

MA 5037: Optimization Methods and Applications

Optimization Over a Closed and Convex Set

Suh-Yuh Yang (楊肅煜)

Department of Mathematics, National Central University
Jhongli District, Taoyuan City 320317, Taiwan

First version: July 28, 2018/Last updated: June 17, 2025

Optimization over a closed and convex set

- In this lecture, we will consider the constrained optimization problem:

$$(P) \quad \min f(x) \quad \text{s.t. } x \in C,$$

where f is a continuously differentiable function and $C \subseteq \mathbb{R}^n$ is a closed and convex set.

- For an unconstrained optimization problem, the stationary points of continuously differentiable functions are points that the gradient vanishes. It was shown that stationarity is a necessary condition for a point to be an unconstrained local optimum point.
- **Definition:** (stationary points of constrained problems) Let f be a continuously differentiable function over a closed convex set $C \subseteq \mathbb{R}^n$. Then $x^* \in C$ is called a stationary point of problem (P) if

$$\nabla f(x^*)^\top (x - x^*) \geq 0, \quad \forall x \in C$$

- Stationarity actually means that there are no feasible descent directions of f at x^* . This suggests that stationarity is in fact a necessary condition for a local minimum of (P).

Stationarity as a necessary optimality condition

- **Theorem:** *Let f be a continuously differentiable function over a closed convex set $C \subseteq \mathbb{R}^n$, and let $x^* \in C$ be a local minimum of (P) . Then x^* is a stationary point of problem (P) .*

Proof: Assume in contradiction that x^* is not a stationary point of (P) . Then $\exists x \in C$ such that $\nabla f(x^*)^\top (x - x^*) < 0 \Rightarrow f'(x^*; d) < 0$, where $d := x - x^*$. It follows that $\exists \varepsilon \in (0, 1)$ s.t. $f(x^* + td) < f(x^*)$ for all $t \in (0, \varepsilon)$. Since C is convex, $x^* + td = x^* + t(x - x^*) = (1 - t)x^* + tx \in C$. Therefore, $f(x^*)$ is not a local minimum. This is a contradiction! \square

- **Note:** *If $C = \mathbb{R}^n$, then the stationary points of problem (P) are the points x^* satisfying $\nabla f(x^*)^\top (x - x^*) \geq 0$, for all $x \in \mathbb{R}^n$. Plugging $x = x^* - \nabla f(x^*)^\top$ into the above inequality, we obtain $-\|\nabla f(x^*)\|^2 \geq 0$, and hence $\nabla f(x^*) = 0$.*

Therefore, it follows that the notion of a stationary point of a function and a stationary point of a minimization problem coincide when the problem is unconstrained.

Stationarity over $C = \mathbb{R}_+^n$

Consider the optimization problem:

$$(Q) \quad \min f(\mathbf{x}) \quad \text{s.t. } x_i \geq 0, \quad i = 1, 2, \dots, n,$$

where f is a continuously differentiable function over \mathbb{R}_+^n . By definition, a vector $\mathbf{x}^* \in \mathbb{R}_+^n$ is a stationary point of problem (Q) if and only if

$$\nabla f(\mathbf{x}^*)^\top \mathbf{x} - \nabla f(\mathbf{x}^*)^\top \mathbf{x}^* \geq 0, \quad \forall \mathbf{x} \geq \mathbf{0}. \quad (\star)$$

We will now use the following technical result: $\mathbf{a}^\top \mathbf{x} + b \geq 0 \quad \forall \mathbf{x} \geq \mathbf{0}$ iff $\mathbf{a} \geq \mathbf{0}$ and $b \geq 0$. Thus, (\star) holds iff $\nabla f(\mathbf{x}^*) \geq \mathbf{0}$ and $\nabla f(\mathbf{x}^*)^\top \mathbf{x}^* \leq 0$. Since $\mathbf{x}^* \geq \mathbf{0}$, we have (\star) if and only if

$$\nabla f(\mathbf{x}^*) \geq \mathbf{0} \text{ and } x_i^* \frac{\partial f}{\partial x_i}(\mathbf{x}^*) = 0, \quad i = 1, 2, \dots, n.$$

