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Descent direction methods

We consider the unconstrained minimization problem:

min{f (x) : x ∈ Rn},
where the objective function f is continuously differentiable over Rn. We
will consider an iterative algorithm for finding stationary points of f .
The iterative algorithm takes the form

xk+1 = xk + tkdk, k = 0, 1, · · · ,

where dk is the direction and tk is the stepsize.

Definition: Let f : Rn → R be a continuously differentiable function. A
vector 0 ̸= d ∈ Rn is called a descent direction of f at x if the directional
derivative f ′(x; d) < 0. (Note that f ′(x; d) = ∇f (x)⊤d)

Descent property: If d is a descent direction of f at x, then ∃ ε > 0 such
that f (x + td) < f (x) for any t ∈ (0, ε]. □

Taking small enough steps along these descent directions lead to a
decrease of the objective function.
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Schematic descent direction method

Initialization: Pick x0 ∈ Rn.
General step: For any k = 0, 1, · · · , set

(a) Pick a descent direction dk.

(b) Find a stepsize tk satisfying f (xk + tkdk) < f (xk).

(c) Set xk+1 = xk + tkdk

(d) If a stopping criterion is satisfied then stop, xk+1 is the output.

—————————–

The descent direction method remains “conceptual” and cannot be
implemented. Many details are missing in the above description:

What is the starting point x0?

How to choose the descent direction dk?

What stepsize should be taken tk?

What is the stopping criterion?
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Three popular choices of stepsize tk

The process of finding tk is called line search, since it is essentially a
minimization procedure on the 1-D function g(t) := f (xk + tdk).

constant stepsize: tk = t̄ for any k.

exact line search: tk is a minimizer of f along the ray xk + tdk:

tk ∈ arg min
t≥0

f (xk + tdk).

backtracking: The method requires three parameters: s > 0 (not
too small), α, β ∈ (0, 1).

set tk ← s

while f (xk)− f (xk + tkdk) < −αtk

f ′(xk;dk)︷ ︸︸ ︷
∇f (xk)

⊤dk do

set tk ← βtk

Therefore, the stepsize is chosen as tk = sβik , where ik is the
smallest nonnegative integer for which (⋆) is satisfied:

f (xk)− f (xk + sβik dk) ≥ −αsβik∇f (xk)
⊤dk. (⋆)

The third option is in a sense a compromise between the other twos.
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Validity of the sufficient decrease condition (⋆)

Theorem: Let f : Rn → R be a continuously differentiable function and
x ∈ Rn. Assume that 0 ̸= d ∈ Rn is a descent direction of f at x and let
α ∈ (0, 1). Then ∃ ε > 0 such that for all t ∈ [0, ε], we have

f (x)− f (x + td) ≥ −αt∇f (x)⊤d.

Proof: Since f is continuously differentiable it follows that

f (x + td) = f (x) + t∇f (x)⊤d + o(t∥d∥),
and hence

f (x)− f (x + td) = −αt∇f (x)⊤d− (1− α)t∇f (x)⊤d− o(t∥d∥).

Since d is a descent direction of f at x, we have

lim
t→0+

−(1− α)t∇f (x)⊤d− o(t∥d∥)
t

= −(1− α)∇f (x)⊤d > 0.

Hence, ∃ ε > 0 such that for all t ∈ (0, ε], we have

−(1− α)t∇f (x)⊤d− o(t∥d∥) > 0,

which implies the desired result. □
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Example: exact line search for quadratic functions

Let f (x) = x⊤Ax + 2b⊤x + c, where A ∈ Rn×n is a symmetric positive
definite matrix, b ∈ Rn, and c ∈ R. Let x ∈ Rn and let d ∈ Rn be a
descent direction of f at x. The exact line search for the stepsize can be
obtained by considering

min
t≥0
{g(t) := f (x + td)}.

By a direct computation, we have

g(t) = f (x + td) = (d⊤Ad)t2 + 2(d⊤Ax + d⊤b)t + x⊤Ax + 2b⊤x + c

= (d⊤Ad)t2 + 2(d⊤Ax + d⊤b)t + f (x).

