} \in \mathbb{R}^n$ be a descent direction of f at \mathbf{x} . The exact line search for the stepsize can be obtained by considering

$$\min_{t \geq 0} \{g(t) := f(\mathbf{x} + t\mathbf{d})\}.$$

By a direct computation, we have

$$\begin{aligned} g(t) = f(\mathbf{x} + t\mathbf{d}) &= (\mathbf{d}^\top \mathbf{A} \mathbf{d})t^2 + 2(\mathbf{d}^\top \mathbf{A} \mathbf{x} + \mathbf{d}^\top \mathbf{b})t + \mathbf{x}^\top \mathbf{A} \mathbf{x} + 2\mathbf{b}^\top \mathbf{x} + c \\ &= (\mathbf{d}^\top \mathbf{A} \mathbf{d})t^2 + 2(\mathbf{d}^\top \mathbf{A} \mathbf{x} + \mathbf{d}^\top \mathbf{b})t + f(\mathbf{x}). \end{aligned}$$

Since $g'(t) = 2(\mathbf{d}^\top \mathbf{A} \mathbf{d})t + 2\mathbf{d}^\top (\mathbf{A} \mathbf{x} + \mathbf{b})$ and $\nabla f(\mathbf{x}) = 2(\mathbf{A} \mathbf{x} + \mathbf{b})$, it follows that $g'(t) = 0$ if and only if

$$t = t^* := -\frac{\mathbf{d}^\top \nabla f(\mathbf{x})}{2\mathbf{d}^\top \mathbf{A} \mathbf{d}} > 0,$$

where since \mathbf{d} is a descent direction of f at \mathbf{x} , $f'(\mathbf{x}; \mathbf{d}) = \mathbf{d}^\top \nabla f(\mathbf{x}) < 0$.

In which direction does the function f decrease most rapidly?

- Making an observation, for $n = 2$, we have

$$f'(\mathbf{x}_k; \mathbf{d}_k) = \langle \nabla f(\mathbf{x}_k), \mathbf{d}_k \rangle = \|\nabla f(\mathbf{x}_k)\| \|\mathbf{d}_k\| \cos \theta_k,$$

where θ_k is the angle between the vectors $\nabla f(\mathbf{x}_k)$ and \mathbf{d}_k . Therefore, f decreases most rapidly when $\theta_k = \pi$, i.e., in the direction of $-\nabla f(\mathbf{x}_k)$ whenever $\nabla f(\mathbf{x}_k) \neq \mathbf{0}$.

- Let $f : \mathbb{R}^n \rightarrow \mathbb{R}$ be a continuously differentiable function and let $\mathbf{x} \in \mathbb{R}^n$ be a nonstationary point, $\nabla f(\mathbf{x}) \neq \mathbf{0}$. Then an optimal solution of $\min_{\mathbf{d} \in \mathbb{R}^n} \{f'(\mathbf{x}; \mathbf{d}) : \|\mathbf{d}\| = 1\}$ is $\mathbf{d} = -\frac{\nabla f(\mathbf{x})}{\|\nabla f(\mathbf{x})\|}$.

Proof: By the Cauchy-Schwarz inequality, for $\|\mathbf{d}\| = 1$, we have

$$f'(\mathbf{x}; \mathbf{d}) = \nabla f(\mathbf{x}_k)^\top \mathbf{d} \geq -\|\nabla f(\mathbf{x})\| \|\mathbf{d}\| = -\|\nabla f(\mathbf{x})\| \leftarrow \text{a lower bound}$$

Taking $\mathbf{d} = -\frac{\nabla f(\mathbf{x})}{\|\nabla f(\mathbf{x})\|}$, we attain the lower bound. \square

The gradient method

- In the gradient method, we take $d_k = -\nabla f(x_k)$, provided $\nabla f(x_k) \neq 0$.

$$f'(\mathbf{x}_k; -\nabla f(\mathbf{x}_k)) = -\nabla f(\mathbf{x}_k)^\top \nabla f(\mathbf{x}_k) = -\|\nabla f(\mathbf{x}_k)\|^2 < 0.$$

- The gradient method

Input: Tolerance parameter $\varepsilon > 0$.

Initialization: Pick $\mathbf{x}_0 \in \mathbb{R}^n$ arbitrarily.

General step: For any $k = 0, 1, \dots$, execute

- Pick a stepsize t_k by a line search procedure on the function

$$g(t) := f(\mathbf{x}_k - t \nabla f(\mathbf{x}_k)).$$

- Set $\mathbf{x}_{k+1} = \mathbf{x}_k - t_k \nabla f(\mathbf{x}_k)$.

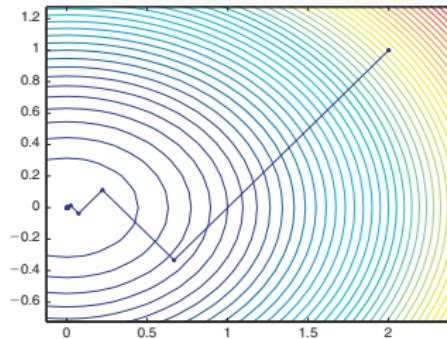
- If $\|\nabla f(\mathbf{x}_{k+1})\| \leq \varepsilon$ then stop and \mathbf{x}_{k+1} is the output.

Example

Consider the 2-D minimization problem $\min_{x,y} (x^2 + 2y^2)$ whose optimal solution is $(x, y) = (0, 0)$ with corresponding optimal value 0.

- MATLAB function: `gradient_method_quadratic(...)`

For solving $\min_{x \in \mathbb{R}^n} \{x^\top Ax + 2b^\top x\}$, $A \succ 0$, exact line search.



