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Optimality conditions

@ One of the main drawbacks of the concept of stationarity is that
for most feasible sets, it is rather difficult to validate whether this
condition is satisfied or not, and it is even more difficult to use it
in order to actually solve the underlying optimization problem.

@ Our main objective is to derive an equivalent optimality condition
that is much easier to handle.

@ In this lecture, we will establish the so-called Karush-Kuhn-Tucker
(KKT) conditions for the special case of linearly constrained
problems (LCPs).
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Strict separation theorem

@ Definition: Given S C R", a hyperplane H := {x € R" : a'x = b},
where a € R™ \ {0} and b € R, is said to strictly separate a point
yZSfromS ifa'y>banda'x <b, Vx€S.

@ Theorem: (strict separation theorem) Let C C IR" be a closed and
convex set and y ¢ C. Then 3p € R" \ {0} and « € R such that

p'ly>a and p'x<a VxeC
Proof: By the second projection theorem, the vector ¥ := P¢(y) € C satisfies
(y—%) (x—%) <0 VxeC= (y—%)'x<(y—%'x VxecC
Denotep=y—%#0anda = (y — %) "% Thenwe havep'x <aVx € C. On
theotherhand, p 'y = (y—%) 'y =(y—3%)"(y—%) + (y—%) 2= |ly — x| + .
Thus, we have p 'y > «, and the result is established. [
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Farkas’ lemma: first formulation

@ Farkas’ lemma: Let ¢ € R" and A € R™*". Then exactly one of the
following systems has a solution:
I Ax <o, c'x>0. (IT) ATy =cy=>0.

@ Example: Consider the following example:

1 5 -1
A=) =]
System (I) is infeasible since the system Ax < 0 implies the
inequality ¢ " x < 0. In practice,
x+ 5y

—x+2y
Then eqn(1) +2 x eqn(2) = —x+9y <0, i.e, c'x < 0. The row
vector ¢! can be written as a conic combination of the rows of A. In
other words, ¢ is a conic combination of the columns of A" :

RN

AT c

0,
0.

IA A
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Farkas’ lemma: second formulation

Let ¢ € R" and A € R™*". Then the following two claims are equivalent:
(A) The implication Ax < 0 = ¢'x < 0 holds true.

(B) Iy € R" suchthat ATy = c.

Proof:

(B) = (A): Assume that system (B) is feasible. Let Ax < 0 for some x € R". Then
yTAx < 0.Sincec' = yTA, we have ¢ x < 0.

(A) = (B): Suppose in contradiction that system (B) is infeasible. Consider the
following closed and convex set S := {x € R” : x = ATy for some y € R%}. (The
closedness of S follows from Lemma 6.32). Then ¢ ¢ S. By the strict separation
theorem, 3p € R" \ {0} and « € R such that

pTc>1x and pTszx, Vxes.
Since 0 € S, we can conclude that « > 0 and also p "¢ > 0(= ¢ p > 0). In addition,

plx<a VxeS<=p Aly<a Vy>0< (Ap)'y<a, Vy>0,

which implies Ap < 0. We have thus arrived at a contradiction to the assumption that
the implication (A) holds (using the vector p), and consequently (B) is satisfied. [
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Gordan’s alternative theorem

Let A € R™* " Then exactly one of the following two systems has a
solution: (A) Ax < 0. B)p#0,ATp=0,p>0.

Proof: Assume that system (A) has a solution. Suppose in contradiction that (B) is
feasible. Then 3p #0,ATp =0,p > 0. = x' A'p=0= (Ax)"p =0. Thisis
impossible since Ax < 0and 0 < p # 0.

Now suppose that system (A) does not have a solution. Note that
Ax <0 < Ax+se <0, for somes > 0.

The latter system can be rewritten as
A m <o, ¢ m >0,
s s

where A = [A e] and ¢ = e,,.1. The infeasibility of (A) is thus equivalent to the
infeasibility of the system

Aw<0, c'w>0, weR".
By Farkas’ lemma, 3 z € R such that
T
{AT} z=c — ATz:O, elz=1
e

Sincee'z =1,z # 0. We have shown the existence of 0 £z =:p e R s.t. ATz = 0. O
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KKT conditions: necessary optimality conditions

Gordan'’s alternative theorem can be used to establish an optimality criterion
that is in fact a special case of the so-called Karush-Kuhn-Tucker (KKT)
conditions (Chapter 11). Here we derive the KKT conditions for LCPs by
using Farkas’ lemma.

