
Introduction to Mathematical Image Processing
Image Processing Toolbox: Part 4

(image deblurring and Hough transform)

Suh-Yuh Yang (楊肅煜)

Department of Mathematics, National Central University
Jhongli District, Taoyuan City 32001, Taiwan

http://www.math.ncu.edu.tw/∼syyang/

c©Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan MA3111: Image Processing Toolbox, Part 4 – 1/15



Image deblurring

Deblurring is the process of removing blurring artifacts (such as
blur caused by defocus aberration or motion blur) from images.

The blur is typically modeled as a convolution point-spread function
(PSF) with a hypothetical sharp input image, where both the sharp
input image (which is to be recovered) and the PSF are unknown.

Image deblurring removes distortion from a blurry image using
knowledge of the PSF.

Image deblurring algorithms in IP Toolbox include Wiener, and
regularized filter deconvolution, blind, Lucy-Richardson, as well as
conversions between the PSF and optical transfer function.

c©Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan MA3111: Image Processing Toolbox, Part 4 – 2/15



Wiener and regularized filters

How to deblur an image using Wiener and regularized filters?

deconvwnr function deblurs the image using Wiener filter.
deconvreg function deblurs with a regularized filter.

Wiener deconvolution can be used effectively when frequency
characteristics of the image and additive noise are known to
some extent. In the absence of noise, the Wiener filter reduces to an
ideal inverse filter.

J=deconvwnr(I,PSF,NSR)

I is the input image, can be of class uint8, uint16, int16, single or
double. Image J has the same class as image I.
PSF the point-spread function with which I was convolved;
NSR the noise-to-signal power ratio of the additive noise

(NSR can be a scalar or a spectral-domain array of the same size as
image I. NSR=0 is equivalent to creating an ideal inverse filter).

c©Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan MA3111: Image Processing Toolbox, Part 4 – 3/15



Example

The following steps are taken to read ’puppy gray.jpg’, blur it, add
noise to it and then restore the image using Wiener filter.

>>I=im2double(imread(’puppy gray.jpg’));
>>imshow(I)
>>LEN=21;
>>THETA=11;
>>PSF=fspecial(’motion’,LEN,THETA);

The function fspecial returns a filter to approximate the linear motion of
a camera by len pixels, with an angle of theta degrees in a counter-clockwise
direction. The filter becomes a vector for horizontal and vertical motions.
The default value of len is 9 and that of theta is 0, which corresponds to a
horizontal motion of nine pixels.

>>blurred=imfilter(I,PSF,’conv’,’circular’);

>>figure,imshow(blurred)

c©Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan MA3111: Image Processing Toolbox, Part 4 – 4/15



Function: imfilter

imfilter(f,h,mode,boundary options,size options)

f: input image; h: filter mask;

mode: ’conv’ or ’corr’, convolution or correlation (default);

boundary options: how the filtering algorithm should treat border
values. There are four possibilities:

(1) The boundaries of the input array (image) are extended by
padding with a value ’x’, default x=0;

(2) ’symmetric’: extended by mirror-reflecting across its border;

(3) ’replicate’: extended by replicating the values nearest to the
image border;

(4) ’circular’: extended by implicitly assuming the input array is
periodic.

size options: ’full’ (output image is the full filtered result);
’same’ (output image is of the same size as input image, is default).

c©Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan MA3111: Image Processing Toolbox, Part 4 – 5/15



Adding Gaussian white noise

J=imnoise(I,’gaussian’,M,V) adds Gaussian white noise of
mean M and variance V to image I.

>>mean=0;
>>var=0.002;
>>blurred noise=imnoise(blurred,’gaussian’,mean,var);
>>figure,imshow(blurred noise)

image A image B image C

image A=puppy gray.jpg
image B=puppy gray blurred.jpg
image C=puppy gray blurred noise.jpg

c©Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan MA3111: Image Processing Toolbox, Part 4 – 6/15



Deblurring using Wiener filter

>>estimated nsr=0;
>>wnr2=deconvwnr(blurred noise,PSF,estimated nsr);
>>estimated nsr=0.002/var(I(:));
>>wnr3=deconvwnr(blurred noise,PSF,estimated nsr);

snr=0 snr=0.002/var(I(:))

c©Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan MA3111: Image Processing Toolbox, Part 4 – 7/15



Deblurring with a regularized filter

A regularized filter can be used effectively when limited information
is known about the additive noise.