- MATLAB function: `gradient_method_constant(...)`
- MATLAB function: `gradient_method_backtracking(...)`

In computational experience, backtracking does not have real disadvantages in comparison to exact line search!

The gradient method: zig-zag effect

The zig-zag effect: *Let $\{x_k\}$ be the sequence generated by the gradient method with exact line search for solving a problem of minimizing a continuously differentiable function f . Then for any $k = 0, 1, 2, \dots$*

$$(x_{k+2} - x_{k+1})^\top (x_{k+1} - x_k) = 0.$$

Proof: By the definition of the gradient method, we have

$$x_{k+1} - x_k = -t_k \nabla f(x_k), \quad x_{k+2} - x_{k+1} = -t_{k+1} \nabla f(x_{k+1}).$$

Therefore, we wish to prove that $\nabla f(x_k)^\top \nabla f(x_{k+1}) = 0$. Since

$$g(t) := f(x_k - t \nabla f(x_k)),$$

we have

$$0 = g'(t_k) = -\nabla f(x_k)^\top \nabla f(x_k - t_k \nabla f(x_k)).$$

That is,

$$-\nabla f(x_k)^\top \nabla f(x_{k+1}) = 0,$$

which is the desired result. \square (see the figure on page 9)

A quadratic minimization problem

Consider the simple quadratic minimization problem

$$\min_{x \in \mathbb{R}^n} \{f(x) := x^\top A x\},$$

where $A \in \mathbb{R}^{n \times n}$, $A \succ \mathbf{0}$. The optimal solution is obviously $x^* = \mathbf{0}$.
The gradient method with exact line search takes the form

$$x_{k+1} = x_k + t_k d_k, \quad d_k = -\nabla f(x_k) = -2Ax_k, \quad t_k = \frac{d_k^\top d_k}{2d_k^\top Ad_k}.$$

Assume that $x_k \neq \mathbf{0}$. Then we have

$$\begin{aligned} f(x_{k+1}) &= x_{k+1}^\top A x_{k+1} = (x_k + t_k d_k)^\top A (x_k + t_k d_k) \\ &= x_k^\top A x_k + 2t_k d_k^\top A x_k + t_k^2 d_k^\top A d_k \\ &= x_k^\top A x_k - t_k d_k^\top d_k + t_k^2 d_k^\top A d_k \\ &= x_k^\top A x_k - \frac{1}{4} \frac{(d_k^\top d_k)^2}{d_k^\top A d_k} \\ &= x_k^\top A x_k \left(1 - \frac{1}{4} \frac{(d_k^\top d_k)^2}{(d_k^\top A d_k)(x_k^\top A A^{-1} A x_k)}\right). \end{aligned}$$

Kantorovich inequality

Since $d_k = -2Ax_k$, we have

$$f(x_{k+1}) = \left(1 - \frac{(d_k^\top d_k)^2}{(d_k^\top Ad_k)(d_k^\top A^{-1}d_k)}\right)f(x_k).$$

Kantorovich inequality: *Let $A \in \mathbb{R}^{n \times n}$ and $A \succ 0$. Then $\forall \mathbf{0} \neq x \in \mathbb{R}^n$,*

$$\frac{(x^\top x)^2}{(x^\top Ax)(x^\top A^{-1}x)} \geq \frac{4\lambda_{\max}(A)\lambda_{\min}(A)}{(\lambda_{\max}(A) + \lambda_{\min}(A))^2}.$$

Proof: Let $m := \lambda_{\min}(A) > 0$ and $M := \lambda_{\max}(A) > 0$. Then the eigenvalues of $A + MmA^{-1}$ are $\lambda_i(A) + \frac{Mm}{\lambda_i(A)}$, $i = 1, 2, \dots, n$. The maximum value of the 1-D function $\varphi(t) = t + \frac{Mm}{t}$ on $[m, M]$ can be attained at $t = m$ and $t = M$ and the value is $M + m$. Therefore, the eigenvalues of $A + MmA^{-1}$ are smaller than $M + m$. Thus

$$A + MmA^{-1} \preceq (M + m)I,$$

which implies that

$$x^\top Ax + Mm(x^\top A^{-1}x) \leq (M + m)(x^\top x).$$

Using the inequality $\alpha\beta \leq \frac{1}{4}(\alpha + \beta)^2$, we obtain the desired result

$$(x^\top Ax)(Mm(x^\top A^{-1}x)) \leq \frac{1}{4} \left(x^\top Ax + Mm(x^\top A^{-1}x) \right)^2 \leq \frac{(M + m)^2}{4} (x^\top x)^2. \quad \square$$

Convergence rate analysis

Returning to the convergence rate analysis of the gradient method for the quadratic minimization problem, we have

$$\begin{aligned} f(\mathbf{x}_{k+1}) &= \left(1 - \frac{(\mathbf{d}_k^\top \mathbf{d}_k)^2}{(\mathbf{d}_k^\top \mathbf{A} \mathbf{d}_k)(\mathbf{d}_k^\top \mathbf{A}^{-1} \mathbf{d}_k)}\right) f(\mathbf{x}_k) \\ &\leq \left(1 - \frac{4Mm}{(M+m)^2}\right) f(\mathbf{x}_k) = \left(\frac{M-m}{M+m}\right)^2 f(\mathbf{x}_k), \end{aligned}$$

which implies *a linear rate* to the optimal value,

$$|f(\mathbf{x}_{k+1}) - 0| = f(\mathbf{x}_{k+1}) \leq c f(\mathbf{x}_k) = c |f(\mathbf{x}_k) - 0| \text{ and } f(\mathbf{x}_k) \leq c^k f(\mathbf{x}_0),$$

$$c := \left(\frac{M-m}{M+m}\right)^2 = \left(\frac{\chi-1}{\chi+1}\right)^2 < 1, \quad \chi := \frac{M}{m} = \frac{\lambda_{\max}(\mathbf{A})}{\lambda_{\min}(\mathbf{A})},$$

where $\chi(\mathbf{A}) = \kappa_2(\mathbf{A}) := \|\mathbf{A}\|_2 \|\mathbf{A}^{-1}\|_2$ is the condition number of \mathbf{A} .

