MA 5037: Optimization Methods and Applications Mathematical Preliminaries

Suh-Yuh Yang (楊肅煜)

Department of Mathematics, National Central University Jhongli District, Taoyuan City 320317, Taiwan

First version: April 14, 2018/Last updated: September 4, 2025

Vector space \mathbb{R}^n

 Vector space Rⁿ: the set of n-dimensional column vectors with real components endowed with the following component-wise addition operator and the scalar-vector product,

$$x + y = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} := \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_n + y_n \end{bmatrix}, \quad \forall x, y \in \mathbb{R}^n,$$

$$\lambda x = \lambda \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} := \begin{bmatrix} \lambda x_1 \\ \lambda x_2 \\ \vdots \\ \lambda x_n \end{bmatrix}, \quad \forall x \in \mathbb{R}^n, \lambda \in \mathbb{R}.$$

- Standard basis of \mathbb{R}^n : $\{e_1, e_2, \cdots, e_n\}, e_i := [\cdots, 0, \underbrace{1}_{\cdots}, 0, \cdots]^\top$.
- **Notation:** $e := [1, 1, \dots, 1]^{\top}$ and $\mathbf{0} := [0, 0, \dots, 0]^{\top}$.

Important subsets of \mathbb{R}^n

Nonnegative orthant:

$$\mathbb{R}^n_+ := \{(x_1, x_2, \cdots, x_n)^\top : x_i \geq 0 \ \forall \ i\}.$$

Positive orthant:

$$\mathbb{R}_{++}^n := \{(x_1, x_2, \cdots, x_n)^\top : x_i > 0 \ \forall i\}.$$

• Closed line segment: let $x, y \in \mathbb{R}^n$,

$$[x, y] := \{(1 - \alpha)x + \alpha y : \alpha \in [0, 1]\}.$$

Open line segment: let $x, y \in \mathbb{R}^n$,

$$(x, y) := \{(1 - \alpha)x + \alpha y : \alpha \in (0, 1)\}.$$

$$[x,x] = \{x\}$$
 and $(x,x) = \emptyset$.

$$\Delta_n := \{x = (x_1, x_2, \cdots, x_n)^\top \in \mathbb{R}^n : x_1, x_2, \cdots, x_n \ge 0, e^\top x = 1\}.$$

Vector space $\mathbb{R}^{m \times n}$

- The set of all real-valued matrices of order $m \times n$ is denoted by $\mathbb{R}^{m \times n}$.
- The $n \times n$ identity matrix is denoted by I_n .
- The $m \times n$ zero matrix is denoted by $\mathbf{0}_{m \times n}$.
- We will frequently omit the subscripts of these matrices when the dimensions will be clear from the context.

Inner product on \mathbb{R}^n

- **Definition:** An inner product on \mathbb{R}^n is a map $\langle \cdot, \cdot \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ with the following properties:
 - (1) *symmetry*: $\langle x, y \rangle = \langle y, x \rangle$, $\forall x, y \in \mathbb{R}^n$.
 - (2) additivity: $\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle, \forall x, y, z \in \mathbb{R}^n$.
 - (3) *homogeneity:* $\langle \lambda x, y \rangle = \lambda \langle x, y \rangle$, $\forall \lambda \in \mathbb{R}$ and $x, y \in \mathbb{R}^n$.
 - (4) positive definiteness: $\langle x, x \rangle \ge 0$, $\forall x \in \mathbb{R}^n$, $\langle x, x \rangle = 0 \Leftrightarrow x = 0$.
- Example 1: (dot product) The standard inner product is defined by

$$\langle x,y\rangle := x^{\top}y = \sum_{i=1}^{n} x_i y_i, \quad \forall x,y \in \mathbb{R}^n.$$

• **Example 2:** (weighted dot product) Let $w \in \mathbb{R}^n_{++}$. Then the following weighted dot product is also an inner product:

$$\langle x,y\rangle_w:=\sum_{i=1}^n w_ix_iy_i,\quad\forall\,x,y\in\mathbb{R}^n.$$