Since g′(t) = 2(d⊤Ad)t + 2d⊤(Ax + b) and ∇f (x) = 2(Ax + b), it
follows that g′(t) = 0 if and only if

t = t∗ := −d⊤∇f (x)
2d⊤Ad

> 0,

where since d is a descent direction of f at x, f ′(x; d) = d⊤∇f (x) < 0.
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In which direction does the function f decrease most rapidly?

Making an observation, for n = 2, we have

f ′(xk; dk) = ⟨∇f (xk), dk⟩ = ∥∇f (xk)∥∥dk∥ cos θk,

where θk is the angle between the vectors ∇f (xk) and dk.
Therefore, f decreases most rapidly when θk = π, i.e., in the
direction of −∇f (xk) whenever ∇f (xk) ̸= 0.

Let f : Rn → R be a continuously differentiable function and let
x ∈ Rn be a nonstationary point, ∇f (x) ̸= 0. Then an optimal
solution of min

d∈Rn
{f ′(x; d) : ∥d∥ = 1} is d = − ∇f (x)

∥∇f (x)∥ .

Proof: By the Cauchy-Schwarz inequality, for ∥d∥ = 1, we have

f ′(x; d) = ∇f (xk)
⊤d ≥ −∥∇f (x)∥∥d∥ = −∥∇f (x)∥ ← a lower bound

Taking d = − ∇f (x)
∥∇f (x)∥ , we attain the lower bound. □
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The gradient method

In the gradient method, we take dk = −∇f (xk), provided∇f (xk) ̸= 0.

f ′(xk;−∇f (xk)) = −∇f (xk)
⊤∇f (xk) = −∥∇f (xk)∥2 < 0.

The gradient method
Input: Tolerance parameter ε > 0.
Initialization: Pick x0 ∈ Rn arbitrarily.
General step: For any k = 0, 1, · · · , execute

(a) Pick a stepsize tk by a line search procedure on the function

g(t) := f (xk − t∇f (xk)).

(b) Set xk+1 = xk − tk∇f (xk).
(c) If ∥∇f (xk+1)∥ ≤ ε then stop and xk+1 is the output.
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Example

Consider the 2-D minimization problem min
x,y

(x2 + 2y2) whose

optimal solution is (x, y) = (0, 0) with corresponding optimal value 0.
MATLAB function: gradient method quadratic(· · ·)
For solving minx∈Rn{x⊤Ax + 2b⊤x}, A ≻ 0, exact line search.
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Figure 4.1. The iterates of the gradient method along with the contour lines of the objective function.

It is also very informative to visually look at the progress of the iterates. The iterates and
the contour plots of the objective function are given in Figure 4.1.

An evident behavior of the gradient method as illustrated in Figure 4.1 is “zig-zag”
effect, meaning that the direction found at the kth iteration xk+1 − xk is orthogonal to
the direction found at the (k+1)th iteration xk+2−xk+1. This is a general property whose
proof will be given now.

Lemma 4.7. Let {xk}k≥0 be the sequence generated by the gradient method with exact line
search for solving a problem of minimizing a continuously differentiable function f . Then
for any k = 0,1,2, . . .

(xk+2−xk+1)
T (xk+1−xk ) = 0.

Proof. By the definition of the gradient method we have that xk+1−xk =−tk∇ f (xk ) and
xk+2−xk+1 =−tk+1∇ f (xk+1). Therefore, we wish to prove that∇ f (xk )

T∇ f (xk+1) = 0.
Since

tk ∈ argmint≥0{g (t )≡ f (xk − t∇ f (xk ))},
and the optimal solution is not tk = 0, it follows that g ′(tk) = 0. Hence,

−∇ f (xk )
T∇ f (xk − tk∇ f (xk )) = 0,

meaning that the desired result ∇ f (xk )T∇ f (xk+1) = 0 holds.

Let us now consider an example with a constant stepsize.

Example 4.8 (constant stepsize). Consider the same optimization problem given in Ex-
ample 4.6

min
x,y

x2+ 2y2.

MATLAB function: gradient method constant(· · ·)
MATLAB function: gradient method backtracking(· · ·)
In computational experience, backtracking does not have real
disadvantages in comparison to exact line search!
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The gradient method: zig-zag effect

The zig-zag effect: Let {xk} be the sequence generated by the gradient
method with exact line search for solving a problem of minimizing a
continuously differentiable function f . Then for any k = 0, 1, 2, . . .

