MA 5037: Optimization Methods and Applications Least-Squares Problem

Suh-Yuh Yang (楊肅煜)

Department of Mathematics, National Central University Jhongli District, Taoyuan City 320317, Taiwan

First version: May 21, 2018/Last updated: June 14, 2025

Solution of overdetermined systems

Consider an overdetermined linear system:

$$Ax = b$$
,

where $A \in \mathbb{R}^{m \times n}$, $m \ge n$, and $b \in \mathbb{R}^m$. We assume that A has a full column rank, rank(A) = n. In this setting, the system is usually inconsistent (has no solution) and a common approach for finding an approximate solution is to

$$\min_{\mathbf{x}\in\mathbb{R}^n}\|A\mathbf{x}-\mathbf{b}\|^2,\qquad (LS)$$

or equivalently, to

$$\min_{x \in \mathbb{R}^n} \{ f(x) := x^\top (A^\top A) x - 2(A^\top b)^\top x + ||b||^2 \}.$$
 (LS)

Since *A* is of full column rank, $\nabla^2 f(x) = 2A^\top A \succ 0$, $\forall x \in \mathbb{R}^n$. Therefore, (by Lemma 2.41), the unique stationary point

$$\mathbf{x}_{LS} = (\mathbf{A}^{\top} \mathbf{A})^{-1} \mathbf{A}^{\top} \mathbf{b}$$

is the optimal solution of problem (LS), and x_{LS} is called the least-squares solution of the system Ax = b.

The normal system

 It is quite common not to write the explicit expression for x_{LS} but instead to write the associated system of equations that defines it:

$$(A^{\top}A)x_{LS} = A^{\top}b.$$

The above system of equations is called the normal system.

• If m = n and A is of full column rank, then A is nonsingular. In this case, the least-squares solution is actually the solution of the linear system Ax = b, since

$$x_{LS} = (A^{\top}A)^{-1}A^{\top}b = A^{-1}A^{-\top}A^{\top}b = A^{-1}b = x.$$

Example

Consider the inconsistent linear system

$$Ax = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} = b.$$

The least-squares problem can be explicitly written as

$$\min_{(x_1,x_2)^{\top} \in \mathbb{R}^2} \left\{ (x_1 + 2x_2)^2 + (2x_1 + x_2 - 1)^2 + (3x_1 + 2x_2 - 1)^2 \right\}.$$

We will solve the normal equations:

$$\begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 3 & 2 \end{bmatrix}^{\top} \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 3 & 2 \end{bmatrix}^{\top} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix},$$

which are the same as

$$\begin{bmatrix} 14 & 10 \\ 10 & 9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 5 \\ 3 \end{bmatrix}.$$

Example (cont'd)

The solution of the above system is the least-squares estimate

$$x_{LS} = \begin{bmatrix} 15/26 \\ -8/26 \end{bmatrix}.$$

The residual vector is given by

$$r := Ax_{LS} - b = \begin{bmatrix} -0.038 \\ -0.154 \\ 0.115 \end{bmatrix},$$

and
$$||\mathbf{r}||_2^2 = (-0.038)^2 + (-0.154)^2 + (0.115)^2 \approx 0.038$$
.

To find the least-squares solution in MATLAB:

```
>> A = [1, 2; 2, 1; 3, 2];
>> b = [0; 1; 1];
>> format rational;
>> A\b
ans =
15/26
-4/13
```

Data fitting: linear fitting

Suppose that we are given a set of data points (s_i, t_i) , $i = 1, 2, \dots, m$, $s_i \in \mathbb{R}^n$ and $t_i \in \mathbb{R}$, and assume that a linear relation of the form

$$t_i = \mathbf{s}_i^{\top} \mathbf{x}, \quad i = 1, 2, \cdots, m,$$

approximately holds. The objective is to find the parameters vector $x \in \mathbb{R}^n$. The least-squares approach is to

$$\min_{x \in \mathbb{R}^n} \sum_{i=1}^m (s_i^\top x - t_i)^2.$$

We can alternatively write the problem as

$$\min_{x\in\mathbb{R}^n}\|Sx-t\|^2,$$

where

$$S = egin{bmatrix} s_1^ op \ s_2^ op \ dots \ s_m^ op \end{bmatrix}, \quad t = egin{bmatrix} t_1 \ t_2 \ dots \ t_m \end{bmatrix}.$$

