MA 5037: Optimization Methods and Applications Optimization Over a Convex Set

Suh-Yuh Yang (楊肅煜)

Department of Mathematics, National Central University Jhongli District, Taoyuan City 320317, Taiwan

First version: July 28, 2018/Last updated: June 17, 2025

Convex optimization problem

• *We will consider the constrained optimization problem (P):*

(P)
$$\min f(x)$$
 s.t. $x \in C$, where f is a continuously differentiable function and $C \subseteq \mathbb{R}^n$ is a closed and convex set.

- For an unconstrained optimization problem, the stationary points of continuously differentiable functions are points that the gradient vanishes. It was shown that stationarity is a necessary condition for a point to be an unconstrained local optimum point.
- **Definition:** (stationary points of constrained problems) Let f be a continuously differentiable function over a closed convex set $C \subseteq \mathbb{R}^n$. Then $x^* \in C$ is called a stationary point of problem (P) if

$$|\nabla f(\mathbf{x}^*)^{\top}(\mathbf{x} - \mathbf{x}^*) \ge 0, \quad \forall \mathbf{x} \in C|$$

• Stationarity actually means that there are no feasible descent directions of f at x^* . This suggests that stationarity is in fact a necessary condition for a local minimum of (P).

Stationarity as a necessary optimality condition

• **Theorem:** Let f be a continuously differentiable function over a closed convex set $C \subseteq \mathbb{R}^n$, and let $x^* \in C$ be a local minimum of (P). Then x^* is a stationary point of problem (P).

Proof: Assume in contradiction that x^* is not a stationary point of (P). Then $\exists x \in C$ such that $\nabla f(x^*)^\top (x - x^*) < 0 \Rightarrow f'(x^*; d) < 0$, where $d := x - x^*$. It follows that $\exists \varepsilon \in (0,1)$ s.t. $f(x^* + td) < f(x^*)$ for all $t \in (0,\varepsilon)$. Since C is convex, $x^* + td = x^* + t(x - x^*) = (1 - t)x^* + tx \in C$. Therefore, $f(x^*)$ is not a local minimum. This is a contradiction!

• **Note:** If $C = \mathbb{R}^n$, then the stationary points of problem (P) are the points x^* satisfying $\nabla f(x^*)^\top (x - x^*) \ge 0$, for all $x \in \mathbb{R}^n$. Plugging $x = x^* - \nabla f(x^*)^\top$ into the above inequality, we obtain $-\|\nabla f(x^*)\|^2 \ge 0$, and hence $\nabla f(x^*) = \mathbf{0}$.

Therefore, it follows that the notion of a stationary point of a function and a stationary point of a minimization problem coincide when the problem is unconstrained.

Stationarity over $C = \mathbb{R}^n_+$

Consider the optimization problem:

(Q)
$$\min f(x)$$
 s.t. $x_i \ge 0$, $i = 1, 2, \dots, n$,

where f is a continuously differentiable function over \mathbb{R}^n_+ . By definition, a vector $x^* \in \mathbb{R}^n_+$ is a stationary point of problem (Q) if and only if

$$\nabla f(\mathbf{x}^*)^{\top} \mathbf{x} - \nabla f(\mathbf{x}^*)^{\top} \mathbf{x}^* \ge 0, \quad \forall \ \mathbf{x} \ge \mathbf{0}.$$
 (*)

We will now use the following technical result: $a^{\top}x + b \ge 0 \ \forall \ x \ge \mathbf{0}$ iff $a \ge \mathbf{0}$ and $b \ge 0$. Thus, (\star) holds iff $\nabla f(x^*) \ge \mathbf{0}$ and $\nabla f(x^*)^{\top}x^* \le 0$. Since $x^* \ge \mathbf{0}$, we have (\star) if and only if

$$\nabla f(\mathbf{x}^*) \geq \mathbf{0}$$
 and $x_i^* \frac{\partial f}{\partial x_i}(\mathbf{x}^*) = 0$, $i = 1, 2, \dots, n$.