Theorem: Consider the following minimization problem:
(P) min f(x) s.t.a;—xgbi, i=1,2,---,m,
where f is continuously differentiable over R", aq, ay,- - - , a;m € R",
by, by, -+, by € R. Let x* be a local minimum point of (P). Then there exist
A, Az, o+, A > 0 such that

n
VE( +2/\a1_0 and )\(ax—bi)zo,izl,Z,---,m
i=1
Proof: Since x* is a local minimum point of (P), x* is a stationary point. Therefore,
Vi(x*)T(x—x*) >0,Yx € R" satisfying aiTx <b;,i=1,2,---,m. Denote the set of
active constraints by
I(x*) = {i: a] x* = b;}.

Making the change of variables y = x — x*, we obtain

Vf(x*)Ty >0 forany y € R" satisfying a; (y+x*) < b; for i =1,2,---,m. (TBC...)
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KKT conditions: necessary optimality conditions (cont’d)

That is, we have
Vf(x*)Ty > 0forany y € R" satisfying a/ y < 0, i € I(x*) %)
andaly <b;—ax*, i ¢ I(x*).
We will show that in fact the second set of inequalities in the latter system can be
removed, that is, that the following implication is valid:
If a]y <Oforalli€ I(x*) then Vf(x*)Ty>0 (= —Vf(x*)Ty<0).
Assume that y satisfies a; y < 0 for alli € I(x*).
(1) Sinceb; —afx* > 0foralli ¢ ( ), it follows that there exists a small enough
« > 0 such that al (ay) <b;—alx
(2) Inaddition, a; (ay) < Oforallie I(x*).

Therefore, from (% ), we have Vf(x*) T (ay) > 0 and hence that Vf(x*) Ty > 0. By
Farkas’ lemma (second formulation), 3 A; > 0, i € I(x*), such that

7Vf Z Aia.

iel(x*)

Defining A; = 0 for all i ¢ I(x*), we get that A;(a x* —b;) = Oforalli =1,2,--- ,mand

as required. [J
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KKT conditions: sufficient optimality conditions

The KKT conditions are necessary conditions, but when f is convex, they are
both necessary and sufficient global optimality conditions.

Theorem: Consider the minimization problem
(P) min f(x) s.t.ul-Txgbl-, i=1,2---,m,

where f is a convex continuously differentiable function over R", a1, az, - - -,
am € R?, by1,by, -+, by € R. Let x* be a feasible solution of (P). Then x* is
an optimal solution of (P) if and only if 3 Ay, Ay, - -+, Ay > 0 such that

Vf(x* +2Aaz—0 and Aj(ax* —b) =0, i=1,2,---,m (%)
i=1
Note: l
@ The nonnegative scalars Ay, Ay, - - -, Ay in the KKT conditions are
called Lagrange multipliers, where A; is the multiplier associated with
the ith constraint aiTx <b;.

@ The conditions Ai(aiTx* —b;))=0,i=1,2,--- ,mare known in
the literature as the complementary slackness (Effi%Z5t) conditions.
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Proof of the sufficient optimality conditions

(=) It has been done in the previous theorem.
(«<=) Assume that x* be a feasible solution of (P) satisfying (*). Let x be any
feasible solution of (P). Define the function

h(x) == f(x) + i Ai(a] x — by).

i=1

Then Vh(x*) = 0 and since & is convex, it follows that x* is a minimizer of h
over R". From (%), we have

F) = F)+ Y Aal ¥~ b) = hix")

< h(x):f(x)+f2\<a x —b;) < f(x).

We have thus proven that x* is a global optimal solution of (P). [
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KKT conditions for linearly constrained problems

We can generalize the previous two theorems to the case where linear
equality constraints are also present.

Theorem: Consider the following minimization problem:

min f(x)
(Q) s.t. alTx <b, i=1,2,---,m,
T

]x:d] j:1/2/"'/P,

where f is a continuously differentiable function over R", a1, ay, - - - , an,
ci,6,- ,¢p €R", by, by, -+ by, dy,d, - -+, dy € R. Then we have

© (necessity) If x* is a local minimum point of (Q). Then there exist
M, A2, A > 0and pq, o, - -+, pp € R such that

m P
VF(x*)+ ) Aiai+ ) pjcj =0, Ailal x* —b) =0,i=1,2,--- ,m. (x)
i=1 j=1
@ (sufficiency) If in addition f is convex over R" and x* is a feasible
solution of (Q) for which I Ay, Ap, -+, Am >0, p1, 2, -+, tp €R
such that (x) are satisfied, then x* is an optimal solution of (Q).
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Proof of the KKT theorem

The proof is based on the simple observation that a linear equality constraint a'x = b
can be written as two inequality constraints, a'x<band —a'x < —b.