Example

Consider 30 points in \mathbb{R}^2 , $x_i = (i-1)/29$, $y_i = 2x_i + 1 + \varepsilon_i$, for $i = 1, 2, \cdots, 30$, where ε_i is randomly generated from a standard normal distribution $\mathcal{N}(0, (0.1)^2)$. The objective is to find a line of the form y = ax + b that best fits them. The corresponding linear system that needs to be "solved" is

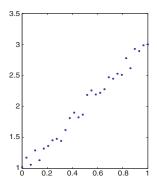
$$\underbrace{\begin{bmatrix} x_1 & 1 \\ x_2 & 1 \\ \vdots & \vdots \\ x_{30} & 1 \end{bmatrix}}_{X} \begin{bmatrix} a \\ b \end{bmatrix} = \underbrace{\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_{30} \end{bmatrix}}_{y}.$$

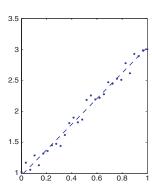
The least squares solution is $(a, b)^{\top} = (X^{\top}X)^{-1}X^{\top}y$.

```
randn('seed', 319);
d = linspace(0, 1, 30)';
e = 2*d + 1 + 0.1*randn(30, 1);
plot(d, e, '*')
```

Example (cont'd)

```
>> u = [d, ones(30, 1)]\e;
>> a = u(1), b = u(2)
a =
2.0616
b =
0.9725
```





Nonlinear fitting

Suppose that we are given a set of points in \mathbb{R}^2 , (u_i, y_i) , $1 \le i \le m$, $u_i \ne u_j$ for $i \ne j$, and that we know *a priori* that these points are approximately related via a polynomial of degree at most d and $m \ge d+1$, i.e., $\exists a_0, a_1, \cdots, a_d$ such that

$$\sum_{j=0}^d a_j u_i^j \approx y_i, \quad i = 1, 2, \cdots, m.$$

The least-squares approach to this problem seeks a_0, a_1, \cdots, a_d that are the least squares solution to the linear system

$$\begin{bmatrix} 1 & u_1 & u_1^2 & \cdots & u_1^d \\ 1 & u_2 & u_2^2 & \cdots & u_2^d \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & u_m & u_m^2 & \cdots & u_m^d \end{bmatrix}_{m \times (d+1)} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_d \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}.$$

 $:= \mathbf{U}_{d+1}$ The matrix \mathbf{U}_{d+1} is of a full column rank since it consists of the first d+1 columns of the so-called $m \times m$ Vandermonde matrix which is nonsingular, $\det(\mathbf{U}_m) = \prod_{1 \le i \le j \le m} (u_j - u_i) \ne 0$.

Regularized least-squares problem

The regularized least-squares (RLS) problem has the form

$$(RLS): \quad \min_{x \in \mathbb{R}^n} \Big\{ \|Ax - b\|^2 + \lambda R(x) \Big\}.$$

The positive constant λ is the regularization parameter. In many cases, the regularization is taken to be quadratic. In particular, $R(x) = \|Dx\|^2$, where $D \in \mathbb{R}^{p \times n}$ is a given matrix. Then we have

$$\min_{\mathbf{x} \in \mathbb{R}^n} \Big\{ f_{RLS}(\mathbf{x}) := \mathbf{x}^\top (\mathbf{A}^\top \mathbf{A} + \lambda \mathbf{D}^\top \mathbf{D}) \mathbf{x} - 2(\mathbf{A}^\top \mathbf{b})^\top \mathbf{x} + \|\mathbf{b}\|^2 \Big\}.$$

Since the Hessian of the objective function is

$$\nabla^2 f_{RLS}(\mathbf{x}) = 2(\mathbf{A}^{\top} \mathbf{A} + \lambda \mathbf{D}^{\top} \mathbf{D}) \succeq \mathbf{0},$$

any stationary point is a global minimum point (cf. Theorem 2.38). The stationary points are those satisfying $\nabla f(x) = 0$, that is

$$(A^{\top}A + \lambda D^{\top}D)x = A^{\top}b.$$

Therefore, if $A^{\top}A + \lambda D^{\top}D \succ \mathbf{0}$ then then the RLS solution is given by

$$\mathbf{x}_{RLS} = (\mathbf{A}^{\top} \mathbf{A} + \lambda \mathbf{D}^{\top} \mathbf{D})^{-1} \mathbf{A}^{\top} \mathbf{b}.$$