(xk+2 − xk+1)
⊤(xk+1 − xk) = 0.

Proof: By the definition of the gradient method, we have

xk+1 − xk = −tk∇f (xk), xk+2 − xk+1 = −tk+1∇f (xk+1).

Therefore, we wish to prove that ∇f (xk)
⊤∇f (xk+1) = 0. Since

g(t) := f (xk − t∇f (xk)),

we have
0 = g′(tk) = −∇f (xk)

⊤∇f (xk − tk∇f (xk)).

That is,
−∇f (xk)

⊤∇f (xk+1) = 0,

which is the desired result. □ (see the figure on page 9)
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A quadratic minimization problem

Consider the simple quadratic minimization problem

min
x∈Rn
{f (x) := x⊤Ax},

where A ∈ Rn×n, A ≻ 0. The optimal solution is obviously x∗ = 0.
The gradient method with exact line search takes the form

xk+1 = xk + tkdk, dk = −∇f (xk) = −2Axk, tk =
d⊤k dk

2d⊤k Adk
.

Assume that xk ̸= 0. Then we have

f (xk+1) = x⊤k+1Axk+1 = (xk + tkdk)
⊤A(xk + tkdk)

= x⊤k Axk + 2tkd⊤k Axk + t2
kd⊤k Adk

= x⊤k Axk − tkd⊤k dk + t2
kd⊤k Adk

= x⊤k Axk −
1
4
(d⊤k dk)

2

d⊤k Adk

= x⊤k Axk

(
1− 1

4
(d⊤k dk)

2

(d⊤k Adk)(x⊤k AA−1Axk)

)
.
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Kantorovich inequality

Since dk = −2Axk, we have

f (xk+1) =
(

1− (d⊤k dk)
2

(d⊤k Adk)(d
⊤
k A−1dk)

)
f (xk).

Kantorovich inequality: Let A ∈ Rn×n and A ≻ 0. Then ∀ 0 ̸= x ∈ Rn,

(x⊤x)2

(x⊤Ax)(x⊤A−1x)
≥ 4λmax(A)λmin(A)

(λmax(A) + λmin(A))2 .

Proof: Let m := λmin(A) > 0 and M := λmax(A) > 0. Then the eigenvalues of
A + MmA−1 are λi(A) + Mm

λi(A)
, i = 1, 2, · · · , n. The maximum value of the 1-D function

φ(t) = t + Mm
t on [m, M] can be attained at t = m and t = M and the value is M + m.

Therefore, the eigenvalues of A + MmA−1 are smaller than M + m. Thus

A + MmA−1 ⪯ (M + m)I,
which implies that

x⊤Ax + Mm(x⊤A−1x) ≤ (M + m)(x⊤x).

Using the inequality αβ ≤ 1
4 (α + β)2, we obtain the desired result

(x⊤Ax)(Mm(x⊤A−1x)) ≤ 1
4

(
x⊤Ax + Mm(x⊤A−1x)

)2
≤ (M + m)2

4
(x⊤x)2. □
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Convergence rate analysis

Returning to the convergence rate analysis of the gradient method for
the quadratic minimization problem, we have

f (xk+1) =
(

1− (d⊤k dk)
2

(d⊤k Adk)(d
⊤
k A−1dk)

)
f (xk)

≤
(

1− 4Mm
(M + m)2

)
f (xk) =

(M−m
M + m

)2
f (xk),

which implies a linear rate to the optimal value,

|f (xk+1)− 0| = f (xk+1) ≤ cf (xk) = c|f (xk)− 0| and f (xk) ≤ ckf (x0),

c :=
(M−m

M + m

)2
=

(χ− 1
χ + 1

)2
< 1, χ :=

M
m

=
λmax(A)

λmin(A)
,

where χ(A) = κ2(A) := ∥A∥2∥A−1∥2 is the condition number of A.

∵ ∥A∥2∥A−1∥2 =
√

ρ(A∗A)
√

ρ((A−1)∗A−1) =
√

ρ(A2)
√

ρ((A−1)2)

and ρ(M) denotes the spectral radius of matrix M.

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan MA 5037: The Gradient Method – 13/35



Nonquadratic objective functions

Matrices with large condition number are called ill-conditioned.
Matrices with small condition number are called well-conditioned.

