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Vector space R"

@ Vector space R": the set of n-dimensional column vectors with real
components endowed with the following component-wise addition
operator and the scalar-vector product,

Xq [y1] [x1 + 1
X2 Y2 X2+ 2
xty=|.|+|.| = . , Vx,yeR",
Xn L Yn | | Xn + Yn
_xl_ _)\xl
X2 sz
Ax=A| . = 1, VxeR" AR
E | Axy

@ Standard basis of R": {e|, e, - ,e,},e;:=[--,0,_ 1 ,0,---]".

@ Notation: e :=[1,1,--- ,1]T and 0:= (0,0, - - - ,O]T.
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Important subsets of R"

@ Nonnegative orthant:
R = {(x1,x0,- - ,xn)T cx;p > 0Vi}.
Positive orthant:
R, = {(xy, %0, %) x>0V i}
@ Closed line segment: let x,y € R",
xyl ={(1—-a)x+ay:acl01]}
Open line segment: let x,y € R",
(xy)={(1—a)x+ay:ac(0,1)}.
[x,x] = {x} and (x,x) = @.

@ Unit-simplex (B E#E): x +y+z=1,xy,2>0. .

Api={x=(x;,x0,- ,x0) €ER":x1,%x,-- , %, >0,e x=1}.
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Vector space R"*"

@ The set of all real-valued matrices of order m X n is denoted by
Rm Xn .

@ The n X n identity matrix is denoted by I,,.
@ The m x n zero matrix is denoted by 0y, .

@ We will frequently omit the subscripts of these matrices when the
dimensions will be clear from the context.
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Inner product on R”

@ Definition: An inner product on R" isa map (-,-) : R" x R" -+ R
with the following properties:
(1) symmetry: (x,y) = (y,x),Vx,y € R".
(2) additivity: (x,y +z) = (x,y) + (x,z),Vx,y,z € R".
(3) homogeneity: (Ax,y) = A(x,y), VA € Rand x,y € R".
(4) positive definiteness: (x,x) >0,V x € R", (x,x) =0 < x = 0.

@ Example 1: (dot product) The standard inner product is defined by
n
(xy)=x'y= inyi, Vx,y e R
i=1

@ Example 2: (weighted dot product) Let w € R" , . Then the
following weighted dot product is also an inner product:

(x,y) Z wixy;, YVxyeR"
=1
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Vector norms

@ Definition: A norm || - || on R" is a function || - | : R" — R
satisfying the following properties:
(1) nonnegativity: ||x|| > 0,Vx € R", and ||x|]| =0 < x = 0.
(2) positive homogeneity: ||Ax|| = |Al||x]|, V A € R and x € R".
(3) triangle inequality: ||x +yl|| < ||x|| + |ly]l, ¥ x,y € R™.

@ The associated norm with an inner product: One natural way
to generate a norm on IR” is to take any inner product (-, -) on
R" and define the associated norm

x|l :=1/{x,x), VxeR"

If the inner product is the dot product (i.e., the standard inner
product), then the associated norm is the so-called Euclidean

norm or £y-norm: -
l|x][2 = 4 /inz, VxeR"
i=1

By default, the underlying norm on R" is || - || and the subscript 2
will be frequently omitted.
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{,-norms: p > 1

@ The f)-norm, p > 1, is defined by

n 1/p
Ielly = (Y ) 7, v e R,
i=1
Note: Explain why || - || 1 is not a norm!

@ The /-norm is defined by

[xfle = max |x;|, Vx€R",
i=12,-n

’

and unsurprisingly, it can be shown that
lelleo = lim{la],.
@ The Cauchy-Schwarz inequality: For any x,y € R", we have

[ y)l(= " yl) < xll2llyla
Equality is satisfied if and only if x and y are linearly dependent.
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Supplement

ForO0<p <1,
n 1/p ;
Iolly = (X ul?) 7, vx e R
i=1
is not a norm on R". Let ||x||p := #{7 : x; # 0}. Since

. 1 ifx; #0 T
P = i — n
phr& | ;] { 0 ifx =0 Vax=(x,x, - ,%) €R"

we have

lim [l = lim 2|xz|P 2 lim [l = #{i  x; 7 0}= [

However, in general, lim |[|x||, # ||x|o because---
p—0*
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Matrix norms

@ Definition: A norm || - || on R™*" is a function || - || : R"*" — R
satisfying the following properties:
(1) nonnegativity: ||Al| > 0,VA € R"*", and ||A|| =0< A =0.
(2) positive homogeneity: |AA|| = |A]||A]|, VA € R, A € R™*",
() triangle inequality: ||A + B|| < ||A]| + ||B||, V A, B € R™*".
@ Induced norms: Given a matrix A € R™*" and two norms || - ||

and || - || on R" and R™, respectively, the induced matrix norm
Alla is defined by

|All4p := max{||Ax||, : x € R" and ||x||, < 1}.

