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Vector space Rn

Vector space Rn: the set of n-dimensional column vectors with real
components endowed with the following component-wise addition
operator and the scalar-vector product,

x + y =


x1
x2
...

xn

+


y1
y2
...

yn

 :=


x1 + y1
x2 + y2

...
xn + yn

 , ∀ x, y ∈ Rn,

λx = λ


x1
x2
...

xn

 :=


λx1
λx2

...
λxn

 , ∀ x ∈ Rn, λ ∈ R.

Standard basis of Rn: {e1, e2, · · · , en}, ei := [· · · , 0, 1︸︷︷︸
ith

, 0, · · · ]⊤.

Notation: e := [1, 1, · · · , 1]⊤ and 0 := [0, 0, · · · , 0]⊤.
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Important subsets of Rn

Nonnegative orthant:

Rn
+ := {(x1, x2, · · · , xn)

⊤ : xi ≥ 0 ∀ i}.

Positive orthant:

Rn
++ := {(x1, x2, · · · , xn)

⊤ : xi > 0 ∀ i}.

Closed line segment: let x, y ∈ Rn,

[x, y] := {(1 − α)x + αy : α ∈ [0, 1]}.

Open line segment: let x, y ∈ Rn,

(x, y) := {(1 − α)x + αy : α ∈ (0, 1)}.

[x, x] = {x} and (x, x) = ∅.

Unit-simplex (單位單體): x + y + z = 1, x, y, z ≥ 0.

∆n := {x = (x1, x2, · · · , xn)
⊤ ∈ Rn : x1, x2, · · · , xn ≥ 0, e⊤x = 1}.
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Vector space Rm×n

The set of all real-valued matrices of order m × n is denoted by
Rm×n.

The n × n identity matrix is denoted by In.

The m × n zero matrix is denoted by 0m×n.

We will frequently omit the subscripts of these matrices when the
dimensions will be clear from the context.
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Inner product on Rn

Definition: An inner product on Rn is a map ⟨·, ·⟩ : Rn × Rn → R

with the following properties:

(1) symmetry: ⟨x, y⟩ = ⟨y, x⟩, ∀ x, y ∈ Rn.
(2) additivity: ⟨x, y + z⟩ = ⟨x, y⟩+ ⟨x, z⟩, ∀ x, y, z ∈ Rn.
(3) homogeneity: ⟨λx, y⟩ = λ⟨x, y⟩, ∀ λ ∈ R and x, y ∈ Rn.
(4) positive definiteness: ⟨x, x⟩ ≥ 0, ∀ x ∈ Rn, ⟨x, x⟩ = 0 ⇔ x = 0.

Example 1: (dot product) The standard inner product is defined by

⟨x, y⟩ := x⊤y =
n

∑
i=1

xiyi, ∀ x, y ∈ Rn.

Example 2: (weighted dot product) Let w ∈ Rn
++. Then the

following weighted dot product is also an inner product:

⟨x, y⟩w :=
n

∑
i=1

wixiyi, ∀ x, y ∈ Rn.
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Vector norms

Definition: A norm ∥ · ∥ on Rn is a function ∥ · ∥ : Rn → R

satisfying the following properties:
(1) nonnegativity: ∥x∥ ≥ 0, ∀ x ∈ Rn, and ∥x∥ = 0 ⇔ x = 0.
(2) positive homogeneity: ∥λx∥ = |λ|∥x∥, ∀ λ ∈ R and x ∈ Rn.
(3) triangle inequality: ∥x + y∥ ≤ ∥x∥+ ∥y∥, ∀ x, y ∈ Rn.

The associated norm with an inner product: One natural way
to generate a norm on Rn is to take any inner product ⟨·, ·⟩ on
Rn and define the associated norm

∥x∥ :=
√
⟨x, x⟩, ∀ x ∈ Rn.

If the inner product is the dot product (i.e., the standard inner
product), then the associated norm is the so-called Euclidean
norm or ℓ2-norm:

∥x∥2 =

√
n

∑
i=1

x2
i , ∀ x ∈ Rn.

By default, the underlying norm on Rn is ∥ · ∥2 and the subscript 2
will be frequently omitted.
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ℓp-norms: p ≥ 1

The ℓp-norm, p ≥ 1, is defined by

∥x∥p =
( n

∑
i=1

|xi|p
)1/p

, ∀ x ∈ Rn.

Note: Explain why ∥ · ∥ 1
2

is not a norm!

The ℓ∞-norm is defined by

∥x∥∞ = max
i=1,2,··· ,n

|xi|, ∀ x ∈ Rn,

and unsurprisingly, it can be shown that

∥x∥∞ = lim
p→∞

∥x∥p.

The Cauchy-Schwarz inequality: For any x, y ∈ Rn, we have

|⟨x, y⟩|(= |x⊤y|) ≤ ∥x∥2∥y∥2.

