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Optimality conditions

One of the main drawbacks of the concept of stationarity is that
for most feasible sets, it is rather difficult to validate whether this
condition is satisfied or not, and it is even more difficult to use it
in order to actually solve the underlying optimization problem.

Our main objective is to derive an equivalent optimality condition
that is much easier to handle.

In this lecture, we will establish the so-called Karush-Kuhn-Tucker
(KKT) conditions for the special case of linearly constrained
problems (LCPs).
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Strict separation theorem

Definition: Given S ⊆ Rn, a hyperplane H := {x ∈ Rn : a⊤x = b},
where a ∈ Rn \ {0} and b ∈ R, is said to strictly separate a point
y ̸∈ S from S if a⊤y > b and a⊤x ≤ b, ∀ x ∈ S.
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Figure 10.1. Strict separation of point from a closed and convex set.

which is the same as
(y− x̄)T x≤ (y− x̄)T x̄ for all x ∈C .

Denote p= y− x̄ �= 0 (since y /∈C ) and α= (y− x̄)T x̄. Then we have that pT x≤ α for all
x ∈C . On the other hand,

pT y= (y− x̄)T y= (y− x̄)T (y− x̄)+ (y− x̄)T x̄= ‖y− x̄‖2+α > α,

and the result is established.

As was already mentioned, the latter separation theorem is extremely important since
it is the basis for all optimality conditions. We begin by using it in order to prove an al-
ternative theorem, which is known in the literature as Farkas’ lemma. We refer to it as an
alternative theorem since it essentially states that exactly one of two systems (“alterna-
tives”) is feasible.

Lemma 10.2 (Farkas’ lemma). Let c ∈ �n and A ∈ �m×n . Then exactly one of the
following systems has a solution:

I. Ax≤ 0,cT x> 0.

II. AT y= c,y≥ 0.

Before proceeding to the proof of the lemma, let us begin with an illustration. For
that, consider the following example:

A=
�

1 5
−1 2

�
, c=

�−1
9

�
,

Stating that system I is infeasible means that the system Ax ≤ 0 implies the inequality
cT x ≤ 0. Thus, the relevant question is whether the inequality −x1 + 9x2 ≤ 0 holds
whenever the two inequalities

x1+ 5x2 ≤ 0,
−x1+ 2x2 ≤ 0

are satisfied. The answer to this question is affirmative. Indeed, we can see the implication
by noting that adding twice the second inequality to the first inequality yields the desired
inequality−x1+9x2 ≤ 0. Thus, the argument for showing the implication is that the row

Theorem: (strict separation theorem) Let C ⊆ Rn be a closed and
convex set and y ̸∈ C. Then ∃ p ∈ Rn \ {0} and α ∈ R such that

p⊤y > α and p⊤x ≤ α, ∀ x ∈ C.
Proof: By the second projection theorem, the vector x̄ := PC(y) ∈ C satisfies

(y − x̄)⊤(x − x̄) ≤ 0 ∀ x ∈ C =⇒ (y − x̄)⊤x ≤ (y − x̄)⊤x̄ ∀ x ∈ C.

Denote p = y − x̄ ̸= 0 and α = (y − x̄)⊤x̄. Then we have p⊤x ≤ α ∀ x ∈ C. On
the other hand, p⊤y = (y − x̄)⊤y = (y − x̄)⊤(y − x̄) + (y − x̄)⊤x̄ = ∥y − x̄∥2 + α.
Thus, we have p⊤y > α, and the result is established. □
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Farkas’ lemma: first formulation

Farkas’ lemma: Let c ∈ Rn and A ∈ Rm×n. Then exactly one of the
following systems has a solution:
(I) Ax ≤ 0, c⊤x > 0. (II) A⊤y = c, y ≥ 0.
Example: Consider the following example:

A =

[
1 5
−1 2

]
, c =

[
−1
9

]
.

System (I) is infeasible since the system Ax ≤ 0 implies the
inequality c⊤x ≤ 0. In practice,

x + 5y ≤ 0,
−x + 2y ≤ 0.