We can compactly write the above condition as follows:

$$\frac{\partial f}{\partial x_i}(x^*) = \begin{cases} = 0 & x_i^* > 0, \\ \ge 0, & x_i^* = 0. \end{cases}$$

Stationarity over the unit-sum set

Consider the optimization problem:

(R)
$$\min f(x)$$
 s.t. $e^{\top}x = 1$,

where f is a continuously differentiable function over \mathbb{R}^n . The following feasible set is called the unit-sum set:

$$U = \{x \in \mathbb{R}^n : e^\top x = 1\} = \{x \in \mathbb{R}^n : \sum_{i=1}^n x_i = 1\}.$$
 A point $x^* \in U$ is a stationary point of problem (R) if and only if

(I)
$$\nabla f(x^*)^{\top}(x - x^*) \ge 0$$
, $\forall x \text{ satisfying } e^{\top}x = 1$.

We will show that condition (I) is equivalent to

(II)
$$\frac{\partial f}{\partial x_1}(\mathbf{x}^*) = \frac{\partial f}{\partial x_2}(\mathbf{x}^*) = \cdots = \frac{\partial f}{\partial x_n}(\mathbf{x}^*).$$

(II) \Rightarrow (I): Assume that $x^* \in U$ satisfies (II). Then for any $x \in U$,

$$\nabla f(x^*)^{\top}(x - x^*) = \frac{\partial f}{\partial x_1}(x^*) \left(\sum_{i=1}^n x_i - \sum_{i=1}^n x_i^* \right) = \frac{\partial f}{\partial x_1}(x^*) (1 - 1) = 0.$$

We have thus shown that (I) is satisfied.

Stationarity over the unit-sum set (cont'd)

(I) \Rightarrow (II): Take $x^* \in U$ that satisfies (I). Suppose in contradiction that (II) does not hold. Then $\exists i \neq j$ such that $\frac{\partial f}{\partial x_i}(x^*) > \frac{\partial f}{\partial x_j}(x^*)$. Define the vector $x \in U$ as

$$x_k = \begin{cases} x_k^* & k \notin \{i, j\}, \\ x_i^* - 1 & k = i, \\ x_j^* + 1 & k = j. \end{cases}$$

Then we have

$$\nabla f(\mathbf{x}^*)^{\top}(\mathbf{x} - \mathbf{x}^*) = \frac{\partial f}{\partial x_i}(\mathbf{x}^*)(x_i - x_i^*) + \frac{\partial f}{\partial x_j}(\mathbf{x}^*)(x_j - x_j^*)$$
$$= -\frac{\partial f}{\partial x_i}(\mathbf{x}^*) + \frac{\partial f}{\partial x_i}(\mathbf{x}^*) < 0,$$

which is a contradiction to the assumption that (I) is satisfied. Hence, we have (II).

Stationarity over the unit-ball

Consider the optimization problem:

$$(S) \qquad \min f(x) \quad \text{s.t. } ||x|| \le 1,$$

where f is a continuously differentiable function over B[0,1]. Then

A point
$$x^* \in B[0,1]$$
 is a stationary point of (S)

$$\iff \nabla f(x^*)^\top (x - x^*) \ge 0, \forall \|x\| \le 1$$

$$\iff \min\{\nabla f(x^*)^\top x - \nabla f(x^*)^\top x^* : \|x\| \le 1\} \ge 0 \qquad (\star)$$

Claim: $\forall a \in \mathbb{R}^n$ the optimal value of $\min\{a^\top x : \|x\| \le 1\}$ is " $-\|a\|$ ". *Proof*: The case of a=0 is trivial. Assume that $a \ne 0$, then by the CS inequality, for any $x \in B[0,1]$, we have $a^\top x \ge -\|a\| \|x\| \ge -\|a\|$, so that $\min\{a^\top x : \|x\| \le 1\} \ge -\|a\|$. The lower bound is attained at $x := -\frac{a}{\|a\|}$.

Returning to the characterization of stationary points, from the claim, we have (\star) iff $-\nabla f(x^*)^{\top} x^* \geq \|\nabla f(x^*)\|$. However, by the CS inequality, we have $-\nabla f(x^*)^{\top} x^* \leq \|\nabla f(x^*)\| \|x^*\| \leq \|\nabla f(x^*)\|$.