The entire discussion until now was on the restrictive class of
quadratic objective functions, where the Hessian matrix is
constant, but the notion of condition number also appears in the
context of nonquadratic objective functions. In that case, it is well
known that the rate of convergence of xk to a given stationary point x∗

depends on the condition number of χ(∇2f (x∗)).

We will not focus on these theoretical results, but will illustrate it
on a well-known ill-conditioned problem, the Rosenbrock
function, see next page.
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The Rosenbrock function (control theory)

The Rosenbrock function is f (x1, x2) := 100(x2 − x2
1)

2 + (1− x1)
2.

The optimal solution (global minimum) is (x1, x2) = (1, 1) with
corresponding optimal value 0.
The gradient and Hessian of f are respectively

∇f (x1, x2) =

[
−400x1(x2 − x2

1)− 2(1− x1)
200(x2 − x2

1)

]
,

∇2f (x1, x2) =

[
−400x2 + 1200x2

1 + 2 −400x1
−400x1 200

]
.

(x1, x2) = (1, 1) is the unique stationary point and

∇2f (1, 1) =
[

802 −400
−400 200

]
.

—————————–
>> A = [802, -400; -400, 200];
>> cond(A)

ans = 2.5080e+003

—————————–
A condition number of more than 2500 (ill-conditioned) should have severe
effects on the convergence speed of the gradient method (with backtracking,
∼ 6890 iterations).
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Sensitivity of solutions to linear systems

We are given a linear system Ax = b, where A ∈ Rn×n is
symmetric, A ≻ 0 and b ∈ Rn. Then the solution is x = A−1b.

We consider a perturbation b + ∆b in the RHS. The new solution
is denoted by x + ∆x, i.e., A(x + ∆x) = b + ∆b. We have
x + ∆x = A−1(b + ∆b) = x + A−1∆b. Then

∥∆x∥
∥x∥ =

∥A−1∆b∥
∥x∥ ≤ ∥A

−1∥∥∆b∥
∥x∥ =

λmax(A−1)∥∆b∥
∥x∥

=
1

λmin(A)

∥∆b∥
∥x∥ =

1
λmin(A)

∥∆b∥
∥A−1b∥

≤ 1
λmin(A)

∥∆b∥
λmin(A−1)∥b∥

=
λmax(A)

λmin(A)

∥∆b∥
∥b∥ = χ(A)

∥∆b∥
∥b∥ , where we have used

∥A−1b∥ =
√

b⊤A−2b ≥
√

λmin(A−2)∥b∥2 = λmin(A−1)∥b∥.

We can therefore deduce that the sensitivity of the solution of the linear
system to right-hand-side perturbations depends on the condition
number of the coefficients matrix.
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Scaling for ill-conditioned problems

We consider the unconstrained minimization problem:

min{f (x) : x ∈ Rn}.

Let S ∈ Rn×n be a nonsingular matrix. Let y := S−1x. Then x = Sy
and we obtain the equivalent problem:

min{g(y) := f (Sy) : y ∈ Rn}.

Since ∇yg(y) = S⊤∇f (Sy) = S⊤∇f (x), the gradient method for
solving min

y∈Rn
g(y) takes the form:

yk+1 = yk − tkS⊤∇f (Syk).

Multiplying S and letting xk := Syk, we have

xk+1 = xk − tk SS⊤︸︷︷︸
:=D

∇f (xk) := xk − tkD∇f (xk).

Then we obtain the scaled gradient method with scaling matrix D.
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The scaled gradient

The matrix D = SS⊤ is positive definite (cf. Exercise 2.6). The
direction −D∇f (xk) is a descent of f at xk when∇f (xk) ̸= 0 since

f ′(xk;−D∇f (xk)) = −∇f (xk)
⊤D∇f (xk) < 0.

To summarize the above discussion, we have shown that the
scaled gradient method with scaling matrix D ≻ 0 is equivalent
to the gradient method employed on the function

g(y) = f (D1/2y),

where y := D−1/2x (⇐⇒ x = D1/2y). We note that the gradient
and Hessian of g are given by

∇yg(y) = D1/2∇f (D1/2y) = D1/2∇xf (x),

∇2
yg(y) = D1/2∇2f (D1/2y)D1/2 = D1/2∇2

xf (x)D1/2.
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The scaled gradient method

Input: Tolerance parameter ε > 0.

