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Global minimum and global maximum

Definition: Let f : S — R be a real-valued function defined on a nonempty
set S C R".

(1) x* € Sis called a global minimum point (minimizer) of f over S if

flx*) <f(x),Vx€S.

(2) x* € Sis called a strict global minimum point (minimizer) of f over S
iff(x*) <f(x),Vx €& Sandx # x*. (for short, Vx* #x € S)

(8) x* € Sis called a global maximum point (maximizer) of f over S if

flx) <f(x*),VxeS.

(4) x* € Sis called a strict global maximum point (maximizer) of f over S
iff(x) < f(x*),Vx* #x €S

(5) The set S on which the optimization of f is performed is called the
feasible set, and any point x € S is called a feasible solution.

Note: We will frequently omit the adjective “global”.
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Minimal value and maximal value of f over S

Definition: Let f : S — R be a real-valued function defined on a nonempty
set S C R".

(1) x* € Sis called a global optimum of f over S if it is either a global
minimizer or a global maximizer.

(2) The minimal value of f over S := inf{f(x) : x € S}. Ifx* € Sisa
global minimum of f over S, then inf{f (x) : x € S} = f(x*).

(3) The maximal value of f over S := sup{f(x) :x € S}. Ifx* € Sisa
global maximum of f over S, then sup{f(x) : x € S} = f(x*).

(4) The set of all global minimizers of f over S is denoted by
argmin{f(x) : x € S}.
The set of all global maximizers of f over S is denoted by

argmax{f(x) :x € S}.
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Example 1

Find the global minimum and maximum points of f(x,y) = x + y over
S=B[0,1]={(x,y) " : 2 +y> <1}
Solution:

@ By the Cauchy-Schwarz inequality, for any (x,y) " € S, we have
x+y= [} V21212412 < V2.

Therefore, the maximal value of f over S is upper bounded by /2. Note
that (1= il f) € Sand f( L ﬁ) /2 and this is the only point that

attains this value. Thus, (%, %) is the strict global maximum point of
f over S, and the maximal value is V2.

@ Similarly, we can show that —(x +y) < V2 = x +y > —/2.
Thus, (%, %) is the strict global minimum point of f over S, and the

minimal value is —v/2.
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Example 2

Consider the following 2-D function defined over the entire space:

xX+vy

Sy = et

The contour and surface plots of the function are given below:

@ The global maximizer = (%, % ), the maximal value = %

), the minimal value = 7

sy

@ The global minimizer = (\_/—%, \_/—%

The proof of these facts will be given later.

)
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Local minimum and local maximum

Definition: Let f : S — R be a real-valued function defined on a nonempty
set S C R".

(1) x* € Sis called a local minimum point of f over S if 3r > 0 such that
flx*) <f(x),Vx € SNB(x*r).

(2) x* € Sis called a strict local minimum point of f over S if Ir > 0
such that f(x*) < f(x), Vx* # x € SN B(x*,r).

(8) x* € Sis called a local maximum point of f over S if 3 r > 0 such that
fx) <f(x*),Vxe SNB(x*r).

(4) x* € Sis called a strict local maximum point of f over Sif 3r > 0
such that f(x) < f(x*), Vx* # x € SN B(x*,r).
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Example

Consider the following 1-D function defined over [—1, 8]:

(x—1)2+2, -1<x<1,
2, 1<x<2,
—(x—2)2+2, 2<x <25
fl(x) =14 (x—3)2+15, 25<x<4,
—(x—=5)2+35  4<x<6
—2x + 145, 6 <x<6.5,
2x — 115, 6.5 <x<8.

Classify each of the points x = —1,1,2,3,5,6.5, 8 as strict/nonstrict,
global/local, minimum/maximum points.