Vector norms

- **Definition:** A norm $\|\cdot\|$ on \mathbb{R}^n is a function $\|\cdot\|: \mathbb{R}^n \to \mathbb{R}$ satisfying the following properties:
 - (1) *nonnegativity*: $||x|| \ge 0$, $\forall x \in \mathbb{R}^n$, and $||x|| = 0 \Leftrightarrow x = 0$.
 - (2) positive homogeneity: $\|\lambda x\| = |\lambda| \|x\|$, $\forall \lambda \in \mathbb{R}$ and $x \in \mathbb{R}^n$.
 - (3) triangle inequality: $||x + y|| \le ||x|| + ||y||$, $\forall x, y \in \mathbb{R}^n$.
- The associated norm with an inner product: One natural way to generate a norm on \mathbb{R}^n is to take any inner product $\langle \cdot, \cdot \rangle$ on \mathbb{R}^n and define the associated norm

$$||x|| := \sqrt{\langle x, x \rangle}, \quad \forall x \in \mathbb{R}^n.$$

If the inner product is the dot product (i.e., the standard inner product), then the associated norm is the so-called *Euclidean* norm or ℓ_2 -norm:

$$\|\mathbf{x}\|_2 = \sqrt{\sum_{i=1}^n x_i^2}, \quad \forall \ \mathbf{x} \in \mathbb{R}^n.$$

By default, the underlying norm on \mathbb{R}^n is $\|\cdot\|_2$ and the subscript 2 will be frequently omitted.

ℓ_p -norms: $p \geq 1$

• The ℓ_p -norm, $p \ge 1$, is defined by

$$\|x\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}, \ \forall \ x \in \mathbb{R}^n.$$

Note: *Explain why* $\|\cdot\|_{\frac{1}{2}}$ *is not a norm!*

• The ℓ_{∞} -norm is defined by

$$||x||_{\infty} = \max_{i=1,2,\cdots,n} |x_i|, \ \forall \ x \in \mathbb{R}^n,$$

and unsurprisingly, it can be shown that

$$||x||_{\infty} = \lim_{p \to \infty} ||x||_{p}.$$

• The Cauchy-Schwarz inequality: For any $x, y \in \mathbb{R}^n$, we have

$$|\langle x,y\rangle|(=|x^\top y|)\leq ||x||_2||y||_2.$$

Equality is satisfied if and only if x and y are linearly dependent.

Supplement

For 0 ,

$$\|\mathbf{x}\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}, \ \forall \ \mathbf{x} \in \mathbb{R}^n.$$

is not a norm on \mathbb{R}^n . Let $\|\mathbf{x}\|_0 := \#\{i : x_i \neq 0\}$. Since

$$\lim_{p\to 0^+}|x_i|^p=\left\{\begin{array}{ll}1 & \text{if }x_i\neq 0\\0 & \text{if }x_i=0\end{array}\right. \forall x=(x_1,x_2,\cdots,x_n)^\top\in\mathbb{R}^n,$$

we have

$$\lim_{p \to 0^+} \|\mathbf{x}\|_p^p = \lim_{p \to 0^+} \sum_{i=1}^n |x_i|^p = \sum_{i=1}^n \lim_{p \to 0^+} |x_i|^p = \#\{i : x_i \neq 0\} = \|\mathbf{x}\|_0.$$

However, in general, $\lim_{p\to 0^+} \|x\|_p \neq \|x\|_0$ because · · ·

Matrix norms

- **Definition:** A norm $\|\cdot\|$ on $\mathbb{R}^{m\times n}$ is a function $\|\cdot\|:\mathbb{R}^{m\times n}\to\mathbb{R}$ satisfying the following properties:
 - (1) *nonnegativity*: $||A|| \ge 0$, $\forall A \in \mathbb{R}^{m \times n}$, and $||A|| = 0 \Leftrightarrow A = 0$.
 - (2) positive homogeneity: $\|\lambda A\| = |\lambda| \|A\|$, $\forall \lambda \in \mathbb{R}$, $A \in \mathbb{R}^{m \times n}$.
 - (3) triangle inequality: $||A + B|| \le ||A|| + ||B||$, $\forall A, B \in \mathbb{R}^{m \times n}$.
- **Induced norms:** Given a matrix $A \in \mathbb{R}^{m \times n}$ and two norms $\|\cdot\|_a$ and $\|\cdot\|_b$ on \mathbb{R}^n and \mathbb{R}^m , respectively, the induced matrix norm $\|A\|_{a,b}$ is defined by

$$||A||_{a,b} := \max\{||Ax||_b : x \in \mathbb{R}^n \text{ and } ||x||_a \le 1\}.$$

Note: An induced norm is a norm.