Note: An induced norm is a norm.
It can be shown that for any x € IR", we have

[Ax]lp < [|Allgplx]la-

® We refer to the matrix-norm || - ||, as the (a,b)-norm. When a = b,
we will simply refer to it as an a-norm.
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Matrix norms (cont’d)

spectral norm or {;-norm: If || - ||, = || - ||, = || - ||2, the induced
(2,2)-norm of A = (4;;) € R™*" is the maximum singular value

of A, -
[A]l2 = [|A]l22 := \/ Amax(A " A) =: Omax(A).

This norm is called the spectral norm or ¢»-norm. Note that the
eigenvalues A; (i = 1,2,--- ,n) of AT A are real and nonnegative.
fnorm: If || - ||a = || - |l = || - [[1, the induced (1,1)-norm of
A = (Aj) € R"™" is given by

”AHl = HA”ll 7]' Ilnax 2|A1j|

2,
loomorm: If || - ||a = || - [, = || - ||co, the mduced (00, 00)-norm of
A = (Aj) € R™" is given by

Al = Al = _mox 314
Frobenius norm: A non-induced norm is deﬁned by

L 2 1/2 mxn
lalle:= (L Y 43) ) va=(ay) eR™

i=1j=1
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Eigenvalues and eigenvectors

@ Definition: Let A € R"™". Then a nonzero vector v € C" is called an
eigenvector of A if there exists a A € C for which Av = Av. The scalar
A is called the eigenvalue corresponding to the eigenvector v.

Note: 30 #v e C"st.Av=Av = Av—Alv=(A—Al)v =
= det(A — AI) = 0.

@ fa(A) := det(A — AI) is called the characteristic polynomial of A.
faA) = ()" + (1) (@ + -+ @) A4 det(A).
—_—
:=trace(A)

@ [n general, real-valued matrices can have complex eigenvalues, but it is
well known that all the eigenvalues of symmetric matrices are real.
The eigenvalues of a symmetric matrix A € R"*" are denoted by

Al(A) 2 )\2<A) Z 2 )\n—l(A) Z )ln(A>
SN—— N——

=Amax(A) =Amin(A)
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The spectral decomposition (factorization) theorem

The spectral decomposition theorem: Let A € R*" be a symmetric
matrix. Then there exists an orthogonal matrix U € R™", U'U = UU"
= I, and a diagonal matrix D = diag(dy,dp, - - - ,dy) such that

A=UDU'.

@ The columns of the matrix U in the factorization constitute an
orthonormal basis comprised of eigenvectors of A and the diagonal
elements of D are the corresponding eigenvalues.

@ A direct result is that the trace and the determinant of A can be
expressed via its eigenvalues:

n
Ai(A) and detA =]]Ai(A).
i=1 i=1

n
trace A =

Hint: fp(A) = det(D — AI) = det(UT (A — AI)U)
= det(U") det(A — AI) det(U) = det(A — AI) = f4(A).
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Rayleigh quotient

@ Definition: For a symmetric matrix A € R"*", the Rayleigh quotient
is defined by

xT Ax

RA(.’X.') = W, Vx#O
@ Lower and upper bounds on the Rayleigh quotient:

Let A € R™" be symmetric. Then

Amin(A) < Ra(%) < Amax(4), Vx % 0.

Proof.
(i) By the spectral decomposition theorem, 3 an orthogonal U € R"*" such
that UT AU = D, D = diag(dy,d, - - - ,dy), and
/\max(A) = dl > dz > > dn = /\min(A)A

(ii) V x # 0, making the change of variables x = Uy, then y # 0 and we have
xTAx  y'UTAUy y'Dy  Yidiy?

X2~ uyl? oy uuy  n
d.(y dqi (Y12
= Amin(4) = dy = % < Ra(w) < %g) — Amax(d) =dy. D
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The minimal and maximal eigenvalues

Let A € R™*" be symmetric. Then
° m;n Ra(x) = Amin(A), and the eigenvectors of A corresponding to
x#0
the minimal eigenvalue are minimizers.

Proof: Let v be an eigenvector corresponding to the minimal eigenvalue of A.
Then

v Av Amin(A)]|0]|?
= 2 = mm( )2H H :)\min(A)/
[0l [l

which combined with the lower bound on the Rayleigh quotient lead to the

Ra(v)

desired result. [

° m;zx Ra(x) = Amax(A), and the eigenvectors of A corresponding to
x#0

the maximal eigenvalue are maximizers.

Proof: Let w be an eigenvector corresponding to the maximal eigenvalue of A.
Then

ZLTAl’ZL Amax(‘l)”ul‘z
R = = =A A
a (@) [lw]? [l max(4),

which combined with the upper bound on the Rayleigh quotient lead to the
desired result. [
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Basic topological concepts

@ Open ball: The open ball with center ¢ € R" and radius r > 0 is
defined by
B(e,r):={x e R": |[x —c| <r}.

The open ball B(c,r) is also referred to as a neighborhood of c.

@ Close ball: The close ball with center ¢ € R" and radiusr > 0 is
defined by
Ble,r] i={xeR": ||x—¢| <r}.