We can compactly write the above condition as follows:

$$\frac{\partial f}{\partial x_i}(\mathbf{x}^*) = \begin{cases} = 0 & x_i^* > 0, \\ \geq 0, & x_i^* = 0. \end{cases}$$

Stationarity over the unit-sum set

Consider the optimization problem:

$$(R) \quad \min f(\mathbf{x}) \quad \text{s.t. } \mathbf{e}^\top \mathbf{x} = 1,$$

where f is a continuously differentiable function over \mathbb{R}^n . The following feasible set is called the unit-sum set:

$$U = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{e}^\top \mathbf{x} = 1\} = \{\mathbf{x} \in \mathbb{R}^n : \sum_{i=1}^n x_i = 1\}.$$

A point $\mathbf{x}^* \in U$ is a stationary point of problem (R) if and only if

$$(I) \quad \nabla f(\mathbf{x}^*)^\top (\mathbf{x} - \mathbf{x}^*) \geq 0, \quad \forall \mathbf{x} \text{ satisfying } \mathbf{e}^\top \mathbf{x} = 1.$$

We will show that condition (I) is equivalent to

$$(II) \quad \frac{\partial f}{\partial x_1}(\mathbf{x}^*) = \frac{\partial f}{\partial x_2}(\mathbf{x}^*) = \cdots = \frac{\partial f}{\partial x_n}(\mathbf{x}^*).$$

(II) \Rightarrow (I): Assume that $\mathbf{x}^* \in U$ satisfies (II). Then for any $\mathbf{x} \in U$,

$$\nabla f(\mathbf{x}^*)^\top (\mathbf{x} - \mathbf{x}^*) = \frac{\partial f}{\partial x_1}(\mathbf{x}^*) \left(\sum_{i=1}^n x_i - \sum_{i=1}^n x_i^* \right) = \frac{\partial f}{\partial x_1}(\mathbf{x}^*) (1 - 1) = 0.$$

We have thus shown that (I) is satisfied.

Stationarity over the unit-sum set (cont'd)

(I) \Rightarrow (II): Take $\mathbf{x}^* \in U$ that satisfies (I). Suppose in contradiction that (II) does not hold. Then $\exists i \neq j$ such that $\frac{\partial f}{\partial x_i}(\mathbf{x}^*) > \frac{\partial f}{\partial x_j}(\mathbf{x}^*)$. Define the vector $\mathbf{x} \in U$ as

$$x_k = \begin{cases} x_k^* & k \notin \{i, j\}, \\ x_i^* - 1 & k = i, \\ x_j^* + 1 & k = j. \end{cases}$$

Then we have

$$\begin{aligned} \nabla f(\mathbf{x}^*)^\top (\mathbf{x} - \mathbf{x}^*) &= \frac{\partial f}{\partial x_i}(\mathbf{x}^*)(x_i - x_i^*) + \frac{\partial f}{\partial x_j}(\mathbf{x}^*)(x_j - x_j^*) \\ &= -\frac{\partial f}{\partial x_i}(\mathbf{x}^*) + \frac{\partial f}{\partial x_j}(\mathbf{x}^*) < 0, \end{aligned}$$

which is a contradiction to the assumption that (I) is satisfied. Hence, we have (II).

Stationarity over the unit-ball

Consider the optimization problem:

$$(S) \quad \min f(\mathbf{x}) \quad \text{s.t. } \|\mathbf{x}\| \leq 1,$$

where f is a continuously differentiable function over $B[\mathbf{0}, 1]$. Then

A point $\mathbf{x}^ \in B[\mathbf{0}, 1]$ is a stationary point of (S)*

$$\iff \nabla f(\mathbf{x}^*)^\top (\mathbf{x} - \mathbf{x}^*) \geq 0, \forall \|\mathbf{x}\| \leq 1$$

$$\iff \min\{\nabla f(\mathbf{x}^*)^\top \mathbf{x} - \nabla f(\mathbf{x}^*)^\top \mathbf{x}^* : \|\mathbf{x}\| \leq 1\} \geq 0 \quad (\star)$$

Claim: $\forall \mathbf{a} \in \mathbb{R}^n$ the optimal value of $\min\{\mathbf{a}^\top \mathbf{x} : \|\mathbf{x}\| \leq 1\}$ is $-\|\mathbf{a}\|$.

