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Optimization over a closed and convex set

@ [n this lecture, we will consider the constrained optimization problem:
(P) min f(x) stxeC,

where f is a continuously differentiable function and C C R" is
a closed and convex set.

@ For an unconstrained optimization problem, the stationary points of
continuously differentiable functions are points that the gradient
vanishes. It was shown that stationarity is a necessary condition for a
point to be an unconstrained local optimum point.

@ Definition: (stationary points of constrained problems) Let f be a
continuously differentiable function over a closed convex set C C R".
Then x* € C is called a stationary point of problem (P) if

Vi) (x—x*)>0, VxeC

@ Stationarity actually means that there are no feasible descent
directions of f at x*. This suggests that stationarity is in fact a
necessary condition for a local minimum of (P).
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Stationarity as a necessary optimality condition

@ Theorem: Letf f be a continuously differentiable function over a closed
convex set C C R", and let x* € C be a local minimum of (P). Then x*
is a stationary point of problem (P).

Proof: Assume in contradiction that x* is not a stationary point of (P). Then

Jx € Csuch that Vf(x*) T (x —x*) < 0= f'(x*;d) <0, whered := x —x*. It
follows that 3 e € (0,1) s.t. f(x* +td) < f(x*) forall t € (0,¢). Since C is convex,
x* 4 td = x* +t(x —x*) = (1 — t)x* + tx € C. Therefore, f(x*) is not a local
minimum. This is a contradiction! [

@ Note: If C = IR", then the stationary points of problem (P) are the
points x* satisfying Vf(x*) " (x —x*) > 0, for all x € R". Plugging
x = x* — Vf(x*) " into the above inequality, we obtain
—||Vf(x*)||? > 0, and hence Vf(x*) = 0.

Therefore, it follows that the notion of a stationary point of a function
and a stationary point of a minimization problem coincide when the
problem is unconstrained.
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Stationarity over C = R’}

Consider the optimization problem:
(Q  minf() stx=0i=12--n

where f is a continuously differentiable function over R" . By
definition, a vector x* € R’} is a stationary point of problem (Q) if
and only if

Vi(x*)Tx = Vf(x*)Tx* >0, Vx>0 (%)

We will now use the following technical result: alx+b>0Vx>0iff
a > 0and b > 0. Thus, (%) holds iff Vf(x*) > 0and Vf(x*) x* <0.
Since x* > 0, we have (x) if and only if

Vf(x*) > 0and x} f( )=0, i=12---,n

We can compactly write the above condition as follows:

i( *):{—O xf >0,

o >0, x=0.

© Suh-Yuh Yang ( Wi 1E), Math. Dept., NCU, Taiwan MA 5037: Optimization Over a Closed Convex Set —4/14



Stationarity over the unit-sum set

Consider the optimization problem:

(R) min f(x) ste'x=1,
where f is a continuously differentiable function over R". The
following feasible set is called the unit-sum set:

U:{xelR”:eszl}:{xelR”:Z”:x,-zl}.
A point x* € U is a stationary point of problem (IE; if and only if
(I) Vi(x*) T (x —x*) >0, Vxsatisfying e ' x = 1.
We will show that condition (I) is equivalent to

OF oy~ F oy O
) ) = o) == )
(II) = (I): Assume that x* € U satisfies (II). Then for any x € U,
* * a * & & * a *
VA T —2) = ) (L - 1oxd) = (@) (1-1) =0
1 i=1 i=1

8x1

We have thus shown that (I) is satisfied.
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Stationarity over the unit-sum set (cont’d)

(I) = (I): Take x* € U that satisfies (I). Suppose in contradiction that
(IT) does not hold. Then 3 i # j such that ;f (x*) > i(x*) Define

ox; 0x;
the vector x € U as
xp k¢ {ij},
x+1 k=j
Then we have
of of
*\ T Ak Y (e L 4k S (ak Lk
A e = ) g ) )

- L+ L <o,

which is a contradiction to the assumption that (I) is satisfied. Hence,
we have (I).
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Stationarity over the unit-ball

Consider the optimization problem:
(S) min f(x) st x| <1,

where f is a continuously differentiable function over B[0, 1]. Then
A point x* € B[0,1] is a stationary point of (S)
= V() T(x—x) 20,V x| <1
<= min{Vf(x*) "x — Vf(x*) Tx*: |x]| <1} >0 (%)

Claim: V a € R" the optimal value of min{a'x: ||x|| <1} is “—|a|".
Proof: The case of a = 0 is trivial. Assume that a # 0, then by the CS
inequality, for any x € B[0,1], we have a'x > —||a||||x|| > —||a|, so that

min{a'x: ||x|| <1} > —||a||. The lower bound is attained at x := f”%“'”. O

Returning to the characterization of stationary points, from the claim, we
have (x) iff —Vf(x*) Tx* > || Vf(x*)||. However, by the CS inequality, we
have —Vf(x*) Ta* < ||Vf () [[l*]| < [V ()]
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Stationarity over the unit-ball (cont’d)

Finally, we can conclude that x* is a stationary point of (S) iff

IVf(e)l = =VF () Ta ()
Let x* be a point satisfying (x). Then
@ If Vf(x*) = 0, then (xx) holds automatically.