4 . : :
35

3

2

=1 o 1 2 3 4 5 6 65 7 8
x
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First order optimality condition for local optimum points

Theorem: Let f : U — R be a function defined on a set & # U C R".
Assume that x* € int(U) is a local optimum point and that all the partial
derivatives of f exist at x*. Then Vf(x*) = 0. (Fermat’s theorem in 1D)

Proof: Given 1 < i < n, we define the function g;(t) := f(x* + te;). Then g; is
differentiable at t = 0 and g/(0) = Vf(x*) - ¢; = %{i (x*). Since x* is a local
optimum point of f, it follows that f = 0 is a local optimum of g;. By Fermat’s
theorem, we have g/(0) = 0, which implies that Vf(x*) = 0. O

Note: First order optimality condition is only a necessary condition.

Definition: Let f : U — R be a function defined on a set @ # U C R".
Assume that x* € int(U) and all the partial derivatives of f exist over some
neighborhood of x*. If Vf (x*) = 0, then x* is called a stationary point of f.
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Positive definiteness (review)

T

7

@ Let A € C"" be a square matrix and x,y € C". Define x* :=%
(x,y) := y*x € C. Then (Ax, x) = x*Ax is called a quadratic form.

@ Definition: Let A € C"*".
A is positive definite <= (Ax,x) >0, VO0#xeC".

o Notel: A= A*(:=A' ) <= (Ax,x) €R,Vx € C".

@ Note 2: If A € C"*" is positive definite, then A = A*. (by Note 1)
@ Note 3: Let A € R"*". A is positive definite
~— A=A"T and (Ax,x) >0,V0 # x € R".
Proof: (=) Trivial!
(«<)Let0 # x:=x1 +ix; € C". Thenx; # 0orxp # 0.
(A(x1 + ixz), (x1 + ixz)) = (Ax1,x1) - i(AXl,Xz) + i(sz,xl) + (AXQ,XQ)
—i(Axy, xp) = —i(x1, A*xp) = —i(x, ATx) = —i(x1, Axy) = —i(Axp, x1)
S (A( +ixg), (v +ix2)) = (Axy,x1) + (Axz,x2) > 0
@ Note 4: Let A € C"*" and A = A*. Then A is positive definite
<= all of its eigenvalues are real and positive.
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Proof of Note 1
(=) (Ax,x) = x*Ax = (Ax)*x = (x, Ax) = (Ax,x),Vx € C"
. (Ax,x) eR,VxeC"

(<) Vx,yeC" wehave
R > (x+y)*A(x +y) = x*Ax + y* Ay + x* Ay + y*Ax.
XAy +ytAx € R
® Letx=¢ € R",y = ¢ € R". Then R > x" Ay + y*Ax = aj + ay;
Im(a]k) = —Im(ak])
.. @jg :=a+ biand ay; := ¢ — bi for some a,b,c € R

@ Letx=i¢; € C",y = ¢ € R". Then

R 3 x"Ay +y*Ax = —iay +ia; = (—ia+b) + (ci+b) = (c —a)i+2b.

. c=a.Thenay :=a+bi=a—bi =0

A=A —aA*
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Positive definiteness

@ Definition: A symmetric matrix A € R"*" is called positive
semidefinite, denoted by A > 0, if xTAx >0,V x € R".

@ Definition: A symmetric matrix A € R"*" is called positive definite,
denoted by A = 0, ifx " Ax > 0,V 0 # x € R".,

@ Example: Let A := [_21 11]. Vx=(x,%)" €R? wehave
T o 2 -1 X1
x' Ax = [x1,x7] {1 1 } L‘Z]
= 208 —2xpx0 + 33 =%+ (x) —x)% > 0.
Since x3 + (x; — x2)2 = 0iff x; = x, = 0, we have A > 0.

21
definite. Hint: consider x = (1,—1)"

@ Example: Let A := F 2} . One can show that A is not positive
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The diagonal components of a positive definite matrix

@ Note: Let A € R"*" and A > 0. Then the diagonal elements of A are
positive. Proof: Aj; = eiTAel- >0,Vi. O
Let A € R"™"and A > 0. Then the diagonal elements of A are
nonnegative.

@ Definition: A < 0 (negative semidefinite) iff —A > 0.

A < 0 (negative definite) iff —A > 0.