$$\begin{aligned} \therefore \|\mathbf{A}\|_2 \|\mathbf{A}^{-1}\|_2 &= \sqrt{\rho(\mathbf{A}^* \mathbf{A})} \sqrt{\rho((\mathbf{A}^{-1})^* \mathbf{A}^{-1})} = \sqrt{\rho(\mathbf{A}^2)} \sqrt{\rho((\mathbf{A}^{-1})^2)} \\ \text{and } \rho(M) &\text{ denotes the spectral radius of matrix } M. \end{aligned}$$

Nonquadratic objective functions

- Matrices with large condition number are called *ill-conditioned*. Matrices with small condition number are called *well-conditioned*.
- The entire discussion until now was on the restrictive class of quadratic objective functions, where the Hessian matrix is constant, *but the notion of condition number also appears in the context of nonquadratic objective functions. In that case, it is well known that the rate of convergence of x_k to a given stationary point x^* depends on the condition number of $\chi(\nabla^2 f(x^*))$.*
- We will not focus on these theoretical results, but will illustrate it on a well-known ill-conditioned problem, *the Rosenbrock function*, see next page.

The Rosenbrock function (control theory)

The Rosenbrock function is $f(x_1, x_2) := 100(x_2 - x_1^2)^2 + (1 - x_1)^2$.

- The optimal solution (global minimum) is $(x_1, x_2) = (1, 1)$ with corresponding optimal value 0.
- The gradient and Hessian of f are respectively

$$\nabla f(x_1, x_2) = \begin{bmatrix} -400x_1(x_2 - x_1^2) - 2(1 - x_1) \\ 200(x_2 - x_1^2) \end{bmatrix},$$
$$\nabla^2 f(x_1, x_2) = \begin{bmatrix} -400x_2 + 1200x_1^2 + 2 & -400x_1 \\ -400x_1 & 200 \end{bmatrix}.$$

- $(x_1, x_2) = (1, 1)$ is the unique stationary point and

$$\nabla^2 f(1, 1) = \begin{bmatrix} 802 & -400 \\ -400 & 200 \end{bmatrix}.$$

```
>> A = [802, -400; -400, 200];
>> cond(A)
ans = 2.5080e+003
```

A condition number of more than 2500 (ill-conditioned) should have severe effects on the convergence speed of the gradient method (with backtracking, ~ 6890 iterations).

Sensitivity of solutions to linear systems

- We are given a linear system $Ax = b$, where $A \in \mathbb{R}^{n \times n}$ is symmetric, $A \succ 0$ and $b \in \mathbb{R}^n$. Then the solution is $x = A^{-1}b$.
- We consider a perturbation $b + \Delta b$ in the RHS. The new solution is denoted by $x + \Delta x$, i.e., $A(x + \Delta x) = b + \Delta b$. We have $x + \Delta x = A^{-1}(b + \Delta b) = x + A^{-1}\Delta b$. Then

$$\begin{aligned}\frac{\|\Delta x\|}{\|x\|} &= \frac{\|A^{-1}\Delta b\|}{\|x\|} \leq \frac{\|A^{-1}\| \|\Delta b\|}{\|x\|} = \frac{\lambda_{\max}(A^{-1}) \|\Delta b\|}{\|x\|} \\ &= \frac{1}{\lambda_{\min}(A)} \frac{\|\Delta b\|}{\|x\|} = \frac{1}{\lambda_{\min}(A)} \frac{\|\Delta b\|}{\|A^{-1}b\|} \leq \frac{1}{\lambda_{\min}(A)} \frac{\|\Delta b\|}{\lambda_{\min}(A^{-1}) \|b\|} \\ &= \frac{\lambda_{\max}(A)}{\lambda_{\min}(A)} \frac{\|\Delta b\|}{\|b\|} = \chi(A) \frac{\|\Delta b\|}{\|b\|}, \quad \text{where we have used}\end{aligned}$$

$$\|A^{-1}b\| = \sqrt{b^\top A^{-2}b} \geq \sqrt{\lambda_{\min}(A^{-2}) \|b\|^2} = \lambda_{\min}(A^{-1}) \|b\|.$$

- We can therefore deduce that the sensitivity of the solution of the linear system to right-hand-side perturbations depends on the condition number of the coefficients matrix.

Scaling for ill-conditioned problems

We consider the unconstrained minimization problem:

$$\min\{f(\mathbf{x}) : \mathbf{x} \in \mathbb{R}^n\}.$$

Let $S \in \mathbb{R}^{n \times n}$ be a nonsingular matrix. Let $\mathbf{y} := S^{-1}\mathbf{x}$. Then $\mathbf{x} = S\mathbf{y}$ and we obtain the equivalent problem:

$$\min\{g(\mathbf{y}) := f(S\mathbf{y}) : \mathbf{y} \in \mathbb{R}^n\}.$$

Since $\nabla_{\mathbf{y}}g(\mathbf{y}) = S^\top \nabla f(S\mathbf{y}) = S^\top \nabla f(\mathbf{x})$, the gradient method for solving $\min_{\mathbf{y} \in \mathbb{R}^n} g(\mathbf{y})$ takes the form:

$$\mathbf{y}_{k+1} = \mathbf{y}_k - t_k S^\top \nabla f(S\mathbf{y}_k).$$

Multiplying S and letting $\mathbf{x}_k := S\mathbf{y}_k$, we have

$$\mathbf{x}_{k+1} = \mathbf{x}_k - t_k \underbrace{S S^\top}_{:= D} \nabla f(\mathbf{x}_k) := \mathbf{x}_k - t_k D \nabla f(\mathbf{x}_k).$$

Then we obtain *the scaled gradient method* with scaling matrix D .