Equality is satisfied if and only if x and y are linearly dependent.
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Supplement

For 0 < p < 1,

∥x∥p =
( n

∑
i=1

|xi|p
)1/p

, ∀ x ∈ Rn.

is not a norm on Rn. Let ∥x∥0 := #{i : xi ̸= 0}. Since

lim
p→0+

|xi|p =

{
1 if xi ̸= 0
0 if xi = 0 ∀ x = (x1, x2, · · · , xn)

⊤ ∈ Rn,

we have

lim
p→0+

∥x∥p
p = lim

p→0+

n

∑
i=1

|xi|p =
n

∑
i=1

lim
p→0+

|xi|p = #{i : xi ̸= 0}= ∥x∥0.

However, in general, lim
p→0+

∥x∥p ̸= ∥x∥0 because · · ·
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Matrix norms

Definition: A norm ∥ · ∥ on Rm×n is a function ∥ · ∥ : Rm×n → R

satisfying the following properties:
(1) nonnegativity: ∥A∥ ≥ 0, ∀ A ∈ Rm×n, and ∥A∥ = 0 ⇔ A = 0.
(2) positive homogeneity: ∥λA∥ = |λ|∥A∥, ∀ λ ∈ R, A ∈ Rm×n.
(3) triangle inequality: ∥A + B∥ ≤ ∥A∥+ ∥B∥, ∀ A, B ∈ Rm×n.

Induced norms: Given a matrix A ∈ Rm×n and two norms ∥ · ∥a
and ∥ · ∥b on Rn and Rm, respectively, the induced matrix norm
∥A∥a,b is defined by

∥A∥a,b := max{∥Ax∥b : x ∈ Rn and ∥x∥a ≤ 1}.

Note: An induced norm is a norm.
It can be shown that for any x ∈ Rn, we have

∥Ax∥b ≤ ∥A∥a,b∥x∥a.

We refer to the matrix-norm ∥ · ∥a,b as the (a, b)-norm. When a = b,
we will simply refer to it as an a-norm.
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Matrix norms (cont’d)

spectral norm or ℓ2-norm: If ∥ · ∥a = ∥ · ∥b = ∥ · ∥2, the induced
(2, 2)-norm of A = (Aij) ∈ Rm×n is the maximum singular value
of A,

∥A∥2 = ∥A∥2,2 :=
√

λmax(A⊤A) =: σmax(A).

This norm is called the spectral norm or ℓ2-norm. Note that the
eigenvalues λi (i = 1, 2, · · · , n) of A⊤A are real and nonnegative.

ℓ1-norm: If ∥ · ∥a = ∥ · ∥b = ∥ · ∥1, the induced (1, 1)-norm of
A = (Aij) ∈ Rm×n is given by

∥A∥1 = ∥A∥1,1 := max
j=1,2,··· ,n

m

∑
i=1

|Aij|.

ℓ∞-norm: If ∥ · ∥a = ∥ · ∥b = ∥ · ∥∞, the induced (∞, ∞)-norm of
A = (Aij) ∈ Rm×n is given by

∥A∥∞ = ∥A∥∞,∞ := max
i=1,2,··· ,m

n

∑
j=1

|Aij|.

Frobenius norm: A non-induced norm is defined by

∥A∥F :=
( m

∑
i=1

n

∑
j=1

A2
ij

)1/2
, ∀ A = (Aij) ∈ Rm×n.
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Eigenvalues and eigenvectors

Definition: Let A ∈ Rn×n. Then a nonzero vector v ∈ Cn is called an
eigenvector of A if there exists a λ ∈ C for which Av = λv. The scalar
λ is called the eigenvalue corresponding to the eigenvector v.

Note: ∃ 0 ̸= v ∈ Cn s.t. Av = λv ⇒ Av − λIv = (A − λI)v = 0.
⇒ det(A − λI) = 0.

fA(λ) := det(A − λI) is called the characteristic polynomial of A.

fA(λ) = (−1)nλn + (−1)n−1 (a11 + · · ·+ ann)︸ ︷︷ ︸
:=trace(A)

λn−1 + · · ·+ det(A).

In general, real-valued matrices can have complex eigenvalues, but it is
well known that all the eigenvalues of symmetric matrices are real.
The eigenvalues of a symmetric matrix A ∈ Rn×n are denoted by

λ1(A)︸ ︷︷ ︸
:=λmax(A)

≥ λ2(A) ≥ · · · ≥ λn−1(A) ≥ λn(A)︸ ︷︷ ︸
:=λmin(A)
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The spectral decomposition (factorization) theorem

The spectral decomposition theorem: Let A ∈ Rn×n be a symmetric
matrix. Then there exists an orthogonal matrix U ∈ Rn×n, U⊤U = UU⊤

= I, and a diagonal matrix D = diag(d1, d2, · · · , dn) such that

A = UDU⊤.