Then eqn(1) + 2 × eqn(2) ⇒ −x + 9y ≤ 0, i.e., c⊤x ≤ 0. The row
vector c⊤ can be written as a conic combination of the rows of A. In
other words, c is a conic combination of the columns of A⊤:[

1
5

]
+ 2

[
−1
2

]
=

[
−1
9

]
or

[
1 −1
5 2

]
︸ ︷︷ ︸

A⊤

[
1
2

]
=

[
−1
9

]
︸ ︷︷ ︸

c

.
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Farkas’ lemma: second formulation

Let c ∈ Rn and A ∈ Rm×n. Then the following two claims are equivalent:
(A) The implication Ax ≤ 0 ⇒ c⊤x ≤ 0 holds true.
(B) ∃ y ∈ Rm

+ such that A⊤y = c.
Proof:

(B) ⇒ (A): Assume that system (B) is feasible. Let Ax ≤ 0 for some x ∈ Rn. Then
y⊤Ax ≤ 0. Since c⊤ = y⊤A, we have c⊤x ≤ 0.

(A) ⇒ (B): Suppose in contradiction that system (B) is infeasible. Consider the
following closed and convex set S := {x ∈ Rn : x = A⊤y for some y ∈ Rm

+}. (The
closedness of S follows from Lemma 6.32). Then c ̸∈ S. By the strict separation
theorem, ∃ p ∈ Rn \ {0} and α ∈ R such that

p⊤c > α and p⊤x ≤ α, ∀ x ∈ S.

Since 0 ∈ S, we can conclude that α ≥ 0 and also p⊤c > 0(⇒ c⊤p > 0). In addition,

p⊤x ≤ α, ∀ x ∈ S ⇐⇒ p⊤A⊤y ≤ α, ∀ y ≥ 0 ⇐⇒ (Ap)⊤y ≤ α, ∀ y ≥ 0,

which implies Ap ≤ 0. We have thus arrived at a contradiction to the assumption that
the implication (A) holds (using the vector p), and consequently (B) is satisfied. □
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Gordan’s alternative theorem

Let A ∈ Rm×n. Then exactly one of the following two systems has a
solution: (A) Ax < 0. (B) p ̸= 0, A⊤p = 0, p ≥ 0.
Proof: Assume that system (A) has a solution. Suppose in contradiction that (B) is
feasible. Then ∃ p ̸= 0, A⊤p = 0, p ≥ 0. =⇒ x⊤A⊤p = 0 =⇒ (Ax)⊤p = 0. This is
impossible since Ax < 0 and 0 ≤ p ̸= 0.

Now suppose that system (A) does not have a solution. Note that

Ax < 0 ⇐⇒ Ax + se ≤ 0, for some s > 0.

The latter system can be rewritten as

Ã
[

x
s

]
≤ 0, c⊤

[
x
s

]
> 0,

where Ã = [A e] and c = en+1. The infeasibility of (A) is thus equivalent to the
infeasibility of the system

Ãw ≤ 0, c⊤w > 0, w ∈ Rn+1.

By Farkas’ lemma, ∃ z ∈ Rm
+ such that[

A⊤

e⊤

]
z = c =⇒ A⊤z = 0, e⊤z = 1.

Since e⊤z = 1, z ̸= 0. We have shown the existence of 0 ̸= z =: p ∈ Rm
+ s.t. A⊤z = 0. □
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KKT conditions: necessary optimality conditions

Gordan’s alternative theorem can be used to establish an optimality criterion
that is in fact a special case of the so-called Karush-Kuhn-Tucker (KKT)
conditions (Chapter 11). Here we derive the KKT conditions for LCPs by
using Farkas’ lemma.

Theorem: Consider the following minimization problem:

(P) min f (x) s.t. a⊤
i x ≤ bi, i = 1, 2, · · · , m,

where f is continuously differentiable over Rn, a1, a2, · · · , am ∈ Rn,
b1, b2, · · · , bm ∈ R. Let x∗ be a local minimum point of (P). Then there exist
λ1, λ2, · · · , λm ≥ 0 such that

∇f (x∗) +
m

∑
i=1

λiai = 0 and λi(a⊤
i x∗ − bi) = 0, i = 1, 2, · · · , m.

Proof: Since x∗ is a local minimum point of (P), x∗ is a stationary point. Therefore,
∇f (x∗)⊤(x − x∗) ≥ 0, ∀ x ∈ Rn satisfying a⊤

i x ≤ bi, i = 1, 2, · · · , m. Denote the set of
active constraints by

I(x∗) = {i : a⊤
i x∗ = bi}.