@ Note: Let A € R"*" and A < 0. Then the diagonal elements of A are
negative.
Let A € R"" and A < 0. Then the diagonal elements of A are
nonpositive.

@ Definition: A symmetric matrix A € R"*" is called indefinite if
Jx,y € R" such that x" Ax > 0 and y' Ay < 0.

@ Note: Let A € R"™" be a symmetric matrix. If there exist positive and
negative elements in the diagonal of A, then A is indefinite.
Proof: Let i and j be the indices such that A;; > 0 and Aj; < 0. Then
el-TAei =A; >0and ejTAe]- = A]] <0. O
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Eigenvalue characterization theorem

Let A € R"*" be a symmetric matrix. Then

@ A = 0ifand only if all its eigenvalues are positive.

Proof: By the spectral decomposition theorem, there exist an orthogonal matrix U
and a diagonal matrix D = diag(d,, - - - ,d,) whose diagonal elements are the
eigenvalues of A, for which U'"AU = D. For any 0 #x € R", lety = U 'x. Then
n
x'Ax=y ' U"AUy =y Dy = Zdiylz,

i=1
Therefore, xT Ax > 0 for any x # 0 if and only if Y7 ; d;y? > 0 for any y # 0.
(1) For any given i, let y = e;, we have d; > 0, i.e., all eigenvalues are positive.
(2)1fd; >0V i then Y ;diy? > Oforany y # 0,ie,x Ax > 0 forany x # 0. O

@ A = 0ifand only if all its eigenvalues are nonnegative.
@ A < 0ifand only if all its eigenvalues are negative.
@ A = 0ifand only if all its eigenvalues are nonpositive.

@ A is indefinite if and only if it has at least one positive eigenvalue and
at least one negative eigenvalue.
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Trace and determinant

@ IfA >~ 0(> 0), then Tr(A) > (>)0 and det(A) > (>)0.
Idea of the proof: The trace and determinant of a symmetric matrix are the sum
and product of its eigenvalues respectively. [

@ Above two conditions are necessary and sufficient for 2 x 2 matrix A.

Idea of the proof: For any two real number 4,b € R, one has a,b > (>)0 if and only
ifa4+b>(>)0andab > (>)0. O

@ Example: Consider the matrices

1 1 1
A= H :_1,)], B:=1]1 1 1
1 1 01

(1) A > 0since Tr(A) =7 > 0 and det(A) = 11 > 0.

(2) As for the matrix B, Tr(B) = 2.1 > 0 and det(B) = 0. Even so,
we cannot conclude that the matrix B is positive semidefinite. In
fact, B is indefinite since

e Bey=1>0, (ex—e3) Bley—e3)=—09<0.
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Positive semidefinite square root

Given A = 0,let A = UDU " be the spectral decomposition, where U
is an orthogonal matrix, D = diag(dy,d,, - - - ,dy) is a diagonal matrix
whose diagonal elements are the eigenvalues of A. Since A = 0, we
havedq,d>,- -+ ,d, > 0. We define

A2 = UEU", E = diag(/d,/do, - ,\/dy).

Obviously,

= UEU'UEU' = UEEU' = UDU'" = A.

Nf—=
NI—

A2A

The matrix A? is called the positive semidefinite square root.
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Principal minors criterion

@ Definition: Given an n x n matrix, the determinant of the upper left
k x k submatrix is called the kth principal minor, denoted by Dy(A).

@ Example: The principal minors of the k x k matrix

aip a4 413
A:= |ay axp ax3
asz1 asp 4ass

are Dl (A) = a1,

D»(A) = det [““ 12

ajp 412 M3
a1 ﬂzz}

, D3(A) =det |ay axn ax
31 4asx 433

@ Principal minors criterion: Let A € R"*" be a symmetric matrix.
Then A > 0 if and only if D1(A) > 0, D2(A) >0, -+, Dy(A) > 0.