Stationarity over the unit-ball (cont'd)

Finally, we can conclude that x^* is a stationary point of (S) iff

$$\|\nabla f(\mathbf{x}^*)\| = -\nabla f(\mathbf{x}^*)^{\top} \mathbf{x}^*.$$
 $(\star\star)$

Let x^* be a point satisfying $(\star\star)$. Then

- If $\nabla f(x^*) = \mathbf{0}$, then $(\star\star)$ holds automatically.
- If $\nabla f(x^*) \neq \mathbf{0}$, then $||x^*|| = 1$ since otherwise, if $||x^*|| < 1$ then by the CS inequality,

$$\|\nabla f(\mathbf{x}^*)\| = -\nabla f(\mathbf{x}^*)^{\top} \mathbf{x}^* \le \|\nabla f(\mathbf{x}^*)\| \|\mathbf{x}^*\| < \|\nabla f(\mathbf{x}^*)\|,$$

which is a contradiction. We therefore conclude that when $\nabla f(x^*) \neq \mathbf{0}$, x^* is a stationary point if and only if $||x^*|| = 1$ and

$$\|\nabla f(\mathbf{x}^*)\| \cdot \|\mathbf{x}^*\| = \|\nabla f(\mathbf{x}^*)\| = -\nabla f(\mathbf{x}^*)^{\top} \mathbf{x}^*$$

$$\Longrightarrow_{by \ CS} \exists \ \lambda < 0 \text{ such that } \nabla f(\mathbf{x}^*) = \lambda \mathbf{x}^*.$$

In conclusion, x^* *is a stationary point of (S) if and only if either* $\nabla f(x^*) = \mathbf{0}$ *or* $||x^*|| = 1$ *and* $\exists \lambda < 0$ such that $\nabla f(x^*) = \lambda x^*$.

Some stationarity conditions

We summarize the results obtained above in the following table:

feasible set	explicit stationarity condition
\mathbb{R}^n	$\nabla f(\mathbf{x}^*) = 0$
\mathbb{R}^n_+	$\frac{\partial f}{\partial x_i}(\mathbf{x}^*) \left\{ \begin{array}{l} = 0, & x_i^* > 0 \\ \geq 0, & x_i^* = 0 \end{array} \right.$
$\{\mathbf{x} \in \mathbb{R}^n : \mathbf{e}^T \mathbf{x} = 1\}$	$\frac{\partial f}{\partial x_1}(\mathbf{x}^*) = \dots = \frac{\partial f}{\partial x_n}(\mathbf{x}^*)$
B[0,1]	$\nabla f(\mathbf{x}^*) = 0$ or $ \mathbf{x}^* = 1$ and $\exists \lambda \leq 0 : \nabla f(\mathbf{x}^*) = \lambda \mathbf{x}^*$

Stationarity in convex problems

- Stationarity is a necessary optimality condition for local optimality. However, when the objective function is additionally assumed to be convex, stationarity is a necessary and sufficient condition for optimality. See the theorem below.
- **Theorem:** Let f be a continuously differentiable convex function over a closed and convex set $C \subseteq \mathbb{R}^n$. Then x^* is a stationary point of

(P)
$$\min f(x)$$
 s.t. $x \in C$

if and only if x^* is an optimal solution of (P).

Proof: If x^* is an optimal solution of (P), then by Theorem 9.2 (page 3), it follows that x^* is a stationary point of (P). Assume that x^* is a stationary point of (P), and let $x \in C$. Then from the gradient inequality for convex functions, we have

$$f(x) \ge f(x^*) + \nabla f(x^*)^{\top} (x - x^*) \ge f(x^*).$$

This shown that x^* is the global minimum point of (P). \Box

The second projection theorem

• Geometrically, the second projection theorem states that for a given closed and convex set $C, x \in \mathbb{R}^n$ and $y \in C$, the angle between $x - P_C(x)$ and $y - P_C(x)$ is greater than or equal to 90°.

• Theorem: (second projection theorem) Let $C \subseteq \mathbb{R}^n$ be a closed convex set and let $x \in \mathbb{R}^n$. Then $z = P_C(x)$ if and only if $z \in C$ and $(x-z)^\top (y-z) \le 0$ for any $y \in C$.