(1) Consider the equivalent problem

min f(x)
Q) st alx<b, i=12--,m,
¢x<d, —¢lx<—d, j=12,--,p
Since x* is an optimal solution of (Q’), it follows that there exist multipliers
/\1/)\2,~ .. ,/\m > 0 and HT;H;,‘H;,‘HE, .. ,‘M;,‘H; >0 such that

m |4 14
Vf(x*) + Z/\,‘a,' + Zy]*c] — ZV;CJ' =0, (*1)
i=1 j=1 j=1

)\,'(uiTx*fb,‘) =0, i=12---,m, (*2)
BT ) =0, (% ) =0, =120 (s)
We thus obtain that (x) are satisfied with p; := yj* — W j=12p

(2) Assume that x* satisfies (x). Then it also satisfies (x1), (x2) and (*3) with
y;' = max{p;,0}, Ho=- min{p;,0}. By the theorem on page 9, x* is an optimal
solution of (Q’) and thus also an optimal solution of (Q). [

Note: A feasible point x* is called a KKT point if there exist multipliers for which () on page
11 are satisfied.
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General nonlinear programming problems

The general setting of general nonlinear programming problems is
given by

min f(x)
(NLP) s.t. g,(x) i=1,2,--,m,
() 0 j:1121"',P,

wheref, g1, -+ ,gm,and hy, - - -, hy, are all continuously differentiable
functions over R". The associated Lagrangian function takes the form

m

p

L(x, A, p) = f(x) + ) Aigi(x) + ) k(%)
i=1 j=1

The details of the general NLP will be studied in the next chapter. In

the linearly constrained case of problem (Q), the first condition in (%)

on page 11 is the same as

Vi L(x*, A, ) = VF(x* +2AVg, +Zy]Vh xF) = 0.
i=1
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The associated Lagrangian function of problem (Q)

Back to problem (Q), we define the matrices A and C and the vectors
b and d by

alT Ci bl dl

LIZT c bz dz
A= . ’ C= . ’ b = . 4 = . 4

{,l,;,lr Cr—)r bm dp

then the constraints of problem (Q) can be written as
Ax<b, Cx=d.
The Lagrangian function can be also written as
L Ap) =f(x) + A" (Ax—b) +p' (Cx—d),
and the first condition in (*) takes the form

ViL(x*, A, p) = VF(x) +ATA+CTu=0.
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Example 1

Consider the problem
min %(xz—&—yz +2%) st xt+y+z=23.

Since the problem is convex, the KKT conditions are necessary and
sufficient. The Lagrangian of the problem is

1
L(x,y,z,p1) = E(x2 + 2 +22) +u(x+y+z-3).

The KKT conditions and the feasibility condition are

a—L*JH— =0 a—L* +u=0
ax T THEEY E)y_y w="5
a—L—er =0, x+y+z=
oz cTHTY yrz=
We obtain x = ¥ = z = 1 and y = —1. The unique optimal solution of

the problem is (x,y,z) = (1,1,1).
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Example 2

Consider the problem
min x2+2y2+4xy st. x+y=1, x>0, y>0.

The problem is nonconvex, since the matrix associated with the

; ; is indefinite. Thus, the KKT
conditions are necessary optimality conditions. The Lagrangian of
the problem is

quadratic objective function A =

L(x,y, 1, A, A2) = X2+ 27 +dxy + p(x +y — 1) — Aix — Agy,

where Aj, Ay € Ry, u € R. The KKT conditions with the feasibility
conditions are

oL oL
a—2x+4y+pt—/\1—0, @—4x+4y+y—/\2—0,
Mx=0, My=0, x+y=1, x>0, y>0, A, A >0.
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Example 2 (cont’d)

Case 1: A} = Ay = 0. In this case we obtain the three equations
2x+4y+p =0, dx+4y+p=0 x+y=1,
whose solution is (x,y, #) = (0,1, —4). (x,y) = (0,1) is a KKT point.

Case 2: A; > 0, A; > 0. By the complementary slackness conditions,
we have x = y = 0, which contradicts the constraint x +y = 1.

Case 3: A; > 0, A, = 0. By the complementary slackness conditions,
we have x = 0 = y = 1, which was already shown to be a KKT point.

Case 4: A; = 0, A > 0. By the complementary slackness conditions,
wehavey=0=>x=1=2+pu=0,4+u—-A=0=pu=-2,
Az = 2. We thus obtain that (x,y) = (1,0) is also a KKT point.

Since the problem consists of minimizing a continuous function over a
compact set it follows from the Weierstrass theorem that it has a global
optimal solution. Since f(1,0) = 1and f(0,1) =2, (x,y) = (1,0) is the
global optimal solution of the problem.
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Orthogonal projection onto an affine space

Let C be the affine space C := {x € R"” : Ax = b}, where A € R"*"
and b € R™. We assume that the rows of A are linearly independent.
Given y € R", the optimization problem is

min ||x —y|*> st Ax="b.