Note: It cannot be used for detecting positive semidefiniteness!
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Diagonally dominant matrices

@ Definition: Let A € R™ " be a symmetric matrix. Then
(1) A'is called diagonally dominant if |A;;| > Y |Ayl, Vi.
(2) Ais called strictly diagonally dominant if |Ay;| > Y2; [Ayl, V i.

@ Theorem: Let A € R™™" be a symmetric matrix.

(1) If Ais a diagonally dominant matrix whose diagonal elements are
nonnegative. Then A = 0.

(2) If A is a strictly diagonally dominant matrix whose diagonal
elements are positive. Then A > 0.

Proof: (1). Suppose 3 A < 0 an eigenvalue of A. Letu = (uq, - - - ,uy) bea
corresponding eigenvector. Let |u;| = max{|u1], - -, [uts| }. Then by Au = Au,

|Aii — Alfuw] = ‘ZAI]M/‘ < ( ‘Az/‘)h"z‘ < |Aiilluil,

implying |A; — A| < |Aj]- Thls isa contradlctlon

(2). From (1), we know that A > 0. Thus, all we need to show is that A has no
zero eigenvalues. Suppose 3 eigenvalue A = 0, # # 0 such that Au = 0. Similar
to part (1), we obtain

| A [ui] = ‘EAijuj‘ < (2 \Ai]‘|)|ui| <A |u.
j#i j#i

This is obviously a contradiction. [
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Necessary second order optimality condition

Theorem: Let f : U — R be a function defined on an open set U C R".
Assume that f is twice continuously differentiable over U and that x* is a
stationary point. Then the following hold:

(1) Ifx* is a local minimum point of f over U, then V2f(x*)

= 0.
(2) Ifx* is a local maximum point of f over U, then V2f(x*) < 0.

Proof: (1). Since x* is a local minimum point, 3 B(x*,r) C U for which f(x*) < f(x),
Vx e B(x*,r). Let0 #d € R". Forany 0 < a < m,we have x} := x* +ad € B(x*,r)
and f(x}) > f(x*). By the linear approximation theorem, 3 z, € (x*,x) such that
* * * * * 1 * * * * aZ
F) — ) = V)T (x5~ ) (=) () — %) = 5 d TPz
——
0
Thus, dTVZf(z,x)d >0,Vae (0, HtTII) Using the fact that z, — x* asa — 07, and the

continuity of the Hessian, we obtain d ' V2f(x*)d > 0. We conclude that V2f(x*) = 0.

(2). Employing the result of part (1) on the function —f, we obtain (2). [
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Sufficient second order optimality condition

Theorem: Let f : U — R be a function defined on an open set U C R".
Assume that f is twice continuously differentiable over U and that x* is a
stationary point. Then the following hold:

(1) If V*f(x*) = 0, then x* is a strict local minimum point of f over U.
(2) If V*(x*) < 0, then x* is a strict local maximum point of f over U.

Proof: (1) Since the Hessian is continuous, it follows that there exists a ball B(x*,r) C U
s.t. V2f(x) = 0,V x € B(x*,r) (using the principal minors criterion on page 16). By the
linear approximation theorem, it follows that for any x € B(x*,r),

Iz € (x*,x) C B(x*,r) such that

fx) = f(x") = 5 (x =2) 'V (z2) (x — x7).

NI =

Since V2f(zy) = 0, it follows that
flx)—f(x*) >0, forx#x"
That is, x* is a strict local minimum point of f over U.

(2) This part follows from part (1) by considering the function —f. O
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Sufficient condition for a saddle point

@ Definition: Let f : U — IR be a function defined on an open set
U C R". Assume that f is continuously differentiable over U. A
stationary point x* is called a saddle point of f over U if it is neither a
local minimum point nor a local maximum point of f over U.

@ Sufficient condition for a saddle point: Let f : U — R bea
function defined on an open set U C R". Assume that f is twice
continuously differentiable over U and that x* is a stationary point. If
V2f(x*) is an indefinite matrix, then x* is a saddle point of f over U.