It can be shown that for any $x \in \mathbb{R}^n$, we have

$$||Ax||_b \leq ||A||_{a,b}||x||_a.$$

• We refer to the matrix-norm $\|\cdot\|_{a,b}$ as the (a,b)-norm. When a=b, we will simply refer to it as an a-norm.

Matrix norms (cont'd)

• spectral norm or ℓ_2 -norm: If $\|\cdot\|_a = \|\cdot\|_b = \|\cdot\|_2$, the induced (2,2)-norm of $A = (A_{ij}) \in \mathbb{R}^{m \times n}$ is the maximum singular value of A,

$$||A||_2 = ||A||_{2,2} := \sqrt{\lambda_{\max}(A^{\top}A)} =: \sigma_{\max}(A).$$

This norm is called the spectral norm or ℓ_2 -norm. Note that the eigenvalues λ_i ($i = 1, 2, \dots, n$) of $A^{\top}A$ are real and nonnegative.

• ℓ_1 -norm: If $\|\cdot\|_a = \|\cdot\|_b = \|\cdot\|_1$, the induced (1,1)-norm of $A = (A_{ij}) \in \mathbb{R}^{m \times n}$ is given by

$$||A||_1 = ||A||_{1,1} := \max_{j=1,2,\cdots,n} \sum_{i=1}^m |A_{ij}|.$$

• ℓ_{∞} -norm: If $\|\cdot\|_a = \|\cdot\|_b = \|\cdot\|_{\infty}$, the induced (∞, ∞) -norm of $A = (A_{ij}) \in \mathbb{R}^{m \times n}$ is given by

$$||A||_{\infty} = ||A||_{\infty,\infty} := \max_{i=1,2,\cdots,m} \sum_{i=1}^{n} |A_{ij}|.$$

• Frobenius norm: A non-induced norm is defined by

$$||A||_F := \left(\sum_{i=1}^m \sum_{j=1}^n A_{ij}^2\right)^{1/2}, \quad \forall A = (A_{ij}) \in \mathbb{R}^{m \times n}.$$

Eigenvalues and eigenvectors

• **Definition:** Let $A \in \mathbb{R}^{n \times n}$. Then a nonzero vector $v \in \mathbb{C}^n$ is called an eigenvector of A if there exists a $\lambda \in \mathbb{C}$ for which $Av = \lambda v$. The scalar λ is called the eigenvalue corresponding to the eigenvector v.

Note:
$$\exists \ \mathbf{0} \neq v \in \mathbb{C}^n \text{ s.t. } Av = \lambda v \Rightarrow Av - \lambda Iv = (A - \lambda I)v = \mathbf{0}.$$

 $\Rightarrow \det(A - \lambda I) = 0.$

• $f_A(\lambda) := \det(A - \lambda I)$ is called the characteristic polynomial of A.

$$f_A(\lambda) = (-1)^n \lambda^n + (-1)^{n-1} \underbrace{(a_{11} + \dots + a_{nn})}_{:=\operatorname{trace}(A)} \lambda^{n-1} + \dots + \det(A).$$

• In general, real-valued matrices can have complex eigenvalues, but it is well known that all the eigenvalues of symmetric matrices are real.

The eigenvalues of a symmetric matrix $A \in \mathbb{R}^{n \times n}$ are denoted by

$$\underbrace{\lambda_1(A)}_{:=\lambda_{\max}(A)} \ge \lambda_2(A) \ge \cdots \ge \lambda_{n-1}(A) \ge \underbrace{\lambda_n(A)}_{:=\lambda_{\min}(A)}$$

The spectral decomposition (factorization) theorem

The spectral decomposition theorem: Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Then there exists an orthogonal matrix $\mathbf{U} \in \mathbb{R}^{n \times n}$, $\mathbf{U}^{\top}\mathbf{U} = \mathbf{U}\mathbf{U}^{\top} = \mathbf{I}$, and a diagonal matrix $\mathbf{D} = \operatorname{diag}(d_1, d_2, \dots, d_n)$ such that

$$A = UDU^{\top}$$
.

