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Convex optimization problem

We will consider the constrained optimization problem (P):

(P) min f (x) s.t. x ∈ C,

where f is a continuously differentiable function and C ⊆ Rn is
a closed and convex set.

For an unconstrained optimization problem, the stationary points of
continuously differentiable functions are points that the gradient
vanishes. It was shown that stationarity is a necessary condition for a
point to be an unconstrained local optimum point.

Definition: (stationary points of constrained problems) Let f be a
continuously differentiable function over a closed convex set C ⊆ Rn.
Then x∗ ∈ C is called a stationary point of problem (P) if

∇f (x∗)⊤(x − x∗) ≥ 0, ∀ x ∈ C

Stationarity actually means that there are no feasible descent
directions of f at x∗. This suggests that stationarity is in fact a
necessary condition for a local minimum of (P).
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Stationarity as a necessary optimality condition

Theorem: Let f be a continuously differentiable function over a closed
convex set C ⊆ Rn, and let x∗ ∈ C be a local minimum of (P). Then x∗

is a stationary point of problem (P).
Proof: Assume in contradiction that x∗ is not a stationary point of (P). Then
∃ x ∈ C such that ∇f (x∗)⊤(x − x∗) < 0 ⇒ f ′(x∗; d) < 0, where d := x − x∗. It
follows that ∃ ε ∈ (0, 1) s.t. f (x∗ + td) < f (x∗) for all t ∈ (0, ε). Since C is convex,
x∗ + td = x∗ + t(x − x∗) = (1 − t)x∗ + tx ∈ C. Therefore, f (x∗) is not a local
minimum. This is a contradiction! □

Note: If C = Rn, then the stationary points of problem (P) are the
points x∗ satisfying ∇f (x∗)⊤(x − x∗) ≥ 0, for all x ∈ Rn. Plugging
x = x∗ −∇f (x∗)⊤ into the above inequality, we obtain
−∥∇f (x∗)∥2 ≥ 0, and hence ∇f (x∗) = 0.

Therefore, it follows that the notion of a stationary point of a function
and a stationary point of a minimization problem coincide when the
problem is unconstrained.
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Stationarity over C = Rn
+

Consider the optimization problem:

(Q) min f (x) s.t. xi ≥ 0, i = 1, 2, · · · , n,

where f is a continuously differentiable function over Rn
+. By

definition, a vector x∗ ∈ Rn
+ is a stationary point of problem (Q) if

and only if

∇f (x∗)⊤x −∇f (x∗)⊤x∗ ≥ 0, ∀ x ≥ 0. (⋆)

We will now use the following technical result: a⊤x+ b ≥ 0 ∀ x ≥ 0 iff
a ≥ 0 and b ≥ 0. Thus, (⋆) holds iff ∇f (x∗) ≥ 0 and ∇f (x∗)⊤x∗ ≤ 0.
Since x∗ ≥ 0, we have (⋆) if and only if

∇f (x∗) ≥ 0 and x∗i
∂f
∂xi

(x∗) = 0, i = 1, 2, · · · , n.

We can compactly write the above condition as follows:

∂f
∂xi

(x∗) =
{

= 0 x∗i > 0,
≥ 0, x∗i = 0.
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Stationarity over the unit-sum set

Consider the optimization problem:

(R) min f (x) s.t. e⊤x = 1,
where f is a continuously differentiable function over Rn. The
following feasible set is called the unit-sum set:

U = {x ∈ Rn : e⊤x = 1} = {x ∈ Rn :
n

∑
i=1

xi = 1}.

A point x∗ ∈ U is a stationary point of problem (R) if and only if

(I) ∇f (x∗)⊤(x − x∗) ≥ 0, ∀ x satisfying e⊤x = 1.

We will show that condition (I) is equivalent to

(II)
∂f

∂x1
(x∗) =

∂f
∂x2

(x∗) = · · · = ∂f
∂xn

(x∗).