Making the change of variables y = x − x∗, we obtain

∇f (x∗)⊤y ≥ 0 for any y ∈ Rn satisfying a⊤
i (y+ x∗) ≤ bi for i = 1, 2, · · · , m. (TBC...)
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KKT conditions: necessary optimality conditions (cont’d)

That is, we have

∇f (x∗)⊤y ≥ 0 for any y ∈ Rn satisfying a⊤
i y ≤ 0, i ∈ I(x∗)

and a⊤
i y ≤ bi − a⊤

i x∗, i ̸∈ I(x∗).
(⋆)

We will show that in fact the second set of inequalities in the latter system can be
removed, that is, that the following implication is valid:

If a⊤
i y ≤ 0 for all i ∈ I(x∗) then ∇f (x∗)⊤y ≥ 0 (⇒ −∇f (x∗)⊤y ≤ 0).

Assume that y satisfies a⊤
i y ≤ 0 for all i ∈ I(x∗).

(1) Since bi − a⊤
i x∗ > 0 for all i ̸∈ I(x∗), it follows that there exists a small enough

α > 0 such that a⊤
i (αy) ≤ bi − a⊤

i x∗.
(2) In addition, a⊤

i (αy) ≤ 0 for all i ∈ I(x∗).
Therefore, from (⋆), we have ∇f (x∗)⊤(αy) ≥ 0 and hence that ∇f (x∗)⊤y ≥ 0. By
Farkas’ lemma (second formulation), ∃ λi ≥ 0, i ∈ I(x∗), such that

−∇f (x∗) = ∑
i∈I(x∗)

λiai.

Defining λi = 0 for all i ̸∈ I(x∗), we get that λi(a⊤
i x∗ − bi) = 0 for all i = 1, 2, · · · , m and

∇f (x∗) +
m

∑
i=1

λiai = 0,

as required. □
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KKT conditions: sufficient optimality conditions

The KKT conditions are necessary conditions, but when f is convex, they are
both necessary and sufficient global optimality conditions.

Theorem: Consider the minimization problem

(P) min f (x) s.t. a⊤
i x ≤ bi, i = 1, 2, · · · , m,

where f is a convex continuously differentiable function over Rn, a1, a2, · · · ,
am ∈ Rn, b1, b2, · · · , bm ∈ R. Let x∗ be a feasible solution of (P). Then x∗ is
an optimal solution of (P) if and only if ∃ λ1, λ2, · · · , λm ≥ 0 such that

∇f (x∗) +
m

∑
i=1

λiai = 0 and λi(a⊤
i x∗ − bi) = 0, i = 1, 2, · · · , m. (⋆)

Note:

The nonnegative scalars λ1, λ2, · · · , λm in the KKT conditions are
called Lagrange multipliers, where λi is the multiplier associated with
the ith constraint a⊤

i x ≤ bi.

The conditions λi(a⊤
i x∗ − bi) = 0, i = 1, 2, · · · , m are known in

the literature as the complementary slackness (互補鬆弛) conditions.
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Proof of the sufficient optimality conditions

(⇒) It has been done in the previous theorem.
(⇐) Assume that x∗ be a feasible solution of (P) satisfying (⋆). Let x be any
feasible solution of (P). Define the function

h(x) := f (x) +
m

∑
i=1

λi(a
⊤
i x − bi).

Then ∇h(x∗) = 0 and since h is convex, it follows that x∗ is a minimizer of h
over Rn. From (⋆), we have

f (x∗) = f (x∗) +
m

∑
i=1

λi(a
⊤
i x∗ − bi) = h(x∗)

≤ h(x) = f (x) +
m

∑
i=1

λi(a
⊤
i x − bi) ≤ f (x).

We have thus proven that x∗ is a global optimal solution of (P). □
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KKT conditions for linearly constrained problems

We can generalize the previous two theorems to the case where linear
equality constraints are also present.