Proof: The case of $\mathbf{a} = \mathbf{0}$ is trivial. Assume that $\mathbf{a} \neq \mathbf{0}$, then by the CS inequality, for any $\mathbf{x} \in B[\mathbf{0}, 1]$, we have $\mathbf{a}^\top \mathbf{x} \geq -\|\mathbf{a}\| \|\mathbf{x}\| \geq -\|\mathbf{a}\|$, so that $\min\{\mathbf{a}^\top \mathbf{x} : \|\mathbf{x}\| \leq 1\} \geq -\|\mathbf{a}\|$. The lower bound is attained at $\mathbf{x} := -\frac{\mathbf{a}}{\|\mathbf{a}\|}$. \square

Returning to the characterization of stationary points, from the claim, we have (\star) iff $-\nabla f(\mathbf{x}^*)^\top \mathbf{x}^* \geq \|\nabla f(\mathbf{x}^*)\|$. However, by the CS inequality, we have $-\nabla f(\mathbf{x}^*)^\top \mathbf{x}^* \leq \|\nabla f(\mathbf{x}^*)\| \|\mathbf{x}^*\| \leq \|\nabla f(\mathbf{x}^*)\|$.

Stationarity over the unit-ball (cont'd)

Finally, we can conclude that \mathbf{x}^* is a stationary point of (S) iff

$$\|\nabla f(\mathbf{x}^*)\| = -\nabla f(\mathbf{x}^*)^\top \mathbf{x}^*. \quad (\star\star)$$

Let \mathbf{x}^* be a point satisfying $(\star\star)$. Then

- If $\nabla f(\mathbf{x}^*) = \mathbf{0}$, then $(\star\star)$ holds automatically.
- If $\nabla f(\mathbf{x}^*) \neq \mathbf{0}$, then $\|\mathbf{x}^*\| = 1$ since otherwise, if $\|\mathbf{x}^*\| < 1$ then by the CS inequality,

$$\|\nabla f(\mathbf{x}^*)\| = -\nabla f(\mathbf{x}^*)^\top \mathbf{x}^* \leq \|\nabla f(\mathbf{x}^*)\| \|\mathbf{x}^*\| < \|\nabla f(\mathbf{x}^*)\|,$$

which is a contradiction. We therefore conclude that when $\nabla f(\mathbf{x}^*) \neq \mathbf{0}$, \mathbf{x}^* is a stationary point if and only if $\|\mathbf{x}^*\| = 1$ and

$$\begin{aligned} \|\nabla f(\mathbf{x}^*)\| \cdot \|\mathbf{x}^*\| &= \|\nabla f(\mathbf{x}^*)\| = -\nabla f(\mathbf{x}^*)^\top \mathbf{x}^* \\ \iff \underbrace{\exists \lambda < 0 \text{ such that } \nabla f(\mathbf{x}^*)}_{\text{by CS}} &= \lambda \mathbf{x}^*. \end{aligned}$$

In conclusion, \mathbf{x}^ is a stationary point of (S) if and only if either $\nabla f(\mathbf{x}^*) = \mathbf{0}$ or $\|\mathbf{x}^*\| = 1$ and $\exists \lambda < 0$ such that $\nabla f(\mathbf{x}^*) = \lambda \mathbf{x}^*$.*