(II) ⇒ (I): Assume that x∗ ∈ U satisfies (II). Then for any x ∈ U,

∇f (x∗)⊤(x − x∗) =
∂f

∂x1
(x∗)

( n

∑
i=1

xi −
n

∑
i=1

x∗i
)
=

∂f
∂x1

(x∗)(1 − 1) = 0.

We have thus shown that (I) is satisfied.
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Stationarity over the unit-sum set (cont’d)

(I) ⇒ (II): Take x∗ ∈ U that satisfies (I). Suppose in contradiction that

(II) does not hold. Then ∃ i ̸= j such that
∂f
∂xi

(x∗) >
∂f
∂xj

(x∗). Define

the vector x ∈ U as

xk =


x∗k k ̸∈ {i, j},
x∗i − 1 k = i,
x∗j + 1 k = j.

Then we have

∇f (x∗)⊤(x − x∗) =
∂f
∂xi

(x∗)(xi − x∗i ) +
∂f
∂xj

(x∗)(xj − x∗j )

= − ∂f
∂xi

(x∗) +
∂f
∂xj

(x∗) < 0,

which is a contradiction to the assumption that (I) is satisfied. Hence,
we have (II).
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Stationarity over the unit-ball

Consider the optimization problem:

(S) min f (x) s.t. ∥x∥ ≤ 1,

where f is a continuously differentiable function over B[0, 1]. Then

A point x∗ ∈ B[0, 1] is a stationary point of (S)

⇐⇒ ∇f (x∗)⊤(x − x∗) ≥ 0, ∀ ∥x∥ ≤ 1

⇐⇒ min{∇f (x∗)⊤x −∇f (x∗)⊤x∗ : ∥x∥ ≤ 1} ≥ 0 (⋆)

Claim: ∀ a ∈ Rn the optimal value of min{a⊤x : ∥x∥ ≤ 1} is “−∥a∥”.
Proof: The case of a = 0 is trivial. Assume that a ̸= 0, then by the CS
inequality, for any x ∈ B[0, 1], we have a⊤x ≥ −∥a∥∥x∥ ≥ −∥a∥, so that
min{a⊤x : ∥x∥ ≤ 1} ≥ −∥a∥. The lower bound is attained at x := − a

∥a∥ . □

Returning to the characterization of stationary points, from the claim, we
have (⋆) iff −∇f (x∗)⊤x∗ ≥ ∥∇f (x∗)∥. However, by the CS inequality, we
have −∇f (x∗)⊤x∗ ≤ ∥∇f (x∗)∥∥x∗∥ ≤ ∥∇f (x∗)∥.
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Stationarity over the unit-ball (cont’d)

Finally, we can conclude that x∗ is a stationary point of (S) iff

∥∇f (x∗)∥ = −∇f (x∗)⊤x∗. (⋆⋆)

Let x∗ be a point satisfying (⋆⋆). Then

If ∇f (x∗) = 0, then (⋆⋆) holds automatically.

If ∇f (x∗) ̸= 0, then ∥x∗∥ = 1 since otherwise, if ∥x∗∥ < 1 then by the CS
inequality,

∥∇f (x∗)∥ = −∇f (x∗)⊤x∗ ≤ ∥∇f (x∗)∥∥x∗∥ < ∥∇f (x∗)∥,

which is a contradiction. We therefore conclude that when ∇f (x∗) ̸= 0,
x∗ is a stationary point if and only if ∥x∗∥ = 1 and

∥∇f (x∗)∥ · ∥x∗∥ = ∥∇f (x∗)∥ = −∇f (x∗)⊤x∗

⇐⇒︸︷︷︸
by CS

∃ λ < 0 such that ∇f (x∗) = λx∗.

In conclusion, x∗ is a stationary point of (S) if and only if either ∇f (x∗) = 0 or
∥x∗∥ = 1 and ∃ λ < 0 such that ∇f (x∗) = λx∗.
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Some stationarity conditions

We summarize the results obtained above in the following table:
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nonpositive since otherwise the left-hand side of (9.7) would be negative, and the
right-hand side would be positive, contradicting the equality in (9.7).