Theorem: Consider the following minimization problem:

(Q)

min f (x)
s.t. a⊤

i x ≤ bi, i = 1, 2, · · · , m,
c⊤j x = dj, j = 1, 2, · · · , p,

where f is a continuously differentiable function over Rn, a1, a2, · · · , am,
c1, c2, · · · , cp ∈ Rn, b1, b2, · · · , bm, d1, d2, · · · , dp ∈ R. Then we have

1 (necessity) If x∗ is a local minimum point of (Q). Then there exist
λ1, λ2, · · · , λm ≥ 0 and µ1, µ2, · · · , µp ∈ R such that

∇f (x∗)+
m

∑
i=1

λiai +
p

∑
j=1

µjcj = 0, λi(a⊤
i x∗− bi) = 0, i = 1, 2, · · · , m. (⋆)

2 (sufficiency) If in addition f is convex over Rn and x∗ is a feasible
solution of (Q) for which ∃ λ1, λ2, · · · , λm ≥ 0, µ1, µ2, · · · , µp ∈ R

such that (⋆) are satisfied, then x∗ is an optimal solution of (Q).
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Proof of the KKT theorem

The proof is based on the simple observation that a linear equality constraint a⊤x = b
can be written as two inequality constraints, a⊤x ≤ b and −a⊤x ≤ −b.

(1) Consider the equivalent problem

(Q′)

min f (x)
s.t. a⊤

i x ≤ bi, i = 1, 2, · · · , m,
c⊤j x ≤ dj, −c⊤j x ≤ −dj, j = 1, 2, · · · , p.

Since x∗ is an optimal solution of (Q’), it follows that there exist multipliers
λ1, λ2, · · · , λm ≥ 0 and µ+

1 , µ−
1 , µ+

2 , µ−
2 , · · · , µ+

p , µ−
p ≥ 0 such that

∇f (x∗) +
m

∑
i=1

λiai +
p

∑
j=1

µ+
j cj −

p

∑
j=1

µ−
j cj = 0, (⋆1)

λi(a⊤
i x∗ − bi) = 0, i = 1, 2, · · · , m, (⋆2)

µ+
j (c⊤j x∗ − dj) = 0, µ−

j (−c⊤j x∗ + dj) = 0, j = 1, 2, · · · , p. (⋆3)

We thus obtain that (⋆) are satisfied with µj := µ+
j − µ−

j , j = 1, 2, · · · , p.

(2) Assume that x∗ satisfies (⋆). Then it also satisfies (⋆1), (⋆2) and (⋆3) with
µ+

j = max{µj, 0}, µ−
j = −min{µj, 0}. By the theorem on page 9, x∗ is an optimal

solution of (Q’) and thus also an optimal solution of (Q). □

Note: A feasible point x∗ is called a KKT point if there exist multipliers for which (⋆) on page
11 are satisfied.
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General nonlinear programming problems

The general setting of general nonlinear programming problems is
given by

(NLP)
min f (x)
s.t. gi(x) ≤ 0, i = 1, 2, · · · , m,

hj(x) = 0, j = 1, 2, · · · , p,

where f , g1, · · · , gm, and h1, · · · , hp are all continuously differentiable
functions over Rn. The associated Lagrangian function takes the form

L(x, λ, µ) = f (x) +
m

∑
i=1

λigi(x) +
p

∑
j=1

µjhj(x).

The details of the general NLP will be studied in the next chapter. In
the linearly constrained case of problem (Q), the first condition in (⋆)
on page 11 is the same as

∇xL(x∗, λ, µ) = ∇f (x∗) +
m

∑
i=1

λi∇gi(x∗) +
p

∑
j=1

µj∇hj(x∗) = 0.
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The associated Lagrangian function of problem (Q)

Back to problem (Q), we define the matrices A and C and the vectors
b and d by

A =


a⊤

1
a⊤

2
...

a⊤
m

 , C =


c⊤1
c⊤2
...

c⊤p

 , b =


b1
b2
...

bm

 , d =


d1
d2
...

dp

 ,

then the constraints of problem (Q) can be written as

Ax ≤ b, Cx = d.

The Lagrangian function can be also written as

L(x, λ, µ) = f (x) + λ⊤(Ax − b) + µ⊤(Cx − d),

and the first condition in (⋆) takes the form

∇xL(x∗, λ, µ) = ∇f (x∗) + A⊤λ + C⊤µ = 0.
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Example 1

Consider the problem

min
1
2
(x2 + y2 + z2) s.t. x + y + z = 3.

Since the problem is convex, the KKT conditions are necessary and
sufficient. The Lagrangian of the problem is

L(x, y, z, µ) =
1
2
(x2 + y2 + z2) + µ(x + y + z − 3).

The KKT conditions and the feasibility condition are

∂L
∂x

= x + µ = 0,
∂L
∂y

= y + µ = 0,

∂L
∂z

= z + µ = 0, x + y + z = 3.