Initialization: Pick x0 ∈ Rn arbitrarily.

General step: For any k = 0, 1, · · · , execute

(a) Pick a scaling matrix Dk ≻ 0.

(b) Pick a stepsize tk by a line search procedure on the function

h(t) := f (xk − tDk∇f (xk)).

(c) Set xk+1 = xk − tkDk∇f (xk).

(d) If ∥∇f (xk+1)∥ ≤ ε then stop and xk+1 is the output.

It is often beneficial to choose the scaling matrix differently at each iteration.
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How to choose the Dk? damped Newton’s method

To accelerate the rate of convergence of {xk}, which depends on the
condition number of the scaled Hessian D1/2

k ∇
2f (xk)D

1/2
k . The

scaling matrix is often chosen to make this scaled Hessian to be as close
as possible to the identity matrix.

When ∇2f (xk) ≻ 0, we choose Dk = (∇2f (xk))
−1 and the scaled

Hessian becomes the identity matrix. The resulting method is the
so-called damped Newton’s method:

xk+1 = xk − tk(∇2f (xk))
−1∇f (xk)

One difficulty associated with damped Newton’s method is that it
requires full knowledge of the Hessian.

The term (∇2f (xk))
−1∇f (xk) suggests that a linear system of the

form ∇2f (xk)d = ∇f (xk) needs to be solved at each iteration,
which might be costly from a computational point of view.

The simplest of all scaling matrices are diagonal matrices. A natural
choice for diagonal elements is Dii = (∇2f (xk))

−1
ii .
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The Gauss-Newton method

We consider the nonlinear least squares (NLS) problem:

min
x∈Rn
{g(x) :=

m

∑
i=1

(fi(x)− ci)
2},

where f1, f2, · · · , fm are continuously differentiable over Rn and
c1, c2, · · · , cm ∈ R. The problem can be reformulated as

min
x∈Rn

∥F(x)∥2,

where the vector-valued function F is given by

F(x) :=


f1(x)− c1
f2(x)− c2

...
fm(x)− cm

 .

The Gauss-Newton method (A linearization method):
Given the iterate xk, find

xk+1 := arg min
x∈Rn

{ m

∑
i=1

(
fi(xk) +∇fi(xk)

⊤(x− xk)− ci

)2}
.
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The Gauss-Newton method (cont’d)

The minimization problem is essentially a linear LS problem:

min
x∈Rn

∥Akx− bk∥2,

where

Ak =


∇f1(xk)

⊤

∇f2(xk)
⊤

...
∇fm(xk)

⊤

 := J(xk),

is the so-called Jacobian matrix and

bk =


∇f1(xk)

⊤xk − f1(xk) + c1
∇f2(xk)

⊤xk − f2(xk) + c2
...

∇fm(xk)
⊤xk − fm(xk) + cm

 := J(xk)xk − F(xk).

The underlying assumption is that J(xk) is of a full column rank; otherwise
the minimization will not produce a unique minimizer.
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The Gauss-Newton method (cont’d)

We write an explicit expression for the Gauss-Newton iterates (see
Chapter 3) xk+1 = (J(xk)

⊤J(xk))
−1J(xk)

⊤bk.
The method can also be written as

xk+1 = (J(xk)
⊤J(xk))

−1J(xk)
⊤bk

= (J(xk)
⊤J(xk))

−1J(xk)
⊤(J(xk)xk − F(xk))

= xk − (J(xk)
⊤J(xk))

−1J(xk)
⊤F(xk).

The Gauss-Newton direction is therefore

dk = −(J(xk)
⊤J(xk))

−1J(xk)
⊤F(xk).

Noting that ∇g(x) = 2J(x)⊤F(x), we can conclude that

dk = −
1
2
(J(xk)

⊤J(xk))
−1∇g(xk)

meaning that the Gauss-Newton method is essentially a scaled gradient
method with tk = 1 and the following positive definite scaling matrix:

Dk =
1
2
(J(xk)

⊤J(xk))
−1.
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The damped Gauss-Newton method

The method described so far is also called the pure Gauss-Newton
method since no stepsize is really involved. To transform this method
into a practical algorithm, a stepsize is introduced, leading to the damped
Gauss-Newton method.