Some stationarity conditions

We summarize the results obtained above in the following table:

feasible set	explicit stationarity condition
\mathbb{R}^n	$\nabla f(\mathbf{x}^*) = \mathbf{0}$
\mathbb{R}_+^n	$\frac{\partial f}{\partial x_i}(\mathbf{x}^*) \begin{cases} = 0, & x_i^* > 0 \\ \geq 0, & x_i^* = 0 \end{cases}$
$\{\mathbf{x} \in \mathbb{R}^n : \mathbf{e}^T \mathbf{x} = 1\}$	$\frac{\partial f}{\partial x_1}(\mathbf{x}^*) = \cdots = \frac{\partial f}{\partial x_n}(\mathbf{x}^*)$
$B[0, 1]$	$\nabla f(\mathbf{x}^*) = \mathbf{0}$ or $\ \mathbf{x}^*\ = 1$ and $\exists \lambda \leq 0 : \nabla f(\mathbf{x}^*) = \lambda \mathbf{x}^*$

Stationarity in convex problems

- Stationarity is a necessary optimality condition for local optimality. However, when the objective function is additionally assumed to be **convex**, stationarity is a necessary and sufficient condition for optimality. See the theorem below.
- **Theorem:** Let f be a continuously differentiable convex function over a closed and convex set $C \subseteq \mathbb{R}^n$. Then x^* is a stationary point of

$$(P) \quad \min f(x) \quad \text{s.t. } x \in C$$

if and only if x^* is an optimal solution of (P).

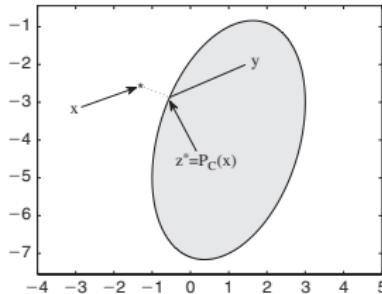
Proof: If x^* is an optimal solution of (P), then by Theorem 9.2 (page 3), it follows that x^* is a stationary point of (P). Assume that x^* is a stationary point of (P), and let $x \in C$. Then from the gradient inequality for convex functions, we have

$$f(x) \geq f(x^*) + \nabla f(x^*)^\top (x - x^*) \geq f(x^*).$$

This shown that x^* is the global minimum point of (P). \square

The second projection theorem

- Geometrically, the second projection theorem states that for a given closed and convex set C , $x \in \mathbb{R}^n$ and $y \in C$, the angle between $x - P_C(x)$ and $y - P_C(x)$ is greater than or equal to 90° .



- Theorem: (second projection theorem)** Let $C \subseteq \mathbb{R}^n$ be a closed convex set and let $x \in \mathbb{R}^n$. Then $z = P_C(x)$ if and only if $z \in C$ and $(x - z)^\top (y - z) \leq 0$ for any $y \in C$.

Proof: $z = P_C(x)$ if and only if it is the optimal solution of the problem

$$\min g(y) := \|y - x\|^2 \quad \text{s.t. } y \in C.$$

Since g is convex, $z = P_C(x)$ if and only if $\nabla g(z)^\top (y - z) \geq 0 \quad \forall y \in C$, i.e.,

$$(x - z)^\top (y - z) \leq 0 \quad \forall y \in C. \quad \square$$

Nonexpansiveness property of P_C

Let $C \subseteq \mathbb{R}^n$ be a closed convex set. Then

(1) $\forall \mathbf{v}, \mathbf{w} \in \mathbb{R}^n, (P_C(\mathbf{v}) - P_C(\mathbf{w}))^\top (\mathbf{v} - \mathbf{w}) \geq \|P_C(\mathbf{v}) - P_C(\mathbf{w})\|^2.$

Proof: By the second projection theorem, for any $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{y} \in C$ we have

$$(\mathbf{x} - P_C(\mathbf{x}))^\top (\mathbf{y} - P_C(\mathbf{x})) \leq 0.$$

Substituting $\mathbf{x} = \mathbf{v}$ and $\mathbf{y} = P_C(\mathbf{w})$, $\mathbf{x} = \mathbf{w}$ and $\mathbf{y} = P_C(\mathbf{v})$, we have

$$(\mathbf{v} - P_C(\mathbf{v}))^\top (P_C(\mathbf{w}) - P_C(\mathbf{v})) \leq 0 \quad \text{and} \quad (\mathbf{w} - P_C(\mathbf{w}))^\top (P_C(\mathbf{v}) - P_C(\mathbf{w})) \leq 0.$$