We obtain x = y = z = 1 and µ = −1. The unique optimal solution of
the problem is (x, y, z) = (1, 1, 1).
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Example 2

Consider the problem

min x2 + 2y2 + 4xy s.t. x + y = 1, x ≥ 0, y ≥ 0.

The problem is nonconvex, since the matrix associated with the

quadratic objective function A =

[
1 2
2 2

]
is indefinite. Thus, the KKT

conditions are necessary optimality conditions. The Lagrangian of
the problem is

L(x, y, µ, λ1, λ2) = x2 + 2y2 + 4xy + µ(x + y − 1)− λ1x − λ2y,

where λ1, λ2 ∈ R+, µ ∈ R. The KKT conditions with the feasibility
conditions are

∂L
∂x

= 2x + 4y + µ − λ1 = 0,
∂L
∂y

= 4x + 4y + µ − λ2 = 0,

λ1x = 0, λ2y = 0, x + y = 1, x ≥ 0, y ≥ 0, λ1, λ2 ≥ 0.
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Example 2 (cont’d)

Case 1: λ1 = λ2 = 0. In this case we obtain the three equations

2x + 4y + µ = 0, 4x + 4y + µ = 0, x + y = 1,

whose solution is (x, y, µ) = (0, 1,−4). (x, y) = (0, 1) is a KKT point.

Case 2: λ1 > 0, λ2 > 0. By the complementary slackness conditions,
we have x = y = 0, which contradicts the constraint x + y = 1.

Case 3: λ1 > 0, λ2 = 0. By the complementary slackness conditions,
we have x = 0 ⇒ y = 1, which was already shown to be a KKT point.

Case 4: λ1 = 0, λ2 > 0. By the complementary slackness conditions,
we have y = 0 ⇒ x = 1 ⇒ 2 + µ = 0, 4 + µ − λ2 = 0 ⇒ µ = −2,
λ2 = 2. We thus obtain that (x, y) = (1, 0) is also a KKT point.

Since the problem consists of minimizing a continuous function over a
compact set it follows from the Weierstrass theorem that it has a global
optimal solution. Since f (1, 0) = 1 and f (0, 1) = 2, (x, y) = (1, 0) is the
global optimal solution of the problem.
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Orthogonal projection onto an affine space

Let C be the affine space C := {x ∈ Rn : Ax = b}, where A ∈ Rm×n

and b ∈ Rm. We assume that the rows of A are linearly independent.
Given y ∈ Rn, the optimization problem is

min ∥x − y∥2 s.t. Ax = b.

This is a convex optimization problem, so the KKT conditions are necessary
and sufficient. The Lagrangian function is

L(x, λ) = ∥x − y∥2 + (2λ)⊤(Ax − b) (Note µ := 2λ)

= ∥x∥2 − 2(y − A⊤λ)⊤x − 2λ⊤b + ∥y∥2, λ ∈ Rm.

The KKT conditions are

2x − 2(y − A⊤λ) = 0, Ax = b

=⇒ x = y − A⊤λ =⇒ A(y − A⊤λ) = b

=⇒ AA⊤λ = Ay − b =⇒ λ = (AA⊤)−1(Ay − b),

AA⊤ is nonsingular since the rows of A are linearly independent. We
obtain the optimal solution: PC(y) = y − A⊤(AA⊤)−1(Ay − b).
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Orthogonal projection onto hyperplanes

1 Consider the hyperplane H = {x ∈ Rn : a⊤x = b}, where
0 ̸= a ∈ Rn and b ∈ R. Since a hyperplane is a spacial case of an
affine space, from the last example, we obtain

PH(y) = y − a(a⊤a)−1(a⊤y − b) = y − a⊤y − b
∥a∥2 a.

2 (Distance of a point from a hyperplane)
Let H = {x ∈ Rn : a⊤x = b}, where 0 ̸= a ∈ Rn and b ∈ R. Then

d(y, H) = ∥y − PH(y)∥ =

∥∥∥∥∥y −
(

y − a⊤y − b
∥a∥2 a

)∥∥∥∥∥ =
|a⊤y − b|

∥a∥ .
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Orthogonal projection onto half-spaces

Let H− = {x ∈ Rn : a⊤x ≤ b}, where 0 ̸= a ∈ Rn and b ∈ R. Given
y ∈ Rn, the corresponding optimization problem is

min
x

∥x − y∥2 s.t. a⊤x ≤ b.