@ Interior point: Given a set U C IR", a point ¢ € U is an interior
point of U if there exists r > 0 for which B(c,r) C U.

@ Interior set: The set of all interior points of a given set U is called the
interior of the set and is denoted by int(U), i.e.,

int(U) := {x € U: B(x,r) C U for some r > 0}.

Example: (1) int(R"} ) = R’ . (2) int(B[e,r]) = B(c, 7).
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Open set, closed set, and boundary point

@ Open set: U C IR" is an open set if and only if for every x € U there
exists r > 0 such that B(x,r) C U.

Example: R”, open balls, positive orthant R’} , are open sets.
Note: (1) A union of any number of open sets is an open set.
(2) The intersection of a finite number of open sets is open.

@ Closed set: A set U C IR" is said to be closed if for every sequence of
points {x;} C U satisfying x; — x* as k — oo, it holds that x* € U.
Example: closed ball B[c, r], closed lines segments, nonnegative
orthant R" , unit simplex A;, R" are closed sets.

@ Proposition: Let f be a continuous function defined over a closed set
S C IR™. Then for any a € R the following sets are closed:

Lev(f,a) = {xeS:f(x) <a}, (level set)
Con(f,a) = {xeS:f(x)=a}l. (contour set)
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Boundedness and compactness

@ Boundary point: Given a set U C IR", a boundary point of U is a
point x € R" satisfying the following: any neighborhood of x contains
at least one point in U and at least one point in U°, i.e.,

Vr>0,B(x,7r)NU # & and B(x,r) N U° # @.

@ Boundary of U: The set of all boundary points of a set U is called the
boundary of U and is denoted by bd(U).

Example: bd(B(c,7)) = bd(Blc,r]) = {x e R" : ||x — ¢|| = r}.

@ Closure of U: The closure of a set U C R" is defined to be the
smallest closed set containing U and denoted by cl(U), i.e.,

cd(U):=n{T:UCT, Tisclosed}.
Note: (1) The closure set is indeed a closed set as an intersection of
closed sets. (2) cl(U) = UUbd(U).

@ Boundedness: A set U C R" is called bounded if 3 M > 0 s.t.

u C B(0,M).

@ Compactness: A set U C R" is called compact if it is closed and
bounded.
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Differentiability

@ Directional derivative: Lef f be a real-valued function defined on a
set S CR™. Let x € int(S) and let 0 # d € R". If

i £ 1) = )
t—0 t

exists, then it is called the directional derivative of f at x along the
direction d and is denoted by f' (x; d).

Note that here we do not assume that d is a unit vector ||d|| = 1.

@ Partial derivatives: Fori=1,2,- - - ,n, the directional derivative of
f at x along the direction e; is called the ith partial derivative, i.e.,

of (v flx+te)—f(x)
BTC,(x) = %E:% ; .

@ The gradient of f at x is defined as

V@) = [, L), L]

0xq " dxy " 9xy
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Continuous differentiability

@ Definition: A function f defined on an open set U C R" is called
continuously differentiable over U if all the partial derivatives exist
and are continuous on U.

@ Definition: A function f is said to be continuously differentiable over
a set C if there exists an open set U containing C on which the function
is also defined and continuously differentiable.

@ Let f be continuously differentiable over open set U. Then
fllx;d) =Vf(x)'d, Vxel, decR"

@ Proposition: Let f : U — IR be defined on an open set U C R™.
Assume that f is continuously differentiable over U. Then

i O —f@ V@ _
d—0 14|

or equivalently,
fy) =f@) + V) (y —2) +oly —x]),

where o(+) : Ry — R satisfies @ —0ast— 0T,
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Twice continuous differentiability

@ Definition: A function f defined on an open set U C R" is called
twice continuously differentiable over U if all the second order partial
derivatives exist and are continuous over U.

@ Proposition: Let f : U — R be defined on an open set U C R". If f is
twice continuously differentiable, then for any i # j and any x € U,

7 )=
ax,»axj N ax]«ax,' ’
@ The Hessian of f at a point x € U is the n X n matrix

2 2 2
I L IR 1 C)
a2f azf aZf
sz(x) _ | 9x20x (x) @(x) m(x)
o ol R :
axngxl (x) ﬁ(x) e gé(x)

If f is twice continuously differentiable over U, then the Hessian
matrix is symmetric.
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Linear and quadratic approximation theorems

There are two main approximation results which are consequences of
Taylor’s approximation theorem:

@ Linear approximation theorem: Let f : U — R be a twice
continuously differentiable function over an open set U C R", and let
x € U, r > O0satisfy B(x,r) C U. Then for any y € B(x,r), there
exists ¢ € (x,y) such that

1
fy) =f0)+ V@) (y—2) + 5 (y—2) V(@) (y —x).
© OQuadratic approximation theorem: Let f : U — R be a twice

continuously differentiable function over an open set U C IR", and let
x € U, r > 0satisfy B(x,r) C U. Then for any y € B(x,r),

fy) =) +Vf(x) " (y—x) + %(y—X)Tvzf(X)(y—x) +o([ly —xI?).
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