Introduction to Project Topics

Suh－Yuh Yang（楊肅暟）

Department of Mathematics，National Central University Jhongli District，Taoyuan City 320317，Taiwan

First version：August 27，2023／Last updated：March 12， 2024

Outline

This course will mainly focus on the following four topics：
（1）Numerical methods for PDEs with applications to variational image processing
（2）Principal component pursuit problem for low－rank textures
（3）Sparse representation and dictionary learning
（9）Projection methods for the incompressible Navier－Stokes equations

Topic 1：

Numerical Methods for PDEs with Applications to Variational Image Processing

Total variation

Let $u:[a, b] \rightarrow \mathbb{R}$ ．Let $\mathcal{P}_{n}=\left\{x_{0}=a, x_{1}, \cdots, x_{n}=b\right\}$ be an arbitrary partition of $\bar{\Omega}:=[a, b]$ and $\Delta x_{i}=x_{i}-x_{i-1}$ ．The total variation of u is

$$
\begin{aligned}
\|u\|_{T V(\Omega)} & :=\sup _{\mathcal{P}_{n}} \sum_{i=1}^{n}\left|u\left(x_{i}\right)-u\left(x_{i-1}\right)\right|=\sup _{\mathcal{P}_{n}} \sum_{i=1}^{n}\left|\frac{u\left(x_{i}\right)-u\left(x_{i-1}\right)}{\Delta x_{i}}\right| \Delta x_{i} \\
& =\int_{\Omega}\left|u^{\prime}(x)\right| d x, \quad \text { if } u \text { is smooth. }
\end{aligned}
$$

Denoising is the problem of removing noise from an image：

$$
\text { minimize }\left(\int_{\Omega}\left|u^{\prime}(x)\right| d x+\text { some data fidelity term }\right)
$$

Euler－Lagrange equation of the ROF model

Let us consider the following energy minimization problem （Rudin－Osher－Fatemi model）：

$$
\min _{u \in \mathcal{V}}\left(\int_{\Omega}|\nabla u| d x+\frac{\lambda}{2} \int_{\Omega}(u(x)-f(x))^{2} d x\right),
$$

where \mathcal{V} is a suitable function space and $\lambda>0$ is the regularization parameter．Since $\int_{\Omega}|\nabla u| d x=\int_{\Omega} \sqrt{u_{x}^{2}+u_{y}^{2}} d x$ ，we have

$$
L\left(x, y, u, u_{x}, u_{y}\right)=\sqrt{u_{x}^{2}+u_{y}^{2}}+\frac{\lambda}{2}(u-f)^{2},
$$

which leads to the Euler－Lagrange equation with the Neumann boundary condition，

$$
-\nabla \cdot\left(\frac{\nabla u}{|\nabla u|}\right)+\lambda u=\lambda f \quad \text { in } \Omega, \quad \frac{\partial u}{\partial n}=0 \quad \text { on } \partial \Omega .
$$

The Euler－Lagrange equation

Let $\Omega \subset \mathbb{R}^{2}$ be an open bounded domain．We consider the following real－valued energy functional，

$$
E[v]:=\int_{\Omega} L\left(x, y, v(x, y), v_{x}(x, y), v_{y}(x, y)\right) d x
$$

where we assume that $v \in C^{2}(\bar{\Omega})$ and $L \in C^{2}$ with respect to its arguments $\boldsymbol{x}=(x, y), v, v_{x}$ and v_{y} ．According to the fundamental lemma of calculus of variations，we have the following Euler－Lagrange equation，

$$
\frac{\partial L}{\partial u}-\nabla \cdot\left(\frac{\partial L}{\partial u_{x}}, \frac{\partial L}{\partial u_{y}}\right)^{\top}=0 \quad \text { in } \Omega,
$$

and the homogeneous Neumann boundary condition，

$$
\frac{\partial L}{\partial u_{x}} n_{1}+\frac{\partial L}{\partial u_{y}} n_{2}=0 \quad \text { on } \partial \Omega .
$$

Numerical methods

Therefore，the minimizer of the ROF model can be obtained by
－Nonlinear PDE－based method：evolving a finite difference approximation of the parabolic partial differential equation with the homogeneous Neumann $B C$ to reach a steady state solution：