The columns of the matrix U in the factorization constitute an
orthonormal basis comprised of eigenvectors of A and the diagonal
elements of D are the corresponding eigenvalues.

A direct result is that the trace and the determinant of A can be
expressed via its eigenvalues:

trace A =
n

∑
i=1

λi(A) and det A =
n

∏
i=1

λi(A).

Hint: fD(λ) = det(D − λI) = det(U⊤(A − λI)U)

= det(U⊤)det(A − λI)det(U) = det(A − λI) = fA(λ).
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Rayleigh quotient

Definition: For a symmetric matrix A ∈ Rn×n, the Rayleigh quotient
is defined by

RA(x) :=
x⊤Ax
∥x∥2 , ∀ x ̸= 0.

Lower and upper bounds on the Rayleigh quotient:
Let A ∈ Rn×n be symmetric. Then

λmin(A) ≤ RA(x) ≤ λmax(A), ∀ x ̸= 0.
Proof.

(i) By the spectral decomposition theorem, ∃ an orthogonal U ∈ Rn×n such
that U⊤AU = D, D = diag(d1, d2, · · · , dn), and
λmax(A) = d1 ≥ d2 ≥ · · · ≥ dn = λmin(A).

(ii) ∀ x ̸= 0, making the change of variables x = Uy, then y ̸= 0 and we have

x⊤Ax
∥x∥2 =

y⊤U⊤AUy
∥Uy∥2 =

y⊤Dy
y⊤ U⊤U︸ ︷︷ ︸ y

=
∑i diy2

i

∑i y2
i

.

⇒ λmin(A) = dn =
dn(∑i y2

i )

∑i y2
i

≤ RA(x) ≤
d1(∑i y2

i )

∑i y2
i

= λmax(A) = d1. □
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The minimal and maximal eigenvalues

Let A ∈ Rn×n be symmetric. Then

min
x ̸=0

RA(x) = λmin(A), and the eigenvectors of A corresponding to

the minimal eigenvalue are minimizers.
Proof: Let v be an eigenvector corresponding to the minimal eigenvalue of A.
Then

RA(v) =
v⊤Av
∥v∥2 =

λmin(A)∥v∥2

∥v∥2 = λmin(A),

which combined with the lower bound on the Rayleigh quotient lead to the
desired result. □

max
x ̸=0

RA(x) = λmax(A), and the eigenvectors of A corresponding to

the maximal eigenvalue are maximizers.
Proof: Let w be an eigenvector corresponding to the maximal eigenvalue of A.
Then

RA(w) =
w⊤Aw
∥w∥2 =

λmax(A)∥w∥2

∥w∥2 = λmax(A),

which combined with the upper bound on the Rayleigh quotient lead to the
desired result. □
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Basic topological concepts

Open ball: The open ball with center c ∈ Rn and radius r > 0 is
defined by

B(c, r) := {x ∈ Rn : ∥x − c∥ < r}.

The open ball B(c, r) is also referred to as a neighborhood of c.

Close ball: The close ball with center c ∈ Rn and radius r > 0 is
defined by

B[c, r] := {x ∈ Rn : ∥x − c∥ ≤ r}.

Interior point: Given a set U ⊆ Rn, a point c ∈ U is an interior
point of U if there exists r > 0 for which B(c, r) ⊆ U.

Interior set: The set of all interior points of a given set U is called the
interior of the set and is denoted by int(U), i.e.,

int(U) := {x ∈ U : B(x, r) ⊆ U for some r > 0}.

Example: (1) int(Rn
+) = Rn

++. (2) int(B[c, r]) = B(c, r).
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Open set, closed set, and boundary point

Open set: U ⊆ Rn is an open set if and only if for every x ∈ U there
exists r > 0 such that B(x, r) ⊆ U.
Example: Rn, open balls, positive orthant Rn

++ are open sets.
Note: (1) A union of any number of open sets is an open set.

(2) The intersection of a finite number of open sets is open.

Closed set: A set U ⊆ Rn is said to be closed if for every sequence of
points {xk} ⊆ U satisfying xk → x∗ as k → ∞, it holds that x∗ ∈ U.
Example: closed ball B[c, r], closed lines segments, nonnegative
orthant Rn

+, unit simplex ∆n, Rn are closed sets.