The scaled gradient

- The matrix $D = SS^\top$ is positive definite (cf. Exercise 2.6). The direction $-D\nabla f(x_k)$ is a descent of f at x_k when $\nabla f(x_k) \neq \mathbf{0}$ since

$$f'(x_k; -D\nabla f(x_k)) = -\nabla f(x_k)^\top D\nabla f(x_k) < 0.$$

- To summarize the above discussion, we have shown that the scaled gradient method with scaling matrix $D \succ \mathbf{0}$ is equivalent to the gradient method employed on the function

$$g(y) = f(D^{1/2}y),$$

where $y := D^{-1/2}x$ ($\iff x = D^{1/2}y$). We note that the gradient and Hessian of g are given by

$$\nabla_y g(y) = D^{1/2} \nabla f(D^{1/2}y) = D^{1/2} \nabla_x f(x),$$

$$\nabla_y^2 g(y) = D^{1/2} \nabla^2 f(D^{1/2}y) D^{1/2} = D^{1/2} \nabla_x^2 f(x) D^{1/2}.$$

The scaled gradient method

Input: Tolerance parameter $\varepsilon > 0$.

Initialization: Pick $x_0 \in \mathbb{R}^n$ arbitrarily.

General step: For any $k = 0, 1, \dots$, execute

- (a) Pick a scaling matrix $D_k \succ 0$.
- (b) Pick a stepsize t_k by a line search procedure on the function

$$h(t) := f(x_k - tD_k \nabla f(x_k)).$$

- (c) Set $x_{k+1} = x_k - t_k D_k \nabla f(x_k)$.
- (d) If $\|\nabla f(x_{k+1})\| \leq \varepsilon$ then stop and x_{k+1} is the output.

It is often beneficial to choose the scaling matrix differently at each iteration.

How to choose the D_k ? damped Newton's method

- To accelerate the rate of convergence of $\{x_k\}$, which depends on the condition number of the scaled Hessian $D_k^{1/2} \nabla^2 f(x_k) D_k^{1/2}$. The scaling matrix is often chosen to make this scaled Hessian to be as close as possible to the identity matrix.
- When $\nabla^2 f(x_k) \succ 0$, we choose $D_k = (\nabla^2 f(x_k))^{-1}$ and the scaled Hessian becomes the identity matrix. *The resulting method is the so-called damped Newton's method:*

$$x_{k+1} = x_k - t_k (\nabla^2 f(x_k))^{-1} \nabla f(x_k)$$

One difficulty associated with damped Newton's method is that it requires full knowledge of the Hessian.

- The term $(\nabla^2 f(x_k))^{-1} \nabla f(x_k)$ suggests that a linear system of the form $\nabla^2 f(x_k) \mathbf{d} = \nabla f(x_k)$ needs to be solved at each iteration, which might be costly from a computational point of view.
- The simplest of all scaling matrices are diagonal matrices. A natural choice for diagonal elements is $D_{ii} = (\nabla^2 f(x_k))_{ii}^{-1}$.

The Gauss-Newton method

We consider the nonlinear least squares (NLS) problem:

$$\min_{\mathbf{x} \in \mathbb{R}^n} \{g(\mathbf{x}) := \sum_{i=1}^m (f_i(\mathbf{x}) - c_i)^2\},$$

where f_1, f_2, \dots, f_m are continuously differentiable over \mathbb{R}^n and $c_1, c_2, \dots, c_m \in \mathbb{R}$. The problem can be reformulated as

$$\min_{\mathbf{x} \in \mathbb{R}^n} \|F(\mathbf{x})\|^2,$$

where the vector-valued function F is given by

$$F(\mathbf{x}) := \begin{bmatrix} f_1(\mathbf{x}) - c_1 \\ f_2(\mathbf{x}) - c_2 \\ \vdots \\ f_m(\mathbf{x}) - c_m \end{bmatrix}.$$

The Gauss-Newton method (A linearization method):

Given the iterate \mathbf{x}_k , find

$$\mathbf{x}_{k+1} := \arg \min_{\mathbf{x} \in \mathbb{R}^n} \left\{ \sum_{i=1}^m \left(f_i(\mathbf{x}_k) + \nabla f_i(\mathbf{x}_k)^\top (\mathbf{x} - \mathbf{x}_k) - c_i \right)^2 \right\}.$$

The Gauss-Newton method (cont'd)

The minimization problem is essentially a linear LS problem:

$$\min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{A}_k \mathbf{x} - \mathbf{b}_k\|^2,$$

where

$$\mathbf{A}_k = \begin{bmatrix} \nabla f_1(\mathbf{x}_k)^\top \\ \nabla f_2(\mathbf{x}_k)^\top \\ \vdots \\ \nabla f_m(\mathbf{x}_k)^\top \end{bmatrix} := J(\mathbf{x}_k),$$

is the so-called Jacobian matrix and

$$\mathbf{b}_k = \begin{bmatrix} \nabla f_1(\mathbf{x}_k)^\top \mathbf{x}_k - f_1(\mathbf{x}_k) + c_1 \\ \nabla f_2(\mathbf{x}_k)^\top \mathbf{x}_k - f_2(\mathbf{x}_k) + c_2 \\ \vdots \\ \nabla f_m(\mathbf{x}_k)^\top \mathbf{x}_k - f_m(\mathbf{x}_k) + c_m \end{bmatrix} := J(\mathbf{x}_k) \mathbf{x}_k - \mathbf{F}(\mathbf{x}_k).$$

The underlying assumption is that $J(\mathbf{x}_k)$ is of a full column rank; otherwise the minimization will not produce a unique minimizer.