The Lagrangian of the problem is

L(x, λ) = ∥x − y∥2 + (2λ)(a⊤x − b), λ ≥ 0,

and the KKT conditions with the feasibility condition are

2(x − y) + 2λa = 0, λ(a⊤x − b) = 0, a⊤x ≤ b, λ ≥ 0.
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Figure 10.2. A vector y and its orthogonal projection onto a half-space.

The first equation implies that

x=−Q−1(c+AT λ). (10.15)

Plugging this expression of x into the feasibility constraint we obtain

−AQ−1(c+AT λ) = b,

so that
λ=−(AQ−1AT )−1(b+AQ−1c). (10.16)

The optimal solution of the problem is given by (10.15) with λ as in (10.16).

10.3 Orthogonal Regression
An interesting application to the formula for the distance between a point and a hyper-
plane given in Lemma 10.12 is in the orthogonal regression problem, which we now recall.
Consider the points a1, . . . ,am in �n . For a given 0 �= x ∈ �n and y ∈ �, we define the
hyperplane

Hx,y :=
�
a ∈�n : xT a= y

	
.

In the orthogonal regression problem we seek to find a nonzero vector x ∈�n and y ∈�
such that the sum of squared Euclidean distances between the points a1, . . . ,am to Hx,y is
minimal; that is, the problem is given by

min
x,y

+
m∑

i=1

d (ai , Hx,y )
2 : 0 �= x ∈�n , y ∈�

,
. (10.17)

An illustration of the solution to the orthogonal regression problem is given in Figure
10.3.

The optimal solution of the orthogonal regression problem is described in the next
result whose proof strongly relies on the formula of the distance between a point and a
hyperplane.

A vector y and its orthogonal projection onto a half-space
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Orthogonal projection onto half-spaces (cont’d)

1 If λ = 0, then x = y and the KKT conditions are satisfied when
a⊤y ≤ b, i.e., y ∈ H−. Thus, the optimal solution is PH−(y) = y
if y ∈ H−.

2 Assume that λ > 0. By the complementary slackness condition
we have a⊤x = b. Plugging the first equation x = y − λa into
a⊤x = b, we have

a⊤(y − λa) = b =⇒ λ =
a⊤y − b
∥a∥2 > 0, when a⊤y > b.

The optimal solution is

x = y − a⊤y − b
∥a∥2 a.

3 To summarize, we have

PH−(y) =


y, if a⊤y ≤ b,

y − a⊤y − b
∥a∥2 a, if a⊤y > b.
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The orthogonal regression problem

Consider the points a1, a2, · · · , am ∈ Rn. For a given 0 ̸= x ∈ Rn and
y ∈ R, we define the hyperplane

Hx,y := {a ∈ Rn : x⊤a = y}.

In the orthogonal regression problem, we seek to find 0 ̸= x ∈ Rn and
y ∈ R such that the sum of squared Euclidean distances between the
points a1, a2, · · · , am to Hx,y is minimal, i.e.,

min
x,y

{ m

∑
i=1

d(ai, Hx,y)
2 : 0 ̸= x ∈ Rn, y ∈ R

}
. (♠)
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Figure 10.3. A two-dimensional example: given 5 points a1, . . . ,a5 in the plane, the orthog-
onal regression problem seeks to find the line for which the sum of squared norms of the dashed lines is
minimal.

Proposition 10.15. Let a1, . . . ,am ∈�n and let A be the matrix given by

A=

⎛
⎜⎜⎜⎜⎝

aT
1

aT
2
...

aT
m

⎞
⎟⎟⎟⎟⎠ .

Then an optimal solution of problem (10.17) is given by x that is an eigenvector of the matrix
AT (Im − 1

m eeT )A associated with the minimum eigenvalue and y = 1
m

∑m
i=1 aT

i x. Here e is
the m-length vector of ones. The optimal function value of problem (10.17) is λmin[A

T (Im−
1
m eeT )A].

Proof. By Lemma 10.12, the squared Euclidean distance between the point ai to Hx,y is
given by

d (ai , Hx,y )
2 =
(aT

i x− y)2

‖x‖2 , i = 1, . . . , m.

It follows that (10.17) is the same as

min

7
m∑

i=1

(aT
i x− y)2

‖x‖2 : 0 �= x ∈�n , y ∈�
8

. (10.18)

Fixing x and minimizing first with respect to y we obtain that the optimal y is given by

y =
1

m

m∑
i=1

aT
i x=

1

m
eT Ax.