@ If Vf(x*) # 0, then ||x*|| = 1 since otherwise, if ||x*|| < 1 then by the CS
inequality,

IVf (")l = =VF () T < IV I < V£,

which is a contradiction. We therefore conclude that when Vf(x*) # 0,
x* is a stationary point if and only if ||x*|| = 1 and

IVFEON - ] = V()| = _Vf( ) x

<= J A < 0such that Vf(x*) =

N2

by CS
In conclusion, x* is a stationary point of (S) if and only if either Vf(x*) = 0 or
lx*|| = 1and 3 A < 0 such that Vf(x*) = Ax*.
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Some stationarity conditions

We summarize the results obtained above in the following table:

feasible set explicit stationarity condition
R” Vf(x*)=0
n Af [« =0, x;>0
R} 87,("){ >0, x'=0
n f (s Af [
(xeR":elx=1} )= =5Lx)
B[0,1] Vi(x)=0or|x"||=1and IA<0: Vf(x") = Ix*
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Stationarity in convex problems

@ Stationarity is a necessary optimality condition for local optimality.
However, when the objective function is additionally assumed to be
convex, stationarity is a necessary and sufficient condition for
optimality. See the theorem below.

@ Theorem: Let f be a continuously differentiable convex function over
a closed and convex set C C R". Then x* is a stationary point of

(P) min f(x) st xeC

if and only if x* is an optimal solution of (P).

Proof: If x* is an optimal solution of (P), then by Theorem 9.2 (page 3), it follows
that x* is a stationary point of (P). Assume that x* is a stationary point of (P), and
let x € C. Then from the gradient inequality for convex functions, we have

Fl) = f(x') + VF() T (x = x%) > f(x).

This shown that x* is the global minimum point of (P). [
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The second projection theorem

@ Geometrically, the second projection theorem states that for a given
closed and convex set C, x € R" and y € C, the angle between
x — Pc(x) and y — Pc(x) is greater than or equal to 90°.

-4 -8 -2 -1 0 1 2 3 4 5
@ Theorem: (second projection theorem) Let C C IR" be a closed convex

set and let x € R". Then z = Pc(x) if and only if z € C and
(x—2z)"(y—z) <0foranyy € C.

Proof: z = Pc(x) if and only if it is the optimal solution of the problem

min g(y) := ||y —x||*> styeC
Since g is convex, z = Pc(x) if and only if Vg(z) " (y —z) > 0Vy € C, ie,
(x—2)T(y—2)<0 VyeC O
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Nonexpansiveness property of P

Let C C IR" be a closed convex set. Then
(1) Vo,w € R", (Pc(v) — Pc(w)) " (v —w) > ||Pc(v) — Pe(w)||*
Proof: By the second projection theorem, for any x € R"” and y € C we have
(x = Pc(x)) " (y — Pc(x)) <0.
Substituting x = v and y = Pc(w), x = w and y = P¢(v), we have
(v=Pc(v)) " (Pc(w) = Pe(v)) <0 and  (w = Pe(w)) ' (Pc(v) = Pe(w)) < 0.
Adding the two inequalities yields
(Pc(w) = Pc(v)) " (v —w + Pc(w) — Pc(v)) 0,
showing the desired inequality. [

(2) (nonexpansiveness) ¥V v,w € R", ||Pc(v) — Pc(w)|| < ||[v —w||.
Proof: Assume that Pc(v) # Pc(w). Then by the CS inequality we have

(Pc(0) = Pc(w)) " (v —w) < ||Pc(o) — Pe(w)][lo —w],
which combined with (1) yields

IPe(2) = Pe(w)|* < [|Pc(v) = Pc(w)l| o —wl,
showing the desired inequality. [
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An additional useful representation of stationarity

The next result describes an additional useful representation of
stationarity in terms of the orthogonal projection operator

Theorem: Lef f be a continuously differentiable function defined on the
closed and convex set C C R" and s > 0. Then x* is a stationary point of

(P) min f(x) st xeC
if and only if
x* = Pe(x* —sVf(x")).
Proof: By the second projection theorem, x* = Pc(x* — sVf(x*)) if and only if
(x* —sVf(x*) —x") T (x—x") <0 VYxeC

if and only if
Vi) T (x—x*) >0 VxeC.
That is, x* is a stationary point of the problem (P). [
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The gradient projection method

The stationarity condition x* = Pc(x* — sVf(x*)) naturally motivates
the following algorithm for solving problem (P):

The gradient projection method:

Input: ¢ > 0, tolerance parameter.

Initialization: Pick xy € R" arbitrarily.

General step: Forany k = 0, 1, - - -, execute the following steps
(a) Pick a stepsize t; by a line search procedure.
(b) Setxyy1 = Pcl(ax — B Vf(xx)).
(c) if ||xg 1 — x| < e then stop, and xy ;1 is the output.

Note:

(1) In the unconstrained case, that is, when C = R", the gradient
projection method is just the gradient method.

(2) There are several strategies for choosing the stepsizes ty. Two choices
are (i) constant stepsize ty = ¥ for all k; (ii) backtracking.
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