The Gauss-Newton method (cont'd)

We write an explicit expression for the Gauss-Newton iterates (see Chapter 3)

$$\mathbf{x}_{k+1} = (J(\mathbf{x}_k)^\top J(\mathbf{x}_k))^{-1} J(\mathbf{x}_k)^\top \mathbf{b}_k.$$

The method can also be written as

$$\begin{aligned}\mathbf{x}_{k+1} &= (J(\mathbf{x}_k)^\top J(\mathbf{x}_k))^{-1} J(\mathbf{x}_k)^\top \mathbf{b}_k \\ &= (J(\mathbf{x}_k)^\top J(\mathbf{x}_k))^{-1} J(\mathbf{x}_k)^\top (J(\mathbf{x}_k)\mathbf{x}_k - F(\mathbf{x}_k)) \\ &= \mathbf{x}_k - (J(\mathbf{x}_k)^\top J(\mathbf{x}_k))^{-1} J(\mathbf{x}_k)^\top F(\mathbf{x}_k).\end{aligned}$$

The Gauss-Newton direction is therefore

$$\mathbf{d}_k = -(J(\mathbf{x}_k)^\top J(\mathbf{x}_k))^{-1} J(\mathbf{x}_k)^\top F(\mathbf{x}_k).$$

Noting that $\nabla g(\mathbf{x}) = 2J(\mathbf{x})^\top F(\mathbf{x})$, we can conclude that

$$\mathbf{d}_k = -\frac{1}{2}(J(\mathbf{x}_k)^\top J(\mathbf{x}_k))^{-1} \nabla g(\mathbf{x}_k)$$

meaning that the Gauss-Newton method is essentially a scaled gradient method with $t_k = 1$ and the following positive definite scaling matrix:

$$\mathbf{D}_k = \frac{1}{2}(J(\mathbf{x}_k)^\top J(\mathbf{x}_k))^{-1}.$$

The damped Gauss-Newton method

The method described so far is also called the pure Gauss-Newton method since no stepsize is really involved. To transform this method into a practical algorithm, *a stepsize is introduced, leading to the damped Gauss-Newton method.*

The damped Gauss-Newton method

Input: Tolerance parameter $\varepsilon > 0$.

Initialization: Pick $x_0 \in \mathbb{R}^n$ arbitrarily.

General step: For any $k = 0, 1, \dots$, execute

- Set $d_k = -(J(x_k)^\top J(x_k))^{-1} J(x_k)^\top F(x_k)$.
- Set stepsize t_k by a line search procedure on the function

$$h(t) := g(x_k + t d_k).$$

- Set $x_{k+1} = x_k + t_k d_k$.
- If $\|\nabla g(x_{k+1})\| \leq \varepsilon$ then stop and x_{k+1} is the output.

Lipschitz property of the gradient

We consider the following unconstrained minimization problem

$$\min\{f(x) : x \in \mathbb{R}^n\},$$

where the objective function f is *continuously differentiable*.

- **Definition:** ∇f is Lipschitz continuous over $\mathbb{R}^n \Leftrightarrow \exists L \geq 0$ such that $\|\nabla f(x) - \nabla f(y)\| \leq L\|x - y\|, \forall x, y \in \mathbb{R}^n$.
- $C_L^{1,1}(\mathbb{R}^n)$ or $C_L^{1,1}$ or $C^{1,1}(\mathbb{R}^n)$ or $C^{1,1}$: the class of functions over \mathbb{R}^n with Lipschitz gradient with constant L .
- $C_L^{1,1}(D)$: the set of all functions over $D \subseteq \mathbb{R}^n$ whose gradient satisfies the above Lipschitz condition for any $x, y \in D$.
- **Examples:**
 - (1) Linear functions: given $a \in \mathbb{R}^n, f(x) = a^\top x$ is in $C_0^{1,1}$.
 - (2) Quadratic functions: let $A \in \mathbb{R}^{n \times n}$ be symmetric, $b \in \mathbb{R}^n$ and $c \in \mathbb{R}$. Then $f(x) = x^\top Ax + 2b^\top x + c$ is in $C_L^{1,1}$, since
$$\begin{aligned}\|\nabla f(x) - \nabla f(y)\| &= 2\|(Ax + b) - (Ay + b)\| \\ &\leq 2\|A\|\|x - y\| := L\|x - y\|.\end{aligned}$$

The Fundamental Theorem of Calculus (FTC)

The FTC: Let $f : [a, b] \rightarrow \mathbb{R}$ be a real-valued function.

Part 1: Let $f \in \mathcal{R}[a, b]$. Define $F(x) := \int_a^x f(t)dt$, $x \in [a, b]$. Then (i) $F(x)$ is continuous on $[a, b]$; (ii) $F'(x) = f(x)$ for $x \in (a, b)$ where f is continuous.

Part 2: If $f' \in \mathcal{R}[a, b]$, then $\int_a^b f'(x)dx = f(b) - f(a)$.