Example of regularized least-squares solution

Let $A \in \mathbb{R}^{3 \times 3}$ be given by

$$A = \begin{bmatrix} 2+10^{-3} & 3 & 4\\ 3 & 5+10^{-3} & 7\\ 4 & 7 & 10+10^{-3} \end{bmatrix}.$$

```
B = [1, 1, 1; 1, 2, 3]; A=B'*B + 0.001*eye(3); % cond(A) \approx 16000 is rather large!
```

The "true" vector was chosen to be $\mathbf{x}_{true} = (1, 2, 3)^{\top}$, and \mathbf{b} is a noisy measurement of $A\mathbf{x}_{true}$:

```
>> x.true = [1; 2; 3];
>> randn('seed', 315);
>> b = A*x.true + 0.01*randn(3, 1)
b =
   20.0019
   34.0004
   48.0202
```

The relative perturbation on the RHS $b_{true}(:=Ax_{true})$ *is not too small!*

Example of regularized least-squares solution (cont'd)

The matrix A is in fact of a full column rank since its eigenvalues are all positive (eig (A)). The least-squares solution x_{LS} is given by

```
>> A\b
ans =
4.5446
-5.1295
6.5742
```

Note that x_{LS} is rather far from the true vector x_{true} . We will add the quadratic regularization function $||Ix||^2$. The regularized solution is

$$\mathbf{x}_{RLS} = (\mathbf{A}^{\top} \mathbf{A} + \lambda \mathbf{I})^{-1} \mathbf{A}^{\top} \mathbf{b}.$$
 (we take $\lambda = 1$ below)

```
>> x_rls = (A'*A + eye(3))\(A'*b)
x_rls =
1.1763
2.0318
2.8872
```

which is a much better estimate for x_{true} than x_{LS} .

Denoising

Suppose that a noisy measurement of a signal $x \in \mathbb{R}^n$ is given

$$b=x+w$$
,

where x is an unknown signal, w is an unknown noise vector, and b is the known measurement vector. The denoising problem is to find a "good" estimate of x. The associated least-squares problem is

$$\min_{\mathbf{x}\in\mathbb{R}^n}\|\mathbf{x}-\mathbf{b}\|^2.$$

The optimal solution of this problem is obviously x = b, which is meaningless. We will add a regularization term $\lambda \sum_{i=1}^{n-1} (x_i - x_{i+1})^2$,

$$\min_{x\in\mathbb{R}^n}\Big\{\|Ix-b\|^2+\lambda\|Lx\|^2\Big\},\,$$

where parameter $\lambda > 0$ and $L \in \mathbb{R}^{(n-1)\times n}$ is given by

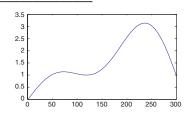
$$L := egin{bmatrix} 1 & -1 & & & & \ & 1 & -1 & & & \ & & \ddots & \ddots & \ & & & 1 & -1 \end{bmatrix}.$$

The optimal solution is given by $\mathbf{x}_{RLS}(\lambda) = (\mathbf{I} + \lambda \mathbf{L}^{\mathsf{T}} \mathbf{L})^{-1} \mathbf{b}$.

Example

Consider the signal $x \in \mathbb{R}^{300}$ constructed by

```
t = linspace(0, 4, 300)';
x = sin(t) + t.*(cos(t).^2);
randn('seed', 314);
b = x + 0.05*randn(300, 1);
subplot(1, 2, 1);
plot(1:300, x, 'LineWidth', 2);
subplot(1, 2, 2);
plot(1:300, b, 'LineWidth', 2);
```



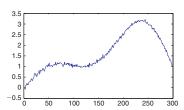
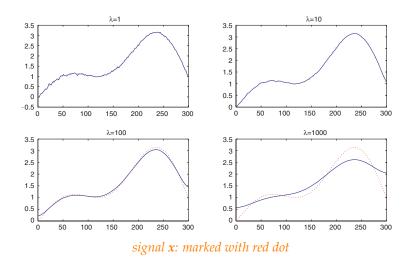


Figure 3.2. A signal (left image) and its noisy version (right image).