This is a convex optimization problem, so the KKT conditions are necessary
and sufficient. The Lagrangian function is

Lix,A) = |x—y|*>+2A) " (Ax—Db) (Note p := 2A)
= |xI?P-2(y—ATA)Tx—2ATb+ |ly|%2, A eR™
The KKT conditions are

2x—2(y—A"A)=0, Ax=0»b
— x=y-A'A = A(y—-A"A) =0
— AA'A=Ay—b — A= (AA") 1 (Ay—b),

AAT is nonsingular since the rows of A are linearly independent. We
obtain the optimal solution: Pc(y) =y — AT (AAT)"1(Ay — b).
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Orthogonal projection onto hyperplanes

@ Consider the hyperplane H = {x € R" : a'x = b}, where
0 # a € R" and b € R. Since a hyperplane is a spacial case of an
affine space, from the last example, we obtain

_ aly—b
PH@>:y—amTw“ufy—br:y—ﬁﬁwf

@ (Distance of a point from a hyperplane)
LetH={x€R":a'x=0b},where0 # a € R" and b € R. Then

‘_|aTyb

aly—b
d(y,H)—IIy—PH(yN—Hy—(y‘ ||Z|\2 ) la]l
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Orthogonal projection onto half-spaces

Let H- = {x € R":a'x < b}, where 0 # a € R" and b € R. Given
y € R", the corresponding optimization problem is

min Jx—y|*> sta'x<b.
The Lagrangian of the problem is
LxA) = x—yl*+ (M) (a'x—b), A >0,
and the KKT conditions with the feasibility condition are

20x—y)+20a=0, Ala'x—b)=0, a'x<b A>0.

1

0.8
0.6
0.4 y
0.2

0
-0.2
-0.4
~06 Ph(y)
-0.8
1 : : . . .
-2 -15 -1 -05 0 0.5 1

H={x: a'x < b}
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Orthogonal projection onto half-spaces (cont’d)

@ If A =0, then x = y and the KKT conditions are satisfied when
a'y <b,ie,y € H . Thus, the optimal solution is Py, (y) = y
ifye H™.

© Assume that A > 0. By the complementary slackness condition
we have a'x = b. Plugging the first equation x = y — Aa into
a'x = b, we have

T a'y—b T
a' (y—»Aa)=b = A= a2 >0, whena'y > b.
The optimal solution is
a'y—b
X=y— ————4a.
YTl
@ To summarize, we have
Y, if aTy <b,
Py-(y) = Ty—b
H-(v) - %a, ifa'y >b.
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The orthogonal regression problem

Consider the points a, ay, - - - ,a,; € R". For a given 0 # x € R" and
y € R, we define the hyperplane

Hyy:={aeR":x"a=y}.

In the orthogonal regression problem, we seek to find 0 # x € R" and
¥ € R such that the sum of squared Euclidean distances between the
points ay, az, - - -, ay to Hy,y is minimal, i.e.,

min{fd(a,-,Hx,y)z 0#£xeRye JR}. (W)

xy

i=1

2,2 8,

26 ag,

24

22 ay

2 2,

18

16

14

Y . . .
0 o1 02 03 04 05 06 07 08 09 I
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The orthogonal regression problem (cont’d)

Theorem: Let ay,a;,--- ,a,, € R" and let A = [alT,uzT, - ,a]". Then
an optimal solution of problem (#) is given by x that is an ezgenvector of the
matrix A" (I, — %eeT)A associated with the minimum eigenvalue and
y=LY". alx. Hereeis the m-length vector of ones. The optimal
function value of problem (#) is Amin[AT (In — Lee T )A].

Proof: From page 19 (the distance of a point from a hyperplane), the squared Euclidean
distance between the point a; to Hy,y, is given by
(a/x—y)*

d(ui/Hx,y)z = HXT/

i=12,---,m.

It follows that (#) is the same as

. m uTxi 2
mm{z(’|x”2y):07&x€]R",y€]R}.

=

Fixing ¥ and minimizing first with respect to y we obtain that the optimal y is given by




The orthogonal regression problem (cont’d)

Using the latter expression for y we obtain that

i(a?x—y)z = <a.Tx— ieTAx>Z
= o\ om
m

= i(a?x)z - 3 Z(eTAx)(aiTx) + %(eTAx)2

mi4

M=

= D NP (e A = AN (e AN

1
=xTAT <Im — —eeT> Ax.
m

Therefore, we arrive at the following reformulation of (#) as a problem consisting of
minimizing a Rayleigh quotient:

Ms fi

xl [AT (Im — %GET)A}X
mln{ Pk tx #£ 0}.

Consequently, an optimal solution of the problem is an eigenvector of the matrix
AT (I, — Lee)A corresponding to the minimum eigenvalue, and the optimal function
value is the minimum eigenvalue Amin[AT (I — See")A]. O
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