Application: Let $f : \mathbb{R}^n \rightarrow \mathbb{R}$ be a continuously differentiable function over $D \subseteq \mathbb{R}^n$. Let $\mathbf{x}, \mathbf{y} \in D$ and $[\mathbf{x}, \mathbf{y}] \subseteq D$. Define $g(t) := f((1-t)\mathbf{x} + t\mathbf{y})$ for $t \in [0, 1]$. Using the chain rule and the FTC, we respectively obtain $g'(t) = \nabla f((1-t)\mathbf{x} + t\mathbf{y}) \cdot (\mathbf{y} - \mathbf{x})$ and

$$\begin{aligned} f(\mathbf{y}) - f(\mathbf{x}) &= g(1) - g(0) = \int_0^1 g'(t)dt = \int_0^1 \nabla f((1-t)\mathbf{x} + t\mathbf{y}) \cdot (\mathbf{y} - \mathbf{x})dt \\ &= \int_0^1 \langle \nabla f(\mathbf{x} + t(\mathbf{y} - \mathbf{x})), \mathbf{y} - \mathbf{x} \rangle dt. \end{aligned}$$

In addition, if f is twice continuously differentiable over $D \subseteq \mathbb{R}^n$, then

$$f_{x_i}(\mathbf{y}) - f_{x_i}(\mathbf{x}) = \int_0^1 \nabla(f_{x_i})(\mathbf{x} + t(\mathbf{y} - \mathbf{x})) \cdot (\mathbf{y} - \mathbf{x})dt, \quad \text{for } i = 1, 2, \dots, n.$$

That is, we have

$$\nabla f(\mathbf{y}) - \nabla f(\mathbf{x}) = \int_0^1 \nabla^2 f(\mathbf{x} + t(\mathbf{y} - \mathbf{x}))(\mathbf{y} - \mathbf{x})dt.$$

Boundedness of the Hessian

Theorem: *Let f be a twice continuously differentiable function over \mathbb{R}^n . Then*

$$f \in C_L^{1,1}(\mathbb{R}^n) \iff \|\nabla^2 f(\mathbf{x})\| \leq L, \forall \mathbf{x} \in \mathbb{R}^n.$$

Proof: (\Leftarrow) By the fundamental theorem of calculus, $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, we have

$$\nabla f(\mathbf{y}) - \nabla f(\mathbf{x}) = \int_0^1 \nabla^2 f(\mathbf{x} + t(\mathbf{y} - \mathbf{x})) (\mathbf{y} - \mathbf{x}) dt = \int_0^1 \nabla^2 f(\mathbf{x} + t(\mathbf{y} - \mathbf{x})) dt (\mathbf{y} - \mathbf{x}).$$

Thus, we have

$$\begin{aligned} \|\nabla f(\mathbf{y}) - \nabla f(\mathbf{x})\| &\leq \left\| \int_0^1 \nabla^2 f(\mathbf{x} + t(\mathbf{y} - \mathbf{x})) dt \right\| \|\mathbf{y} - \mathbf{x}\| \\ &\leq \left(\int_0^1 \|\nabla^2 f(\mathbf{x} + t(\mathbf{y} - \mathbf{x}))\| dt \right) \|\mathbf{y} - \mathbf{x}\| \leq L \|\mathbf{y} - \mathbf{x}\|. \end{aligned}$$

(\Rightarrow) By the fundamental theorem of calculus, $\forall \mathbf{d} \in \mathbb{R}^n$ and $\alpha > 0$, we have

$$\nabla f(\mathbf{x} + \alpha \mathbf{d}) - \nabla f(\mathbf{x}) = \int_0^\alpha \nabla^2 f(\mathbf{x} + t \mathbf{d}) \mathbf{d} dt.$$

Thus, we have

$$\left\| \left(\int_0^\alpha \nabla^2 f(\mathbf{x} + t \mathbf{d}) dt \right) \mathbf{d} \right\| = \|\nabla f(\mathbf{x} + \alpha \mathbf{d}) - \nabla f(\mathbf{x})\| \leq \alpha L \|\mathbf{d}\|.$$

Dividing by α and taking the limit $\alpha \rightarrow 0^+$, we obtain $\|\nabla^2 f(\mathbf{x}) \mathbf{d}\| \leq L \|\mathbf{d}\|$, where we have used the mean value theorem for definite integrals for each matrix component of $\nabla^2 f(\mathbf{x} + t \mathbf{d})$. \square

The descent lemma

The following descent lemma is fundamental in convergence proofs of gradient-based methods.

The descent lemma: *Let $D \subseteq \mathbb{R}^n$ and $f \in C_L^{1,1}(D)$ for some $L > 0$. Then for any $\mathbf{x}, \mathbf{y} \in D$ satisfying $[\mathbf{x}, \mathbf{y}] \subseteq D$ it holds that*

$$f(\mathbf{y}) \leq f(\mathbf{x}) + \nabla f(\mathbf{x})^\top (\mathbf{y} - \mathbf{x}) + \frac{L}{2} \|\mathbf{y} - \mathbf{x}\|^2.$$

Proof: By the fundamental theorem of calculus, we have

$$\begin{aligned} f(\mathbf{y}) - f(\mathbf{x}) &= \int_0^1 \langle \nabla f(\mathbf{x} + t(\mathbf{y} - \mathbf{x})), \mathbf{y} - \mathbf{x} \rangle dt \\ &= \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \int_0^1 \langle \nabla f(\mathbf{x} + t(\mathbf{y} - \mathbf{x})) - \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle dt. \end{aligned}$$