Example (cont'd): $\lambda = 1, 10, 100, 1000$



Nonlinear least-squares problem

Suppose that we are given a system of nonlinear equations:

$$f_i(\mathbf{x}) \approx c_i, \quad i = 1, 2, \cdots, m.$$

The nonlinear least-squares (NLS) problem is formulated as

$$\min_{\mathbf{x}\in\mathbb{R}^n}\sum_{i=1}^m (f_i(\mathbf{x})-c_i)^2.$$

The Gauss-Newton method is specifically devised to solve NLS problems of the form, but the method is not guaranteed to converge to the global optimal solution but rather to a stationary point (see §4.5).

Circle fitting

Suppose that we are given m points $a_1, a_2, \dots, a_m \in \mathbb{R}^n$. The circle fitting problem seeks to find a circle with center x and radius r,

$$C(x,r) := \{ y \in \mathbb{R}^n : ||y-x|| = r \},$$

that best fits the *m* points. The nonlinear (approximate) equations associated with the problem are

$$||x-a_i||\approx r$$
, $i=1,2,\cdots,m$.

Since we wish to deal with differentiable functions, we will consider the squared version

$$||x - a_i||^2 \approx r^2$$
, $i = 1, 2, \dots, m$.

The NLS problem associated with these equations is

$$\min_{x \in \mathbb{R}^n, r \ge 0} \sum_{i=1}^m (\|x - a_i\|^2 - r^2)^2$$

Equivalent to a linear LS problem

The above NLS problem is the same as

$$\min \Big\{ \sum_{i=1}^{m} \Big(-2a_i^\top x + \|x\|^2 - r^2 + \|a_i\|^2 \Big)^2 : x \in \mathbb{R}^n, r \in \mathbb{R} \Big\}.$$

Making the change of variables $R := ||x||^2 - r^2$, it reduces to

$$\min_{x \in \mathbb{R}^n, R \in \mathbb{R}} \left\{ f(x, R) := \sum_{i=1}^m \left(-2a_i^\top x + R + ||a_i||^2 \right)^2 : ||x||^2 \ge R \right\}.$$

Indeed, any optimal solution (\hat{x}, \hat{R}) automatically satisfies $||\hat{x}||^2 \ge \hat{R}$, since otherwise, if $||\hat{x}||^2 < \hat{R}$, we would have for $i = 1, 2, \dots, m$,

$$-2a_i^{\top}\hat{x} + \hat{R} + ||a_i||^2 > -2a_i^{\top}\hat{x} + ||\hat{x}||^2 + ||a_i||^2 = ||\hat{x} - a_i||^2 \ge 0.$$

Squaring both sides and summing over *i* yield

$$f(\hat{x}, \hat{R}) = \sum_{i=1}^{m} \left(-2a_i^{\top} \hat{x} + \hat{R} + \|a_i\|^2 \right)^2$$

$$> \sum_{i=1}^{m} \left(-2a_i^{\top} \hat{x} + \|\hat{x}\|^2 + \|a_i\|^2 \right)^2 = f(\hat{x}, \|\hat{x}\|^2).$$

This is a contradiction, since (\hat{x}, \hat{R}) is an optimal solution.

Equivalent to a linear LS problem (cont'd)

Finally, we have the *linear* least-squares problem:

$$\min_{\boldsymbol{y}\in\mathbb{R}^{n+1}}\|\widetilde{\boldsymbol{A}}\boldsymbol{y}-\boldsymbol{b}\|^2,$$

where $y = (x, R)^{\top}$ and

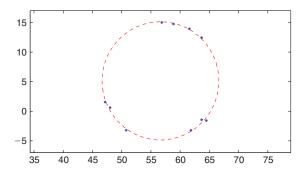
$$\widetilde{A} = egin{bmatrix} 2a_1^{ op} & -1 \ 2a_2^{ op} & -1 \ dots & dots \ 2a_m^{ op} & -1 \end{bmatrix}, \quad oldsymbol{b} = egin{bmatrix} \|a_1\|^2 \ \|a_2\|^2 \ dots \ \|a_m\|^2 \end{bmatrix}.$$

If \widetilde{A} is of full column rank, then the unique solution is

$$\boldsymbol{y} = (\widetilde{\boldsymbol{A}}^{\top} \widetilde{\boldsymbol{A}})^{-1} \widetilde{\boldsymbol{A}}^{\top} \boldsymbol{b},$$

and the radius *r* is given by $r = \sqrt{||x||^2 - R}$.

Example: the best circle fitting of 10 points



The best circle fitting of 10 points denoted by asterisks