Using the latter expression for y we obtain that

m∑
i=1

"
aT

i x− y
#2
=

m∑
i=1

�
aT

i x− 1

m
eT Ax

�2

=
m∑

i=1

(aT
i x)2− 2

m

m∑
i=1

(eT Ax)(aT
i x)+

1

m
(eT Ax)2

=
m∑

i=1

(aT
i x)2− 1

m
(eT Ax)2 = ‖Ax‖2− 1

m
(eT Ax)2

= xT AT
�

Im −
1

m
eeT

�
Ax.
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The orthogonal regression problem (cont’d)

Theorem: Let a1, a2, · · · , am ∈ Rn and let A = [a⊤
1 , a⊤

2 , · · · , a⊤
m ]

⊤. Then
an optimal solution of problem (♠) is given by x that is an eigenvector of the
matrix A⊤(Im − 1

m ee⊤)A associated with the minimum eigenvalue and
y = 1

m ∑m
i=1 a⊤

i x. Here e is the m-length vector of ones. The optimal
function value of problem (♠) is λmin[A⊤(Im − 1

m ee⊤)A].
Proof: From page 19 (the distance of a point from a hyperplane), the squared Euclidean
distance between the point ai to Hx,y is given by

d(ai, Hx,y)
2 =

(a⊤
i x − y)2

∥x∥2 , i = 1, 2, · · · , m.

It follows that (♠) is the same as

min
x,y

{
m

∑
i=1

(a⊤
i x − y)2

∥x∥2 : 0 ̸= x ∈ Rn, y ∈ R

}
.

Fixing x and minimizing first with respect to y we obtain that the optimal y is given by

y =
1
m

m

∑
i=1

a⊤
i x =

1
m

e⊤Ax.
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The orthogonal regression problem (cont’d)

Using the latter expression for y we obtain that
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Figure 10.3. A two-dimensional example: given 5 points a1, . . . ,a5 in the plane, the orthog-
onal regression problem seeks to find the line for which the sum of squared norms of the dashed lines is
minimal.

Proposition 10.15. Let a1, . . . ,am ∈�n and let A be the matrix given by

A=

⎛
⎜⎜⎜⎜⎝

aT
1

aT
2
...

aT
m

⎞
⎟⎟⎟⎟⎠ .

Then an optimal solution of problem (10.17) is given by x that is an eigenvector of the matrix
AT (Im − 1

m eeT )A associated with the minimum eigenvalue and y = 1
m

∑m
i=1 aT

i x. Here e is
the m-length vector of ones. The optimal function value of problem (10.17) is λmin[A

T (Im−
1
m eeT )A].

Proof. By Lemma 10.12, the squared Euclidean distance between the point ai to Hx,y is
given by

d (ai , Hx,y )
2 =
(aT

i x− y)2

‖x‖2 , i = 1, . . . , m.

It follows that (10.17) is the same as

min

7
m∑

i=1

(aT
i x− y)2

‖x‖2 : 0 �= x ∈�n , y ∈�
8

. (10.18)

Fixing x and minimizing first with respect to y we obtain that the optimal y is given by

y =
1

m

m∑
i=1

aT
i x=

1

m
eT Ax.

Using the latter expression for y we obtain that

m∑
i=1

"
aT

i x− y
#2
=

m∑
i=1

�
aT

i x− 1

m
eT Ax

�2

=
m∑

i=1

(aT
i x)2− 2

m

m∑
i=1

(eT Ax)(aT
i x)+

1

m
(eT Ax)2

=
m∑

i=1

(aT
i x)2− 1

m
(eT Ax)2 = ‖Ax‖2− 1

m
(eT Ax)2

= xT AT
�

Im −
1

m
eeT

�
Ax.

Therefore, we arrive at the following reformulation of (♠) as a problem consisting of
minimizing a Rayleigh quotient:

min
x

{ x⊤
[
A⊤(Im − 1

m ee⊤)A
]
x

∥x∥2 : x ̸= 0
}

.

Consequently, an optimal solution of the problem is an eigenvector of the matrix
A⊤(Im − 1

m ee⊤)A corresponding to the minimum eigenvalue, and the optimal function
value is the minimum eigenvalue λmin[A⊤(Im − 1

m ee⊤)A]. □
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