The damped Gauss-Newton method

Input: Tolerance parameter ε > 0.

Initialization: Pick x0 ∈ Rn arbitrarily.

General step: For any k = 0, 1, · · · , execute

(a) Set dk = −(J(xk)
⊤J(xk))

−1J(xk)
⊤F(xk).

(b) Set stepsize tk by a line search procedure on the function

h(t) := g(xk + tdk).

(c) Set xk+1 = xk + tkdk.

(d) If ∥∇g(xk+1)∥ ≤ ε then stop and xk+1 is the output.
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Lipschitz property of the gradient

We consider the following unconstrained minimization problem

min{f (x) : x ∈ Rn},
where the objective function f is continuously differentiable.

Definition: ∇f is Lipschitz continuous over Rn ⇔ ∃ L ≥ 0 such that
∥∇f (x)−∇f (y)∥ ≤ L∥x− y∥, ∀ x, y ∈ Rn.

C1,1
L (Rn) or C1,1

L or C1,1(Rn) or C1,1: the class of functions over
Rn with Lipschitz gradient with constant L.

C1,1
L (D): the set of all functions over D ⊆ Rn whose gradient

satisfies the above Lipschitz condition for any x, y ∈ D.

Examples:

(1) Linear functions: given a ∈ Rn, f (x) = a⊤x is in C1,1
0 .

(2) Quadratic functions: let A ∈ Rn×n be symmetric, b ∈ Rn

and c ∈ R. Then f (x) = x⊤Ax + 2b⊤x + c is in C1,1
L , since

∥∇f (x)−∇f (y)∥ = 2∥(Ax + b)− (Ay + b)∥
≤ 2∥A∥∥x− y∥ := L∥x− y∥.
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The Fundamental Theorem of Calculus (FTC)

The FTC: Let f : [a, b]→ R be a real-valued function.

Part 1: Let f ∈ R[a, b]. Define F(x) :=
∫ x

a f (t)dt, x ∈ [a, b]. Then (i) F(x) is
continuous on [a, b]; (ii) F′(x) = f (x) for x ∈ (a, b) where f is continuous.
Part 2: If f ′ ∈ R[a, b], then

∫ b
a f ′(x)dx = f (b)− f (a).

————————————————-

Application: Let f : Rn → R be a continuously differentiable function over D ⊆ Rn.
Let x, y ∈ D and [x, y] ⊆ D. Define g(t) := f ((1− t)x + ty) for t ∈ [0, 1]. Using the chain
rule and the FTC, we respectively obtain g′(t) = ∇f ((1− t)x + ty) · (y− x) and

f (y)− f (x) = g(1)− g(0) =
∫ 1

0
g′(t)dt =

∫ 1

0
∇f ((1− t)x + ty) · (y− x)dt

=
∫ 1

0
⟨∇f (x + t(y− x)), y− x⟩dt.

In addition, if f is twice continuously differentiable over D ⊆ Rn, then

fxi (y)− fxi (x) =
∫ 1

0
∇(fxi )

(
x + t(y− x)

)
· (y− x)dt, for i = 1, 2, · · · , n.

That is, we have

∇f (y)−∇f (x) =
∫ 1

0
∇2f

(
x + t(y− x)

)
(y− x)dt.
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Boundedness of the Hessian

Theorem: Let f be a twice continuously differentiable function over Rn.
Then

f ∈ C1,1
L (Rn)⇐⇒ ∥∇2f (x)∥ ≤ L, ∀ x ∈ Rn.

Proof: (⇐) By the fundamental theorem of calculus, ∀ x, y ∈ Rn, we have

∇f (y)−∇f (x) =
∫ 1

0
∇2f

(
x + t(y− x)

)
(y− x)dt =

∫ 1

0
∇2f

(
x + t(y− x)

)
dt (y− x).

Thus, we have

∥∇f (y)−∇f (x)∥ ≤
∥∥∥∫ 1

0
∇2f

(
x + t(y− x)

)
dt
∥∥∥∥y− x∥

≤
(∫ 1

0
∥∇2f

(
x + t(y− x)

)
∥dt

)
∥y− x∥ ≤ L∥y− x∥.