Proof: Let A > 0 be an eigenvalue of V2f(x*) with a normalized eigenvector v.
Since U is open, 3 r > 0 such that x* + av € U, V « € (0,r). By the quadratic
approximation theorem and Vf(x*) = 0, we have

2
% * 43 %
f& +av) = f(x )+777Tvzf(x Jo +o(a?|[o]?)
o Aa? o Ad?
= flx")+ T””Hz +o(a?|[o]?) = f(x*) + -5 +o(a?).
Since "(:‘;) —0asa — 0%, 3 e € (0,7) such thato(a?) > —%a2, Va € (0,&).

Hence, f(x* + av) > f(x*). This shows that x* cannot be a local maximum point
of f over U. Similarly, we can show that x* cannot be a local minimum point of f
over U. Therefore, x* is a saddle point of f over U. [
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Weierstrass theorem

@ Weierstrass Theorem: Let f : @ # C C R" — R be a continuous
function and C is a compact set. Then there exist a global minimum
point of f over C and a global maximum point of f over C.

@ Definition: Let f : R" — R be a continuous function defined over
R". The function f is called coercive if limyjy| o0 f (x) = 0.

@ Attainment under coerciveness: Lef f : R" — IR be a continuous
and coercive function and let S C R" be a nonempty closed set. Then f
has a global minimum point over S.

Proof:

(1) Letxp € S. Since f is coercive, 3 M > 0 such that f(x) > f(xp), Vx € R"
and ||x| > M.

(2) Since any global minimizer x* of f over S satisfies f(x*) < f(xp), it follows
that the set of global minimizers of f over S is the same as the set of global
minimizers of f over S N B[0, M].

(3) The set SN B[0, M] is compact and nonempty, by the Weierstrass theorem,
there exists a global minimizer of f over S N B[0, M] and hence also over S.

O
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Example 1

Consider f(x1,x2) = x3 + x3 over the set C = {(x1,%2) € R? 1 x1 +x, < —1}.

@ Since C is not bounded, the Weierstrass theorem does not guarantee the
existence of global minimizer and maximizer of f over C. Obviously, f
has no global maximizer over C.

@ fis coercive and C is closed, f has a global minimizer over C.

@ In the interior of C: Vf(x1,x3) = 0= (x1,x2) = (0,0) & C.
At the boundary of C: {(x1,x) :x1 +xp = -1} = x3 = —xp — 1.
g(x2) ==f(—x2 —1,xp) = (—xp — 1)? + 23
dx)=2(1+x)+20n =g () =0=>xn=—1=x =1

Thus, (x1,%2) = (— 4, —3) is the only candidate for a global minimum point.
Therefore, (x1,x2) = (—%, — %) is the global minimum point of f over C.
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Example 2

Consider the function f(x1,x) = Zx% + 3x3 4 3x2xy — 24x; over R?.

o 6x% + 6x1x2
® Vilx,x)= {6962 +3x3—24
function f are (xq,x) = (0,4), (4, —4),(-2,2).
2x1 +x2 X
X1 1]

:= 0. Then the stationary points of the

@ The Hessian of f is given by V2f(x1,x;) = 6 {

4 0
01
a global minimum point, since f (x1,0) = 2x3 — —oc0 as x; — —co.

dein a4 4
Vf(4, 4)—6{4 1
. (4, —4) is a saddle point

V2f (-2,2)=6 {:; 712 is indefinite, since it has both positive and

@ V?f(0,4) =6 { ] = 0= (0,4) is a strict local minimum point. It is not

}, tr(A) > 0 but det(A) < 0, an indefinite matrix.

negative elements on its diagonal (cf. page 10).
. (—2,2) is a saddle point
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Example 3

Consider the function f(x1,x) = (¥ + x5 —1)? + (x5 — 1)? over R2.
2,2
+x5—1)x
@ Vf(xy,x) =4 (7 + 23 = 0.
f(x1,32) {(x%—l—x%—l)xz—&-(x%—l)xj
Then the stationary points are (0,0), (1,0), (—1,0), (0,1), (0, —1).
@ The Hessian of the function is

2,2
2 a3t —1 2x1Xp
Vf(xx) =4 { 2x1X7 x% + 6x% —

-1 0
0o -2
*. (0,0) is a strict local maximum point

(not global, -+ f(x1,0) = (x3 —1)2+1 — o0)
V3 (1,0) = V3(-1,0) = 4 [3 31} , indefinite matrix.