Therefore, we have

$$\begin{aligned} |f(\mathbf{y}) - f(\mathbf{x}) - \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle| &= \left| \int_0^1 \langle \nabla f(\mathbf{x} + t(\mathbf{y} - \mathbf{x})) - \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle dt \right| \\ &\leq \int_0^1 | \langle \nabla f(\mathbf{x} + t(\mathbf{y} - \mathbf{x})) - \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle | dt \\ &\leq \int_0^1 \| \nabla f(\mathbf{x} + t(\mathbf{y} - \mathbf{x})) - \nabla f(\mathbf{x}) \| \| \mathbf{y} - \mathbf{x} \| dt \\ &\leq \int_0^1 t L \| \mathbf{y} - \mathbf{x} \|^2 dt = \frac{L}{2} \| \mathbf{y} - \mathbf{x} \|^2. \quad \square \end{aligned}$$

A sufficient decrease lemma

- Note that the proof of the descent lemma actually shows both upper and lower bounds on the function:

$$\begin{aligned} f(\mathbf{x}) + \nabla f(\mathbf{x})^\top (\mathbf{y} - \mathbf{x}) - \frac{L}{2} \|\mathbf{y} - \mathbf{x}\|^2 \\ \leq f(\mathbf{y}) \leq f(\mathbf{x}) + \nabla f(\mathbf{x})^\top (\mathbf{y} - \mathbf{x}) + \frac{L}{2} \|\mathbf{y} - \mathbf{x}\|^2. \end{aligned}$$

- **A sufficient decrease lemma:** *Suppose that $f \in C_L^{1,1}(\mathbb{R}^n)$. Then $\forall \mathbf{x} \in \mathbb{R}^n$ and $t > 0$, we have*

$$f(\mathbf{x}) - f(\mathbf{x} - t \nabla f(\mathbf{x})) \geq t \left(1 - \frac{Lt}{2}\right) \|\nabla f(\mathbf{x})\|^2.$$

Proof: By the descent lemma we have

$$\begin{aligned} f(\mathbf{x} - t \nabla f(\mathbf{x})) &\leq f(\mathbf{x}) - t \|\nabla f(\mathbf{x})\|^2 + \frac{Lt^2}{2} \|\nabla f(\mathbf{x})\|^2 \\ &= f(\mathbf{x}) - t \left(1 - \frac{Lt}{2}\right) \|\nabla f(\mathbf{x})\|^2. \end{aligned}$$

The result then follows by simple rearrangement of terms. \square

Sufficient decrease of the gradient method

Theorem: Let $f \in C_L^{1,1}(\mathbb{R}^n)$. Let $\{x_k\}_{k \geq 0}$ be generated by the gradient method for solving $\min_{x \in \mathbb{R}^n} f(x)$ with one of the following stepsize strategies:

- (1) constant stepsize $\bar{t} \in (0, \frac{2}{L})$,
- (2) exact line search,
- (3) backtracking procedure with parameters $s > 0, \alpha, \beta \in (0, 1)$.

Then we have

$$f(x_k) - f(x_{k+1}) \geq M \|\nabla f(x_k)\|^2,$$

where

$$M := \begin{cases} \bar{t}\left(1 - \frac{\bar{t}L}{2}\right) & \text{constant stepsize,} \\ \frac{1}{2L} & \text{exact line search,} \\ \alpha \min\left\{s, \frac{2(1-\alpha)\beta}{L}\right\} & \text{backtracking.} \end{cases}$$

Proof: constant stepsize and exact line search

(1) **(constant stepsize)** By the sufficient decrease lemma, we immediately have

$$f(\mathbf{x}_k) - f(\mathbf{x}_{k+1}) \geq \bar{t} \left(1 - \frac{L\bar{t}}{2}\right) \|\nabla f(\mathbf{x}_k)\|^2 \geq 0 \quad \text{for } \bar{t} \in (0, \frac{2}{L}). \quad \square$$

Furthermore, if we wish to obtain the largest guaranteed bound on the decrease, then we seek the maximum of

$$\bar{t} \left(1 - \frac{L\bar{t}}{2}\right), \quad \forall \bar{t} \in (0, \frac{2}{L}).$$

One can show that this maximum is attained at $\bar{t} = \frac{1}{L}$ and we have

$$f(\mathbf{x}_k) - f(\mathbf{x}_{k+1}) = f(\mathbf{x}_k) - f\left(\mathbf{x}_k - \frac{1}{L} \nabla f(\mathbf{x}_k)\right) \geq \frac{1}{2L} \|\nabla f(\mathbf{x}_k)\|^2. \quad (\star)$$

(2) **(exact line search)** In the exact line search setting, $t_k \in \operatorname{argmin}_{t \geq 0} f(\mathbf{x}_k - t \nabla f(\mathbf{x}_k))$. By the definition of t_k we know that

$$f(\mathbf{x}_k - t_k \nabla f(\mathbf{x}_k)) \leq f(\mathbf{x}_k - \frac{1}{L} \nabla f(\mathbf{x}_k)).$$

Therefore, we have

$$\begin{aligned} f(\mathbf{x}_k) - f(\mathbf{x}_{k+1}) &= f(\mathbf{x}_k) - f(\mathbf{x}_k - t_k \nabla f(\mathbf{x}_k)) \\ &\geq f(\mathbf{x}_k) - f\left(\mathbf{x}_k - \frac{1}{L} \nabla f(\mathbf{x}_k)\right) \geq \frac{1}{2L} \|\nabla f(\mathbf{x}_k)\|^2, \end{aligned}$$

where the last inequality comes from (\star) . \square

Proof: backtracking

(3) **(backtracking)** In the backtracking setting we seek a small enough stepsize t_k for which we have

$$f(\mathbf{x}_k) - f(\mathbf{x}_k - t_k \nabla f(\mathbf{x}_k)) \geq \alpha t_k \|\nabla f(\mathbf{x}_k)\|^2, \quad \alpha \in (0, 1).$$