(⇒) By the fundamental theorem of calculus, ∀ d ∈ Rn and α > 0, we have

∇f (x + αd)−∇f (x) =
∫ α

0
∇2f (x + td) d dt.

Thus, we have∥∥∥(∫ α

0
∇2f (x + td)dt

)
d
∥∥∥ = ∥∇f (x + αd)−∇f (x)∥ ≤ αL∥d∥.

Dividing by α and taking the limit α→ 0+, we obtain ∥∇2f (x)d∥ ≤ L∥d∥, where we have
used the mean value theorem for definite integrals for each matrix component of∇2f (x + td).□
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The descent lemma

The following descent lemma is fundamental in convergence proofs
of gradient-based methods.
The descent lemma: Let D ⊆ Rn and f ∈ C1,1

L (D) for some L > 0. Then
for any x, y ∈ D satisfying [x, y] ⊆ D it holds that

f (y) ≤ f (x) +∇f (x)⊤(y− x) +
L
2
∥y− x∥2.

Proof: By the fundamental theorem of calculus, we have

f (y)− f (x) =
∫ 1

0
⟨∇f (x + t(y− x)), y− x⟩dt

= ⟨∇f (x), y− x⟩+
∫ 1

0
⟨∇f (x + t(y− x))−∇f (x), y− x⟩dt.

Therefore, we have

|f (y)− f (x)− ⟨∇f (x), y− x⟩| =

∣∣∣∣∫ 1

0
⟨∇f (x + t(y− x))−∇f (x), y− x⟩dt

∣∣∣∣
≤

∫ 1

0
|⟨∇f (x + t(y− x))−∇f (x), y− x⟩| dt

≤
∫ 1

0
∥∇f (x + t(y− x))−∇f (x)∥∥y− x∥dt

≤
∫ 1

0
tL∥y− x∥2dt =

L
2
∥y− x∥2. □
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A sufficient decrease lemma

Note that the proof of the descent lemma actually shows both
upper and lower bounds on the function:

f (x) +∇f (x)⊤(y− x)− L
2
∥y− x∥2

≤ f (y) ≤ f (x) +∇f (x)⊤(y− x) +
L
2
∥y− x∥2.

A sufficient decrease lemma: Suppose that f ∈ C1,1
L (Rn). Then

∀ x ∈ Rn and t > 0, we have

f (x)− f (x− t∇f (x)) ≥ t
(

1− Lt
2

)
∥∇f (x)∥2.

Proof: By the descent lemma we have

f (x− t∇f (x)) ≤ f (x)− t∥∇f (x)∥2 +
Lt2

2
∥∇f (x)∥2

= f (x)− t
(

1− Lt
2

)
∥∇f (x)∥2.

The result then follows by simple rearrangement of terms. □
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Sufficient decrease of the gradient method

Theorem: Let f ∈ C1,1
L (Rn). Let {xk}k≥0 be generated by the gradient

method for solving min
x∈Rn

f (x) with one of the following stepsize strategies:

(1) constant stepsize t̄ ∈ (0, 2
L ),

(2) exact line search,

(3) backtracking procedure with parameters s > 0, α, β ∈ (0, 1).

Then we have
f (xk)− f (xk+1) ≥ M∥∇f (xk)∥2,

where

M :=


t̄
(
1− t̄L

2
)

constant stepsize,
1

2L
exact line search,

α min
{

s,
2(1− α)β

L
}

backtracking.
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Proof: constant stepsize and exact line search

(1) (constant stepsize) By the sufficient decrease lemma, we immediately have

f (xk)− f (xk+1) ≥ t̄
(

1− Lt̄
2

)
∥∇f (xk)∥2 ≥ 0 for t̄ ∈ (0,

2
L
). □

Furthermore, if we wish to obtain the largest guaranteed bound on the decrease,
then we seek the maximum of

t̄
(

1− Lt̄
2

)
, ∀ t̄ ∈ (0,

2
L
).

One can show that this maximum is attained at t̄ = 1
L and we have

f (xk)− f (xk+1) = f (xk)− f
(

xk −
1
L
∇f (xk)

)
≥ 1

2L
∥∇f (xk)∥2. (⋆)

(2) (exact line search) In the exact line search setting, tk ∈ argmint≥0f (xk − t∇f (xk)).
By the definition of tk we know that

f (xk − tk∇f (xk)) ≤ f (xk −
1
L
∇f (xk)).