Adding the two inequalities yields

$$(P_C(\mathbf{w}) - P_C(\mathbf{v}))^\top (\mathbf{v} - \mathbf{w} + P_C(\mathbf{w}) - P_C(\mathbf{v})) \leq 0,$$

showing the desired inequality. \square

(2) *(nonexpansiveness) $\forall \mathbf{v}, \mathbf{w} \in \mathbb{R}^n, \|P_C(\mathbf{v}) - P_C(\mathbf{w})\| \leq \|\mathbf{v} - \mathbf{w}\|.$*

Proof: Assume that $P_C(\mathbf{v}) \neq P_C(\mathbf{w})$. Then by the CS inequality we have

$$(P_C(\mathbf{v}) - P_C(\mathbf{w}))^\top (\mathbf{v} - \mathbf{w}) \leq \|P_C(\mathbf{v}) - P_C(\mathbf{w})\| \|\mathbf{v} - \mathbf{w}\|,$$

which combined with (1) yields

$$\|P_C(\mathbf{v}) - P_C(\mathbf{w})\|^2 \leq \|P_C(\mathbf{v}) - P_C(\mathbf{w})\| \|\mathbf{v} - \mathbf{w}\|,$$

showing the desired inequality. \square

An additional useful representation of stationarity

The next result describes an additional useful representation of stationarity in terms of the orthogonal projection operator

Theorem: *Let f be a continuously differentiable function defined on the closed and convex set $C \subseteq \mathbb{R}^n$ and $s > 0$. Then \mathbf{x}^* is a stationary point of*

$$(P) \quad \min f(\mathbf{x}) \quad \text{s.t. } \mathbf{x} \in C$$

if and only if

$$\mathbf{x}^* = P_C(\mathbf{x}^* - s \nabla f(\mathbf{x}^*)).$$

Proof: By the second projection theorem, $\mathbf{x}^* = P_C(\mathbf{x}^* - s \nabla f(\mathbf{x}^*))$ if and only if

$$(\mathbf{x}^* - s \nabla f(\mathbf{x}^*) - \mathbf{x}^*)^\top (\mathbf{x} - \mathbf{x}^*) \leq 0 \quad \forall \mathbf{x} \in C$$

if and only if

$$\nabla f(\mathbf{x}^*)^\top (\mathbf{x} - \mathbf{x}^*) \geq 0 \quad \forall \mathbf{x} \in C.$$

That is, \mathbf{x}^* is a stationary point of the problem (P). \square

The gradient projection method

The stationarity condition $\mathbf{x}^* = P_C(\mathbf{x}^* - s \nabla f(\mathbf{x}^*))$ naturally motivates the following algorithm for solving problem (P):

The gradient projection method:

Input: $\varepsilon > 0$, tolerance parameter.

Initialization: Pick $\mathbf{x}_0 \in \mathbb{R}^n$ arbitrarily.

General step: For any $k = 0, 1, \dots$, execute the following steps

- (a) Pick a stepsize t_k by a line search procedure.
- (b) Set $\mathbf{x}_{k+1} = P_C(\mathbf{x}_k - t_k \nabla f(\mathbf{x}_k))$.
- (c) if $\|\mathbf{x}_{k+1} - \mathbf{x}_k\| \leq \varepsilon$ then stop, and \mathbf{x}_{k+1} is the output.

Note:

- (1) *In the unconstrained case, that is, when $C = \mathbb{R}^n$, the gradient projection method is just the gradient method.*
- (2) *There are several strategies for choosing the stepsizes t_k . Two choices are (i) constant stepsize $t_k = \bar{t}$ for all k ; (ii) backtracking.*