In conclusion, x∗ is a stationary point of (S) if and only if either ∇ f (x∗) = 0 or ‖x∗‖= 1
and there exists λ≤ 0 such that ∇ f (x∗) = λx∗.

To summarize the four examples, we write explicitly each of the stationarity condi-
tions in the following table.

feasible set explicit stationarity condition
�n ∇ f (x∗) = 0

�n
+

∂ f
∂ xi
(x∗)

&
= 0, x∗i > 0
≥ 0, x∗i = 0

{x ∈�n : eT x= 1} ∂ f
∂ x1
(x∗) = · · ·= ∂ f

∂ xn
(x∗)

B[0, 1] ∇ f (x∗) = 0 or ‖x∗‖= 1 and ∃λ≤ 0 :∇ f (x∗) = λx∗

9.2 Stationarity in Convex Problems
Stationarity is a necessary optimality condition for local optimality. However, when the
objective function is additionally assumed to be convex, stationarity is a necessary and
sufficient condition for optimality.

Theorem 9.7. Let f be a continuously differentiable convex function over a closed and
convex set C ⊆�n . Then x∗ is a stationary point of

(P) min f (x)
s.t. x ∈C

if and only if x∗ is an optimal solution of (P).

Proof. If x∗ is an optimal solution of (P), then by Theorem 9.2, it follows that x∗ is a
stationary point of (P). To prove the sufficiency of the stationarity condition, assume
that x∗ is a stationary point of (P), and let x ∈C . Then

f (x)≥ f (x∗)+∇ f (x∗)T (x−x∗)≥ f (x∗),

where the first inequality follows from the gradient inequality for convex functions (The-
orem 7.6) and the second inequality follows from the definition of a stationary point. We
have this shown that x∗ is the global minimum point of (P), and the reverse direction is
established.

9.3 The Orthogonal Projection Revisited
We can use the stationarity property in order to establish an important property of the
orthogonal projection operator. This characterization will be called the second projection
theorem. Geometrically it states that for a given closed and convex set C , x ∈ �n , and
y ∈ C , the angle between x− PC (x) and y− PC (x) is greater than or equal to 90 degrees.
This phenomenon is illustrated in Figure 9.1.
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Stationarity in convex problems

Stationarity is a necessary optimality condition for local optimality.
However, when the objective function is additionally assumed to be
convex, stationarity is a necessary and sufficient condition for
optimality. See the theorem below.

Theorem: Let f be a continuously differentiable convex function over
a closed and convex set C ⊆ Rn. Then x∗ is a stationary point of

(P) min f (x) s.t. x ∈ C

if and only if x∗ is an optimal solution of (P).

Proof: If x∗ is an optimal solution of (P), then by Theorem 9.2 (page 3), it follows
that x∗ is a stationary point of (P). Assume that x∗ is a stationary point of (P), and
let x ∈ C. Then from the gradient inequality for convex functions, we have

f (x) ≥ f (x∗) +∇f (x∗)⊤(x − x∗) ≥ f (x∗).

This shown that x∗ is the global minimum point of (P). □
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The second projection theorem

Geometrically, the second projection theorem states that for a given
closed and convex set C, x ∈ Rn and y ∈ C, the angle between
x − PC(x) and y − PC(x) is greater than or equal to 90◦.
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Figure 9.1. The orthogonal projection operator.

Theorem 9.8 (second projection theorem). Let C be a closed convex set and let x ∈ �n.
Then z= PC (x) if and only if

(x− z)T (y− z)≤ 0 for any y ∈C . (9.8)

Proof. z= PC (x) if and only if it is the optimal solution of the problem

min g (y)≡ ‖y−x‖2

s.t. y ∈C .

Therefore, by Theorem 9.7 it follows that z= PC (x) if and only if

∇g (z)T (y− z)≥ 0 for all y ∈C ,

which is the same as (9.8).

Another important property of the orthogonal projection operator is given in the
following theorem, which also establishes the so-called nonexpansiveness property of PC .