. (1,0),(—1,0) saddle points

2f(O 1) = V%(0,-1) =4 [g Z} > 0, no conclusion!

" £(0,1) =£(0,—1) = 0 and f is bounded below by 0
. (0,1), (0, —1) are global minimum points

@ V?f(0,0) =4 { } <0.
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Contour and surface plots of Example 3

Figure 2.3. Contour and surface plots of f(x,,x,) = (x? + x3 —1)> + (x3 — 1)%. The five
stationary points (0,0),(0,1),(0,—1),(1,0),(—1,0) are denoted by asterisks. The points (0,—1),(0, 1)
are strict local minimum points as well as global minimum points, (0,0) is a local maximum point, and
(—1,0),(1,0) are saddle points.

ezsurfc (' (x"2 + y"2 -1)"2 + (y"2 - 1)"2", [-2 2 -1.5 1.5])
colorbar
view (=30, 30)
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Example 4

_*ty
24+y?+1
B 1 (2 +y>+1) —2(x+y)x
® VW) = Gy i (2 42 1) — 2+ )y
—x? =2y +yt =122 -2y — > = —1
= xy = 1/2 (adding), x*> = y? (subtracting)

= stationary points are (%, % ), (%, *7;)

Consider the function f(x,y) = over R2.

@ Forany (v,y) | € R?, from the Cauchy-Schwarz inequality,
f(x,y) _ (x ]é) -(1, 1 \[ \Z/x +y < \[max t < Q
2241 2 +y2+1 24+1- 2
C(t-1)2>0=t+1>2t

@ - V2 (i 1 ) is the global maximum point

S E I B
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Example 5

Consider the function f(x1,xy) = —2x7 + x1x3 + 43(‘1L over IR?.
—4xy + %3 + 1623
] = 2 1 =0.
Vf(x1,x2) { 2x1%> 0

= stationary points are (0,0), (1/2,0), (—=1/2,0).

—4 +48x2 2xz}

@ The Hessian of the function is V2f(x;,xp) = { o oy
2 1

@ V%(1/2,0) = [g (1)

(not global, f(—1,x3) = 2 — x3 — —00, Xy — ©0)

V3 (-1/2,0) = [g _01

} = 0. .. (1/2,0) is a strict local minimum point

}, indefinite. .. (—1/2,0) saddle point

V2£(0,0) = { 0 g} , a negative semidefinite matrix.

o flata) = ab(—2a% + 1+ 4410) > 0
f(—a*a) =a(—2a2 —1+4a1%) < 0for0 < a < 1
. (0,0) is a saddle point of f
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Contour and surface plots of Example 5

///////

Figure 2.4. Contour and surface plots of f(x,,x,) = —2x7+x,x7+4x}. The three stationary
point (0,0),(0.5,0),(—0.5,0) are denoted by asterisks. The point (0.5,0) is a strict local minimum, while
(0,0) and (—0.5,0) are saddle points.

ezsurfc (' -2+xx"2 + xxy"2 + 4%x"4’, [-1 1 -1 1])
colorbar
view (=45, 30)
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Global optimality conditions

@ Theorem: Let f : R" — IR be a twice continuously differentiable function.
Assume that V*f(x) = 0,V x € R". Let x* € R" be a stationary point of f.
Then x* is a global minimum point of .

Proof: By the linear approximation theorem, V x € R", 3 z, € (x*,x) such that

f) ) = 5 (e~ %) Pf (=) (x - 2.