- The columns of the matrix **U** in the factorization constitute an orthonormal basis comprised of eigenvectors of **A** and the diagonal elements of **D** are the corresponding eigenvalues.
- A direct result is that the trace and the determinant of *A* can be expressed via its eigenvalues:

trace
$$A = \sum_{i=1}^{n} \lambda_i(A)$$
 and $\det A = \prod_{i=1}^{n} \lambda_i(A)$.

Hint:
$$f_D(\lambda) = \det(D - \lambda I) = \det(U^{\top}(A - \lambda I)U)$$

= $\det(U^{\top}) \det(A - \lambda I) \det(U) = \det(A - \lambda I) = f_A(\lambda)$.

Rayleigh quotient

• **Definition:** For a symmetric matrix $A \in \mathbb{R}^{n \times n}$, the Rayleigh quotient is defined by

$$R_A(x) := \frac{x^\top A x}{\|x\|^2}, \quad \forall \ x \neq \mathbf{0}.$$

Lower and upper bounds on the Rayleigh quotient:

Let $A \in \mathbb{R}^{n \times n}$ be symmetric. Then

$$\lambda_{\min}(A) \leq R_A(x) \leq \lambda_{\max}(A), \quad \forall \ x \neq 0.$$

Proof.

- (i) By the spectral decomposition theorem, \exists an orthogonal $\boldsymbol{U} \in \mathbb{R}^{n \times n}$ such that $\boldsymbol{U}^{\top} A \boldsymbol{U} = \boldsymbol{D}$, $\boldsymbol{D} = \operatorname{diag}(d_1, d_2, \cdots, d_n)$, and $\lambda_{\max}(\boldsymbol{A}) = d_1 \geq d_2 \geq \cdots \geq d_n = \lambda_{\min}(\boldsymbol{A})$.
- (ii) $\forall x \neq 0$, making the change of variables x = Uy, then $y \neq 0$ and we have

$$\frac{\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x}}{\|\boldsymbol{x}\|^2} = \frac{\boldsymbol{y}^{\top} \boldsymbol{U}^{\top} \boldsymbol{A} \boldsymbol{U} \boldsymbol{y}}{\|\boldsymbol{U} \boldsymbol{y}\|^2} = \frac{\boldsymbol{y}^{\top} \boldsymbol{D} \boldsymbol{y}}{\boldsymbol{y}^{\top} \underline{\boldsymbol{U}}^{\top} \boldsymbol{U}} \boldsymbol{y} = \frac{\sum_{i} d_{i} y_{i}^{2}}{\sum_{i} y_{i}^{2}}.$$

$$\Rightarrow \lambda_{\min}(A) = d_n = \frac{d_n(\sum_i y_i^2)}{\sum_i y_i^2} \le R_A(x) \le \frac{d_1(\sum_i y_i^2)}{\sum_i y_i^2} = \lambda_{\max}(A) = d_1. \quad \Box$$

The minimal and maximal eigenvalues

Let $A \in \mathbb{R}^{n \times n}$ be symmetric. Then

• $\min_{x\neq 0} R_A(x) = \lambda_{\min}(A)$, and the eigenvectors of A corresponding to the minimal eigenvalue are minimizers.

 Proof : Let v be an eigenvector corresponding to the minimal eigenvalue of A. Then

$$R_A(v) = rac{v^{ op} A v}{\|v\|^2} = rac{\lambda_{\min}(A) \|v\|^2}{\|v\|^2} = \lambda_{\min}(A),$$

which combined with the lower bound on the Rayleigh quotient lead to the desired result. \qed

• $\max_{x\neq 0} R_A(x) = \lambda_{\max}(A)$, and the eigenvectors of A corresponding to the maximal eigenvalue are maximizers.