Therefore, we have

f (xk)− f (xk+1) = f (xk)− f (xk − tk∇f (xk))

≥ f (xk)− f
(

xk −
1
L
∇f (xk)

)
≥ 1

2L
∥∇f (xk)∥2,

where the last inequality comes from (⋆). □
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Proof: backtracking

(3) (backtracking) In the backtracking setting we seek a small enough stepsize tk for
which we have

f (xk)− f (xk − tk∇f (xk)) ≥ αtk∥∇f (xk)∥2, α ∈ (0, 1).

We would like to find a lower bound on tk. There are two options. Either tk = s
(the initial value of the stepsize) or the stepsize tk/β is not acceptable, i.e.,

f (xk)− f (xk −
tk
β
∇f (xk)) < α

tk
β
∥∇f (xk)∥2. (⋆1)

By the sufficient decrease lemma with x = xk and t = tk
β , we have

f (xk)− f (xk −
tk
β
∇f (xk)) ≥

tk
β

(
1− Ltk

2β

)
∥∇f (xk)∥2. (⋆2)

From (⋆1) and (⋆2), we obtain

tk
β

(
1− Ltk

2β

)
< α

tk
β
⇐⇒ tk >

2(1− α)β

L
.

Overall, we have

tk ≥ min
{

s,
2(1− α)β

L

}
.

Finally, we obtain

f (xk)− f (xk − tk∇f (xk)) ≥ α min
{

s,
2(1− α)β

L

}
∥∇f (xk)∥2. □
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Convergence of the gradient method

Theorem: Let f ∈ C1,1
L (Rn). Let {xk}k≥0 be generated by the gradient

method for solving min
x∈Rn

f (x) with one of the following stepsize strategies:

(1) constant stepsize t̄ ∈ (0, 2
L ),

(2) exact line search,

(3) backtracking procedure with parameters s > 0, α, β ∈ (0, 1).

Assume that f is bounded below over Rn, i.e., ∃ m ∈ R such that f (x) > m
for all x ∈ Rn. Then we have the following:

(a) The sequence {f (xk)}k≥0 is nonincreasing. In addition, for any k ≥ 0,
f (xk+1) < f (xk) unless ∇f (xk) = 0.

(b) ∇f (xk)→ 0 as k→ ∞.
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Proof of the convergence theorem

(a) By the sufficient decrease of the gradient method, we have

f (xk)− f (xk+1) ≥ M∥∇f (xk)∥2, (⋆⋆)

for some constant M > 0, and hence the equality f (xk) = f (xk+1) can
hold only when ∇f (xk) = 0.

(b) Since the sequence {f (xk)}k≥0 is nonincreasing, and bounded below, it
converges. Thus, in particular

f (xk)− f (xk+1)→ 0 as k→ ∞,

which combined with (⋆⋆) implies ∥∇f (xk)∥ → 0 as k→ ∞, according
to the squeeze theorem. Therefore, we obtain

∇f (xk)→ 0 as k→ ∞. □
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“Rate of convergence” of gradient norms

Theorem: Under the setting of the previous theorem, let f ∗ be the limit of
the convergent sequence {f (xk)}k≥0. Then for any ℓ = 0, 1, 2, . . .

min
k=0,1,··· ,ℓ

∥∇f (xk)∥ ≤

√
f (x0)− f ∗

M(ℓ+ 1)
,

where

M =


t̄
(
1− t̄L

2
)

constant stepsize,
1

2L exact line search,
α min{s, 2(1−α)β

L } backtracking.

Proof: Summing the inequality (⋆⋆) on the previous page over k = 0, 1, · · · , ℓ, we
obtain the following inequality

f (x0)− f (xℓ+1) ≥ M
ℓ

∑
k=0
∥∇f (xk)∥2.

Since f (xℓ+1) ≥ f ∗, we can conclude that

f (x0)− f ∗ ≥ M
ℓ

∑
k=0
∥∇f (xk)∥2 ≥ M(ℓ+ 1) min

k=0,1,··· ,ℓ
∥∇f (xk)∥2,

implying the desired result. □

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan MA 5037: The Gradient Method – 35/35