Proof: $z = P_C(x)$ if and only if it is the optimal solution of the problem

$$\min g(y) := \|y - x\|^2 \quad \text{s.t. } y \in C.$$

It follows that $z = P_C(x)$ if and only if $\nabla g(z)^\top (y - z) \ge 0 \ \forall \ y \in C$, i.e.,

$$(x-z)^{\top}(y-z) \geq 0 \quad \forall y \in C.$$

Nonexpansiveness property of P_C

Let $C \subseteq \mathbb{R}^n$ be a closed convex set. Then

(1) $\forall v, w \in \mathbb{R}^n$, $(P_C(v) - P_C(w))^\top (v - w) \ge ||P_C(v) - P_C(w)||^2$. *Proof:* By the second projection theorem, for any $x \in \mathbb{R}^n$ and $y \in C$ we have

$$(\boldsymbol{x} - P_{C}(\boldsymbol{x}))^{\top}(\boldsymbol{y} - P_{C}(\boldsymbol{x})) \leq 0.$$

Substituting x = v and $y = P_C(w)$, x = w and $y = P_C(v)$, we have

$$(\boldsymbol{v} - P_{C}(\boldsymbol{v}))^{\top} (P_{C}(\boldsymbol{w}) - P_{C}(\boldsymbol{v})) \leq 0$$
 and $(\boldsymbol{w} - P_{C}(\boldsymbol{w}))^{\top} (P_{C}(\boldsymbol{v}) - P_{C}(\boldsymbol{w})) \leq 0$.

Adding the two inequalities yields

$$(P_C(w) - P_C(v))^{\top}(v - w + P_C(w) - P_C(v)) \le 0,$$

showing the desired inequality.

(2) (nonexpansiveness) $\forall v, w \in \mathbb{R}^n$, $||P_C(v) - P_C(w)|| \le ||v - w||$. *Proof:* Assume that $P_C(v) \ne P_C(w)$. Then by the CS inequality we have

$$(P_C(v) - P_C(w))^{\top}(v - w) \le ||P_C(v) - P_C(w)|| ||v - w||,$$

which combined with (1) yields

$$||P_C(v) - P_C(w)||^2 \le ||P_C(v) - P_C(w)|| ||v - w||,$$

showing the desired inequality.

An additional useful representation of stationarity

The next result describes an additional useful representation of stationarity in terms of the orthogonal projection operator

Theorem: Let f be a continuously differentiable function defined on the closed and convex set $C \subseteq \mathbb{R}^n$ and s > 0. Then x^* is a stationary point of

(P)
$$\min f(x)$$
 s.t. $x \in C$

if and only if

$$\mathbf{x}^* = P_C(\mathbf{x}^* - s\nabla f(\mathbf{x}^*)).$$

Proof: By the second projection theorem, $x^* = P_C(x^* - s\nabla f(x^*))$ if and only if

$$(\mathbf{x}^* - s\nabla f(\mathbf{x}^*) - \mathbf{x}^*)^{\top}(\mathbf{x} - \mathbf{x}^*) \le 0 \quad \forall \ \mathbf{x} \in C$$

if and only if

$$\nabla f(x^*)^{\top}(x-x^*) \ge 0 \quad \forall x \in C.$$

That is, x^* is a stationary point of the problem (P). \square

The gradient projection method

The stationarity condition $x^* = P_C(x^* - s\nabla f(x^*))$ naturally motivates the following algorithm for solving problem (P):

The gradient projection method:

Input: $\varepsilon > 0$, tolerance parameter.

Initialization: Pick $x_0 \in \mathbb{R}^n$ arbitrarily.

General step: For any $k = 0, 1, \dots$, execute the following steps

- (a) Pick a stepsize t_k by a line search procedure.
- (b) Set $x_{k+1} = P_C(x_k t_k \nabla f(x_k))$.
- (c) if $||x_{k+1} x_k|| \le \varepsilon$ then stop, and x_{k+1} is the output.

Note:

- (1) In the unconstrained case, that is, when $C = \mathbb{R}^n$, the gradient projection method is just the gradient method.
- (2) There are several strategies for choosing the stepsizes t_k . Two choices are (i) constant stepsize $t_k = \bar{t}$ for all k; (ii) backtracking.