Proof: Let w be an eigenvector corresponding to the maximal eigenvalue of A. Then

$$R_A(w) = \frac{w^{\top} A w}{\|w\|^2} = \frac{\lambda_{\max}(A) \|w\|^2}{\|w\|^2} = \lambda_{\max}(A),$$

which combined with the upper bound on the Rayleigh quotient lead to the desired result. \qed

Basic topological concepts

• **Open ball:** The open ball with center $c \in \mathbb{R}^n$ and radius r > 0 is defined by

$$B(c,r) := \{x \in \mathbb{R}^n : ||x - c|| < r\}.$$

The open ball B(c,r) is also referred to as a neighborhood of c.

• Close ball: The close ball with center $c \in \mathbb{R}^n$ and radius r > 0 is defined by

$$B[c,r] := \{x \in \mathbb{R}^n : ||x-c|| \le r\}.$$

- **Interior point:** Given a set $U \subseteq \mathbb{R}^n$, a point $c \in U$ is an interior point of U if there exists r > 0 for which $B(c, r) \subseteq U$.
- **Interior set:** The set of all interior points of a given set U is called the interior of the set and is denoted by int(U), i.e.,

$$int(U) := \{x \in U : B(x,r) \subseteq U \text{ for some } r > 0\}.$$

Example: (1)
$$int(\mathbb{R}^n_+) = \mathbb{R}^n_{++}$$
. (2) $int(B[c,r]) = B(c,r)$.

Open set, closed set, and boundary point

• **Open set:** $U \subseteq \mathbb{R}^n$ *is an open set if and only if for every* $x \in U$ *there exists* r > 0 *such that* $B(x,r) \subseteq U$.

Example: \mathbb{R}^n , open balls, positive orthant \mathbb{R}^n_{++} are open sets.

- **Note:** (1) A union of any number of open sets is an open set.
 - (2) The intersection of a finite number of open sets is open.
- Closed set: A set $U \subseteq \mathbb{R}^n$ is said to be closed if for every sequence of points $\{x_k\} \subseteq U$ satisfying $x_k \to x^*$ as $k \to \infty$, it holds that $x^* \in U$. Example: closed ball B[c, r], closed lines segments, nonnegative orthant \mathbb{R}^n_+ , unit simplex Δ_n , \mathbb{R}^n are closed sets.
- **Proposition:** Let f be a continuous function defined over a closed set $S \subseteq \mathbb{R}^n$. Then for any $\alpha \in \mathbb{R}$ the following sets are closed:

$$Lev(f, \alpha) := \{x \in S : f(x) \le \alpha\},$$
 (level set)
 $Con(f, \alpha) := \{x \in S : f(x) = \alpha\}.$ (contour set)

Boundedness and compactness

● Boundary point: Given a set $U \subseteq \mathbb{R}^n$, a boundary point of U is a point $x \in \mathbb{R}^n$ satisfying the following: any neighborhood of x contains at least one point in U and at least one point in U^c , i.e.,

$$\forall r > 0, B(x,r) \cap U \neq \emptyset$$
 and $B(x,r) \cap U^c \neq \emptyset$.

• **Boundary of** U: The set of all boundary points of a set U is called the boundary of U and is denoted by bd(U).

Example:
$$bd(B(c,r)) = bd(B[c,r]) = \{x \in \mathbb{R}^n : ||x-c|| = r\}.$$

• **Closure of** U: The closure of a set $U \subseteq \mathbb{R}^n$ is defined to be the smallest closed set containing U and denoted by cl(U), i.e.,

$$cl(U) := \cap \{T : U \subseteq T, T \text{ is closed}\}.$$

Note: (1) The closure set is indeed a closed set as an intersection of closed sets. (2) $cl(U) = U \cup bd(U)$.

- **Boundedness:** A set $U \subseteq \mathbb{R}^n$ is called bounded if $\exists M > 0$ s.t. $U \subseteq B(\mathbf{0}, M)$.
- **Compactness:** A set $U \subseteq \mathbb{R}^n$ is called compact if it is closed and bounded.

Differentiability

• **Directional derivative:** Let f be a real-valued function defined on a set $S \subseteq \mathbb{R}^n$. Let $x \in int(S)$ and let $0 \neq d \in \mathbb{R}^n$. If

$$\lim_{t\to 0} \frac{f(x+td) - f(x)}{t}$$

exists, then it is called the directional derivative of f at x along the direction d and is denoted by f'(x;d).