Proposition: Let f be a continuous function defined over a closed set
S ⊆ Rn. Then for any α ∈ R the following sets are closed:

Lev(f , α) := {x ∈ S : f (x) ≤ α}, (level set)
Con(f , α) := {x ∈ S : f (x) = α}. (contour set)
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Boundedness and compactness

Boundary point: Given a set U ⊆ Rn, a boundary point of U is a
point x ∈ Rn satisfying the following: any neighborhood of x contains
at least one point in U and at least one point in Uc, i.e.,

∀ r > 0, B(x, r) ∩ U ̸= ∅ and B(x, r) ∩ Uc ̸= ∅.
Boundary of U: The set of all boundary points of a set U is called the
boundary of U and is denoted by bd(U).
Example: bd(B(c, r)) = bd(B[c, r]) = {x ∈ Rn : ∥x − c∥ = r}.

Closure of U: The closure of a set U ⊆ Rn is defined to be the
smallest closed set containing U and denoted by cl(U), i.e.,

cl(U) := ∩{T : U ⊆ T, T is closed}.
Note: (1) The closure set is indeed a closed set as an intersection of
closed sets. (2) cl(U) = U ∪ bd(U).

Boundedness: A set U ⊆ Rn is called bounded if ∃ M > 0 s.t.
U ⊆ B(0, M).

Compactness: A set U ⊆ Rn is called compact if it is closed and
bounded.
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Differentiability

Directional derivative: Let f be a real-valued function defined on a
set S ⊆ Rn. Let x ∈ int(S) and let 0 ̸= d ∈ Rn. If

lim
t→0

f (x + td)− f (x)
t

exists, then it is called the directional derivative of f at x along the
direction d and is denoted by f ′(x; d).
Note that here we do not assume that d is a unit vector ∥d∥ = 1.

Partial derivatives: For i = 1, 2, · · · , n, the directional derivative of
f at x along the direction ei is called the ith partial derivative, i.e.,

∂f
∂xi

(x) := lim
t→0

f (x + tei)− f (x)
t

.

The gradient of f at x is defined as

∇f (x) =
[ ∂f

∂x1
(x),

∂f
∂x2

(x), · · · ,
∂f

∂xn
(x)

]⊤.
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Continuous differentiability

Definition: A function f defined on an open set U ⊆ Rn is called
continuously differentiable over U if all the partial derivatives exist
and are continuous on U.

Definition: A function f is said to be continuously differentiable over
a set C if there exists an open set U containing C on which the function
is also defined and continuously differentiable.

Let f be continuously differentiable over open set U. Then

f ′(x; d) = ∇f (x)⊤d, ∀ x ∈ U, d ∈ Rn.

Proposition: Let f : U → R be defined on an open set U ⊆ Rn.
Assume that f is continuously differentiable over U. Then

lim
d→0

f (x + d)− f (x)−∇f (x)⊤d
∥d∥ = 0, ∀ x ∈ U,

or equivalently,
f (y) = f (x) +∇f (x)⊤(y − x) + o(∥y − x∥),

where o(·) : R+ → R satisfies o(t)
t → 0 as t → 0+.
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Twice continuous differentiability

Definition: A function f defined on an open set U ⊆ Rn is called
twice continuously differentiable over U if all the second order partial
derivatives exist and are continuous over U.

Proposition: Let f : U → R be defined on an open set U ⊆ Rn. If f is
twice continuously differentiable, then for any i ̸= j and any x ∈ U,

∂2f
∂xi∂xj

(x) =
∂2f

∂xj∂xi
(x).

The Hessian of f at a point x ∈ U is the n × n matrix

∇2f (x) =



∂2f
∂x2

1
(x) ∂2f

∂x1∂x2
(x) · · · ∂2f

∂x1∂xn
(x)

∂2f
∂x2∂x1

(x) ∂2f
∂x2

2
(x) · · · ∂2f

∂x2∂xn
(x)

...
... · · ·

...
∂2f

∂xn∂x1
(x) ∂2f

∂xn∂x2
(x) · · · ∂2f

∂x2
n
(x)

 .

If f is twice continuously differentiable over U, then the Hessian
matrix is symmetric.

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan MA 5037: Mathematical Preliminaries – 20/21



Linear and quadratic approximation theorems

There are two main approximation results which are consequences of
Taylor’s approximation theorem:

1 Linear approximation theorem: Let f : U → R be a twice
continuously differentiable function over an open set U ⊆ Rn, and let
x ∈ U, r > 0 satisfy B(x, r) ⊆ U. Then for any y ∈ B(x, r), there
exists ξ ∈ (x, y) such that

f (y) = f (x)+∇f (x)⊤(y− x)+
1
2
(y− x)⊤∇2f (ξ)(y− x).

2 Quadratic approximation theorem: Let f : U → R be a twice
continuously differentiable function over an open set U ⊆ Rn, and let
x ∈ U, r > 0 satisfy B(x, r) ⊆ U. Then for any y ∈ B(x, r),

f (y) = f (x)+∇f (x)⊤(y− x)+
1
2
(y− x)⊤∇2f (x)(y− x)+ o(∥y− x∥2).
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