J=deconvreg(I,PSF) deconvolves image I using regularized filter
algorithm and returns deblurred image J. The assumption is that
image I was created by convolving a true image with a point-spread
function and possibly by adding noise.

J=deconvreg(I,PSF,NOISEPOWER), where NOISEPOWER is the
additive noise power. The default value is 0.

J=deconvreg(I,PSF,NOISEPOWER,LRANGE), where LRANGE is
a vector specifying range where the search for the optimal solution is
performed.

J=deconvreg(I,PSF,NOISEPOWER,LRANGE,REGOP), where
REGOP is the regularization operator to constrain deconvolution.
The default regularization operator is Laplacian operator, to retain
the image smoothness.

[J,LAGRA]=deconvreg(I,PSF,…) outputs the value of Lagrange
multiplier LAGRA in addition to the restored image J.

c©Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan MA3111: Image Processing Toolbox, Part 4 – 8/15



Example

>>I=imread(’puppy gray.jpg’);
>>PSF=fspecial(’gaussian’,11,5);
>>blurred=imfilter(I,PSF,’conv’);
>>V=0.01;
>>blurred noise=imnoise(blurred,’gaussian’,0,V);
>>NP=V*prod(size(I));
>>[reg1 LAGRA]=deconvreg(blurred noise,PSF,NP);

image A image B image C
image A=puppy gray blurred2.jpg
image B=puppy gray blurred noise2.jpg
image C=puppy gray blurred noise reg.jpg

c©Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan MA3111: Image Processing Toolbox, Part 4 – 9/15



Hough transform

Hough transform (HT) is designed to identify lines and curves within
an image. You can find line segments and endpoints, measure angles,
find circles based on size, and detect and measure circular objects.

Read the image and display it:
>>A=imread(’color circles.jpg’); >>imshow(A)

Determine radius range for searching circles:
>>d=imdistline

The line can be dragged to get the size of different circles. To
remove the imdistline tool, use >>delete(d);

318.00

image A image B

c©Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan MA3111: Image Processing Toolbox, Part 4 – 10/15



Find the number of circles

Consider the image shown below. There are many circles having with
different contrasts with respect to the background.

>>A=imread(’multi circles2.png’);

We want to find circles using circular Hough transform.

>>centers=imfindcircles(A,radius)
>>[centers,radii]=imfindcircles(A,radiusRange)
>>[centers,radii,metric] =
imfindcircles(A,radiusRange)

c©Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan MA3111: Image Processing Toolbox, Part 4 – 11/15



Function viscircles

Find all the circles with radius r pixels in the range [15, 30].
>>[centers,radii,metric]=imfindcircles(A,[15 30])

Function viscircles can be used to draw circles on the image.
Output variables centers and radii from imfindcircles can be
passed directly to function viscircles:
>>viscircles(centers,radii)

c©Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan MA3111: Image Processing Toolbox, Part 4 – 12/15



Retain the five strongest circles

Retain the five strongest circles according to the metric values.

>>centersStrong5=centers(1:5,:);
>>radiiStrong5=radii(1:5);
>>metricStrong5=metric(1:5);

Draw the five strongest circle perimeters over the original image.

>>viscircles(centersStrong5,radiiStrong5,’EdgeColor’,’b’);

c©Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan MA3111: Image Processing Toolbox, Part 4 – 13/15



Draw lines around bright and dark circles

Read the image into the workspace and display it:

>>A=imread(’multi circles3.png’);
>>figure,imshow(A)

Define the radius range: >>Rmin=30;Rmax=65;
Find all the bright circles in the image within the radius range:
>>[centersBright,radiiBright]=imfindcircles(A,[Rmin
Rmax],’ObjectPolarity’,’bright’);

c©Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan MA3111: Image Processing Toolbox, Part 4 – 14/15



Draw lines around bright and dark circles (continued)

Find all the dark circles in the image within the radius range:

>>[centersDark,radiiDark]=imfindcircles(A,[Rmin
Rmax],’ObjectPolarity’,’dark’);

Draw blue lines around the edges of the dark circles:

>>viscircles(centersDark,radiiDark,’Color’,’b’)

c©Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan MA3111: Image Processing Toolbox, Part 4 – 15/15