Note that here we do not assume that d *is a unit vector* ||d|| = 1.

• **Partial derivatives:** For $i = 1, 2, \dots, n$, the directional derivative of f at x along the direction e_i is called the ith partial derivative, i.e.,

$$\frac{\partial f}{\partial x_i}(x) := \lim_{t \to 0} \frac{f(x + te_i) - f(x)}{t}.$$

• The gradient of *f* at *x* is defined as

$$\nabla f(\mathbf{x}) = \left[\frac{\partial f}{\partial x_1}(\mathbf{x}), \frac{\partial f}{\partial x_2}(\mathbf{x}), \cdots, \frac{\partial f}{\partial x_n}(\mathbf{x})\right]^\top.$$

Continuous differentiability

- **Definition:** A function f defined on an open set $U \subseteq \mathbb{R}^n$ is called continuously differentiable over U if all the partial derivatives exist and are continuous on U.
- **Definition:** A function f is said to be continuously differentiable over a set C if there exists an open set U containing C on which the function is also defined and continuously differentiable.
- Let *f* be continuously differentiable over open set *U*. Then

$$f'(x;d) = \nabla f(x)^{\top} d, \quad \forall x \in U, \ d \in \mathbb{R}^n.$$

• **Proposition:** Let $f: U \to \mathbb{R}$ be defined on an open set $U \subseteq \mathbb{R}^n$. Assume that f is continuously differentiable over U. Then

$$\lim_{d\to 0} \frac{f(x+d) - f(x) - \nabla f(x)^{\top} d}{\|d\|} = 0, \quad \forall \, x \in U,$$

or equivalently,

$$f(\mathbf{y}) = f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}) + o(\|\mathbf{y} - \mathbf{x}\|),$$

where $o(\cdot): \mathbb{R}_+ \to \mathbb{R}$ satisfies $\frac{o(t)}{t} \to 0$ as $t \to 0^+$.

Twice continuous differentiability

- **Definition:** A function f defined on an open set $U \subseteq \mathbb{R}^n$ is called twice continuously differentiable over U if all the second order partial derivatives exist and are continuous over U.
- **Proposition:** Let $f: U \to \mathbb{R}$ be defined on an open set $U \subseteq \mathbb{R}^n$. If f is twice continuously differentiable, then for any $i \neq j$ and any $x \in U$,

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(x) = \frac{\partial^2 f}{\partial x_j \partial x_i}(x).$$

• The *Hessian* of f at a point $x \in U$ is the $n \times n$ matrix

$$\nabla^{2} f(\mathbf{x}) = \begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}}(\mathbf{x}) & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}(\mathbf{x}) & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}}(\mathbf{x}) \\ \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}(\mathbf{x}) & \frac{\partial^{2} f}{\partial x_{2}^{2}}(\mathbf{x}) & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}}(\mathbf{x}) \\ \vdots & \vdots & \cdots & \vdots \\ \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}}(\mathbf{x}) & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}}(\mathbf{x}) & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}(\mathbf{x}) \end{bmatrix}.$$

If f is twice continuously differentiable over U, then the Hessian matrix is symmetric.

Linear and quadratic approximation theorems

There are two main approximation results which are consequences of Taylor's approximation theorem:

1 Linear approximation theorem: Let $f: U \to \mathbb{R}$ be a twice continuously differentiable function over an open set $U \subseteq \mathbb{R}^n$, and let $x \in U$, r > 0 satisfy $B(x,r) \subseteq U$. Then for any $y \in B(x,r)$, there exists $\xi \in (x,y)$ such that

$$f(y) = f(x) + \nabla f(x)^{\top} (y - x) + \frac{1}{2} (y - x)^{\top} \nabla^2 f(\xi) (y - x).$$

Quadratic approximation theorem: Let $f: U \to \mathbb{R}$ be a twice continuously differentiable function over an open set $U \subseteq \mathbb{R}^n$, and let $x \in U$, r > 0 satisfy $B(x,r) \subseteq U$. Then for any $y \in B(x,r)$,

$$f(y) = f(x) + \nabla f(x)^{\top} (y - x) + \frac{1}{2} (y - x)^{\top} \nabla^{2} f(x) (y - x) + o(\|y - x\|^{2}).$$