We would like to find a lower bound on t_k . There are two options. Either $t_k = s$ (the initial value of the stepsize) or the stepsize t_k/β is not acceptable, i.e.,

$$f(\mathbf{x}_k) - f(\mathbf{x}_k - \frac{t_k}{\beta} \nabla f(\mathbf{x}_k)) < \alpha \frac{t_k}{\beta} \|\nabla f(\mathbf{x}_k)\|^2. \quad (\star 1)$$

By the sufficient decrease lemma with $x = \mathbf{x}_k$ and $t = \frac{t_k}{\beta}$, we have

$$f(\mathbf{x}_k) - f(\mathbf{x}_k - \frac{t_k}{\beta} \nabla f(\mathbf{x}_k)) \geq \frac{t_k}{\beta} \left(1 - \frac{Lt_k}{2\beta}\right) \|\nabla f(\mathbf{x}_k)\|^2. \quad (\star 2)$$

From $(\star 1)$ and $(\star 2)$, we obtain

$$\frac{t_k}{\beta} \left(1 - \frac{Lt_k}{2\beta}\right) < \alpha \frac{t_k}{\beta} \iff t_k > \frac{2(1-\alpha)\beta}{L}.$$

Overall, we have

$$t_k \geq \min \left\{ s, \frac{2(1-\alpha)\beta}{L} \right\}.$$

Finally, we obtain

$$f(\mathbf{x}_k) - f(\mathbf{x}_k - t_k \nabla f(\mathbf{x}_k)) \geq \alpha \min \left\{ s, \frac{2(1-\alpha)\beta}{L} \right\} \|\nabla f(\mathbf{x}_k)\|^2. \quad \square$$

Convergence of the gradient method

Theorem: Let $f \in C_L^{1,1}(\mathbb{R}^n)$. Let $\{x_k\}_{k \geq 0}$ be generated by the gradient method for solving $\min_{x \in \mathbb{R}^n} f(x)$ with one of the following stepsize strategies:

- (1) constant stepsize $\bar{t} \in (0, \frac{2}{L})$,
- (2) exact line search,
- (3) backtracking procedure with parameters $s > 0, \alpha, \beta \in (0, 1)$.

Assume that f is bounded below over \mathbb{R}^n , i.e., $\exists m \in \mathbb{R}$ such that $f(x) > m$ for all $x \in \mathbb{R}^n$. Then we have the following:

- (a) The sequence $\{f(x_k)\}_{k \geq 0}$ is nonincreasing. In addition, for any $k \geq 0$, $f(x_{k+1}) < f(x_k)$ unless $\nabla f(x_k) = \mathbf{0}$.
- (b) $\nabla f(x_k) \rightarrow \mathbf{0}$ as $k \rightarrow \infty$.

Proof of the convergence theorem

(a) By the sufficient decrease of the gradient method, we have

$$f(\mathbf{x}_k) - f(\mathbf{x}_{k+1}) \geq M \|\nabla f(\mathbf{x}_k)\|^2, \quad (\star\star)$$

for some constant $M > 0$, and hence the equality $f(\mathbf{x}_k) = f(\mathbf{x}_{k+1})$ can hold only when $\nabla f(\mathbf{x}_k) = \mathbf{0}$.

(b) Since the sequence $\{f(\mathbf{x}_k)\}_{k \geq 0}$ is nonincreasing, and bounded below, it converges. Thus, in particular

$$f(\mathbf{x}_k) - f(\mathbf{x}_{k+1}) \rightarrow 0 \quad \text{as } k \rightarrow \infty,$$

which combined with $(\star\star)$ implies $\|\nabla f(\mathbf{x}_k)\| \rightarrow 0$ as $k \rightarrow \infty$, according to the squeeze theorem. Therefore, we obtain

$$\nabla f(\mathbf{x}_k) \rightarrow \mathbf{0} \quad \text{as } k \rightarrow \infty. \quad \square$$

“Rate of convergence” of gradient norms

Theorem: Under the setting of the previous theorem, let f^* be the limit of the convergent sequence $\{f(\mathbf{x}_k)\}_{k \geq 0}$. Then for any $\ell = 0, 1, 2, \dots$

$$\min_{k=0,1,\dots,\ell} \|\nabla f(\mathbf{x}_k)\| \leq \sqrt{\frac{f(\mathbf{x}_0) - f^*}{M(\ell + 1)}},$$

where

$$M = \begin{cases} \bar{t}\left(1 - \frac{H}{2}\right) & \text{constant stepsize,} \\ \frac{1}{2L} & \text{exact line search,} \\ \alpha \min\left\{s, \frac{2(1-\alpha)\beta}{L}\right\} & \text{backtracking.} \end{cases}$$

Proof: Summing the inequality $(\star\star)$ on the previous page over $k = 0, 1, \dots, \ell$, we obtain the following inequality

$$f(\mathbf{x}_0) - f(\mathbf{x}_{\ell+1}) \geq M \sum_{k=0}^{\ell} \|\nabla f(\mathbf{x}_k)\|^2.$$

Since $f(\mathbf{x}_{\ell+1}) \geq f^*$, we can conclude that

$$f(\mathbf{x}_0) - f^* \geq M \sum_{k=0}^{\ell} \|\nabla f(\mathbf{x}_k)\|^2 \geq M(\ell + 1) \min_{k=0,1,\dots,\ell} \|\nabla f(\mathbf{x}_k)\|^2,$$

implying the desired result. \square