Since V2f(zy) = 0, we have f(x) > f(x*). .. x* is a global minimum point of f OJ
@ Example:

Fx) =22 + 23+ 23 + x120 + X123 + xXox3 + (32 + 2% +x3)2.
2x1 + x4+ x3 4 4x1 (23 + 23 +13)
2xp +x1 +x3 + 40 (xF +x3 +33) |
2x3 + x1 4 xp + 4x3(x§ + x5 + x3)
Obviously, (x1,x2,x3) = (0,0,0) is a stationary point.
The Hessian is V?f(x) = A + B(x) + C(x), where

2 1 1
A=11 2 1
2

elements, B(x) = 4(x? +x3 +x3)I; = 0,and C(x) = 8xx | = 0.
S V2f(x) =0 . x=(0,0,0)" is a global minimum point of f over R®

Vf(x) =

> 0, since it is diagnoally dominant with positive diagonal
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Quadratic functions

Quadratic functions are an important class of functions that are useful
in the modeling of many optimization problems.

@ Definition: A quadratic function over R" is a function of the form
flx) =xTAx+2b"x +c,
where A € R"*" is symmetric, b € R", and c € R.
@ The gradient and Hessian of the above quadratic function f(x):

Vf(x) = 2Ax +2b, V?f(x) = 2A.
@ Properties of quadratic functions:
(1) xis a stationary point of f iff Ax = —b.
(2) IfA > 0, then x is a global minimum point of f iff Ax = —b.
Proof: By Theorems on page 8 and page 29. [
(3) IfA = 0,x = —A~'b is a strict global minimum point of f.

Proof: If A = 0, then x = —A~ b is the unique solution to Ax = —b. Hence,
it is the unique global minimum pointof f. [

Note: In (3), the minimal value of f is given by
f(x) = (-A7'B)TA(~A"b) — 26" A" b +c=c—b A7'D.
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Coerciveness of quadratic functions

Theorem: Lef f(x) = x Ax +2b ' x + ¢, where A € R"™" is symmetric,
b € R", and c € R. Then f is coercive if and only if A > 0.

Proof:
(=) Assume that A = 0. Then x" Ax > a||x||? with & = Ayin(A) > 0. Thus,

b
$16) 2 a2 = 20+ ¢ = o] (]~ 2020 ) e o, s o >

Therefore, f is coercive.
(<) Assume that f is coercive. We need to prove that A - 0. We first show that there

does not exist a negative eigenvalue. Suppose 30 # v € R", A < 0s.t. Av = Av. Then
forany a € R,

f(av) = Al|o|?a® +2(b v)a +c — —c0  asa — co.

This is a contradiction. We now show that 0 cannot be an eigenvalue of A. Suppose
30 # v € R"s.t. Av = 0. Then forany & € R,

f(av) =2(b"0)a +c.

Ifb o = 0 then f(av) — casa — co. Ifb' v > 0 then f(av) — —co as ¥ — —co.
Ifb"v < 0 then f(av) — —co as @ — co. All these contradict the coerciveness of f.  [J
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Characterization of the nonnegativity of quadratic functions

Theorem: Lef f(x) = x Ax +2b ' x + ¢, where A € R"™" is symmetric,
b € R", and c € R. Then the following two claims are equivalent:
() f(x) =x"Ax+2b'x+c>0,VxeR"

(b) [; IZ] = 0.

Proof:
xX|T[A b][x
(b) = (a): Forany x € R",0 < {1 {bT c} {1} =xTAx+2b"x+c= (a).

(a) = (b): We begin by showing that A > 0.
Suppose not. 30 # v € R” and A < 0s.t. Av = Av. Thus, for any « € R,

f(av) = Al|o|?a® +2(b 0)a +¢c — —c0 asa — —oo,
contradicting the nonnegativity of f. Our objective is to prove (b). We want to show

&
that forany y € R” and t € R, {ﬂ Lﬁ ﬂ {ﬂ > 0, which is equivalent to

y Ay +2tb Ty +ct? > 0. (%)

Ift =0theny Ay +2tb"y +ct? = y' Ay > 0, since A > 0. We obtain ().
Ift #0then0 < £f(y/t) =y Ay +2tb y + cf?, we have (x). O
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