Theorem 9.9. Let C be a closed and convex set. Then

1. for any v,w ∈�n

(PC (v)− PC (w))
T (v−w)≥ ‖PC (v)− PC (w)‖2, (9.9)

2. (nonexpansiveness) for any v,w ∈�n

‖PC (v)− PC (w)‖ ≤ ‖v−w‖. (9.10)

Proof. Recall that by Theorem 9.8 we have that for any x ∈�n and y ∈C

(x− PC (x))
T (y− PC (x))≤ 0. (9.11)

Substituting x= v and y= PC (w), we have

(v− PC (v))
T (PC (w)− PC (v))≤ 0. (9.12)

Theorem: (second projection theorem) Let C ⊆ Rn be a closed convex
set and let x ∈ Rn. Then z = PC(x) if and only if z ∈ C and
(x − z)⊤(y − z) ≤ 0 for any y ∈ C.
Proof: z = PC(x) if and only if it is the optimal solution of the problem

min g(y) := ∥y − x∥2 s.t. y ∈ C.

It follows that z = PC(x) if and only if ∇g(z)⊤(y − z) ≥ 0 ∀ y ∈ C, i.e.,

(x − z)⊤(y − z) ≥ 0 ∀ y ∈ C. □
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Nonexpansiveness property of PC

Let C ⊆ Rn be a closed convex set. Then

(1) ∀ v, w ∈ Rn, (PC(v)− PC(w))⊤(v − w) ≥ ∥PC(v)− PC(w)∥2.
Proof: By the second projection theorem, for any x ∈ Rn and y ∈ C we have

(x − PC(x))⊤(y − PC(x)) ≤ 0.

Substituting x = v and y = PC(w), x = w and y = PC(v), we have

(v − PC(v))⊤(PC(w)− PC(v)) ≤ 0 and (w − PC(w))⊤(PC(v)− PC(w)) ≤ 0.

Adding the two inequalities yields

(PC(w)− PC(v))⊤(v − w + PC(w)− PC(v)) ≤ 0,

showing the desired inequality. □

(2) (nonexpansiveness) ∀ v, w ∈ Rn, ∥PC(v)− PC(w)∥ ≤ ∥v − w∥.
Proof: Assume that PC(v) ̸= PC(w). Then by the CS inequality we have

(PC(v)− PC(w))⊤(v − w) ≤ ∥PC(v)− PC(w)∥∥v − w∥,

which combined with (1) yields

∥PC(v)− PC(w)∥2 ≤ ∥PC(v)− PC(w)∥∥v − w∥,
showing the desired inequality. □
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An additional useful representation of stationarity

The next result describes an additional useful representation of
stationarity in terms of the orthogonal projection operator

Theorem: Let f be a continuously differentiable function defined on the
closed and convex set C ⊆ Rn and s > 0. Then x∗ is a stationary point of

(P) min f (x) s.t. x ∈ C

if and only if
x∗ = PC(x∗ − s∇f (x∗)).

Proof: By the second projection theorem, x∗ = PC(x∗ − s∇f (x∗)) if and only if

(x∗ − s∇f (x∗)− x∗)⊤(x − x∗) ≤ 0 ∀ x ∈ C

if and only if
∇f (x∗)⊤(x − x∗) ≥ 0 ∀ x ∈ C.

That is, x∗ is a stationary point of the problem (P). □
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The gradient projection method

The stationarity condition x∗ = PC(x∗ − s∇f (x∗)) naturally motivates
the following algorithm for solving problem (P):

The gradient projection method:

Input: ε > 0, tolerance parameter.

Initialization: Pick x0 ∈ Rn arbitrarily.

General step: For any k = 0, 1, · · · , execute the following steps

(a) Pick a stepsize tk by a line search procedure.

(b) Set xk+1 = PC(xk − tk∇f (xk)).

(c) if ∥xk+1 − xk∥ ≤ ε then stop, and xk+1 is the output.

Note:

(1) In the unconstrained case, that is, when C = Rn, the gradient
projection method is just the gradient method.

(2) There are several strategies for choosing the stepsizes tk. Two choices
are (i) constant stepsize tk = t̄ for all k; (ii) backtracking.
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