Heat－type equation

$$
\begin{aligned}
& \overbrace{\frac{\partial u}{\partial t}-\nabla \cdot\left(\frac{\nabla u}{|\nabla u|}\right)+\lambda u=\lambda f} \text { for }(t, x) \in(0, T) \times \Omega, \\
& u(0, x)=f(x) \text { for } x \in \bar{\Omega}, \\
& \nabla u \cdot n=0 \quad \text { for } t \in[0, T] \text { and } x \in \partial \Omega .
\end{aligned}
$$

－An alternating direction approach－split Bregman method： Introducing the new unknown vector function d ，we have the constrained minimization problem：

$$
\min _{u, d}\left(\int_{\Omega}|d| d x+\frac{\lambda}{2} \int_{\Omega}(u(x)-f(x))^{2} d x\right) \quad \text { subject to } d=\nabla u .
$$

ROF total－variation model vs．adaptive diffusivity model

Let $f: \bar{\Omega} \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a given noisy image．Rudin－Osher－Fatemi （1992）proposed the model：

$$
\min _{u \in \mathcal{V}}\left(\int_{\Omega}|\nabla u|+\frac{\lambda}{2}(u-f)^{2} d x\right), \quad \lambda>0 .
$$

Hsieh－Shao－Yang（2018）proposed an adaptive model to alleviate the staircasing effect：

$$
\min _{u \in \mathcal{V}}\left(\int_{\Omega} \frac{1}{2} \varphi\left(\left|\nabla u^{*}\right|\right)|\nabla u|^{2}+\frac{\lambda}{2}(u-f)^{2} d x\right), \quad \lambda>0 .
$$

A variational model for image contrast enhancement

Hsieh－Shao－Yang（2020）：for every $f \in\left\{f_{R}, f_{G}, f_{B}\right\}$ ，we solve

$$
\min _{u \in \mathcal{V}}\left(\int_{\Omega}\left|\nabla u-\nabla h_{c}\right| d x+\frac{\lambda}{2} \int_{\Omega}\left(u-g_{c}\right)^{2} d x\right)
$$

where the adaptive functions g_{c} and h_{c} are defined as

$$
g_{c}(x):=\left\{\begin{array}{ll}
\alpha \bar{f}, & x \in \Omega_{d}, \\
f(x), & x \in \Omega_{b},
\end{array} \quad h_{c}(x):= \begin{cases}\beta f(x), & x \in \Omega_{d}, \\
f(x), & x \in \Omega_{b} .\end{cases}\right.
$$

Numerical methods：（i）Euler－Lagrange equation＋solving IBVP；（ii） direct discretization＋split Bregman iterations．

Numerical results by the split Bregman iterations

Mumford－Shah image segmentation model

Mumford－Shah model：it finds a piecewise smooth function u and a curve set \mathcal{C} ，which separates the image domain into disjoint regions， minimizing the energy functional：

$$
\min _{u, \mathcal{C}}\left(\mu|\mathcal{C}|+\lambda \int_{\Omega}(f(x)-u(x))^{2} d x+\int_{\Omega \backslash \mathcal{C}}|\nabla u(x)|^{2} d x\right)
$$

where $|\mathcal{C}|$ denotes the total length of the curves in \mathcal{C} ．
－The first term plays the regularization role，which ensures the target objects can tightly be wrapped by \mathcal{C} ．
－The second term is the data fidelity term，which forces u to be close to the input image f ．
－The third term is the smoothing term，which forces the target function u to be piecewise smooth within each of the regions separated by the curves in \mathcal{C} ．
－$\mu>0, \lambda>0$ are tuning parameters to modulate these three terms．

Chan－Vese two－phase model

In 1999，Chan and Vese proposed a two－phase segmentation model based on the level set formulation：

$$
\min _{c_{1}, c_{2}, \mathcal{C}}\left(\mu|\mathcal{C}|+v\left|\Omega_{\mathrm{in}}\right|+\lambda_{1} \int_{\Omega_{\mathrm{in}}}\left(f(x)-c_{1}\right)^{2} d x+\lambda_{2} \int_{\Omega_{\text {out }}}\left(f(x)-c_{2}\right)^{2} d x\right) .
$$

－$\Omega_{\text {in }}$ denotes the region enclosed by the curves in \mathcal{C} with area $\left|\Omega_{\mathrm{in}}\right|$ ，and $\Omega_{\mathrm{out}}:=\Omega \backslash \Omega_{\mathrm{in}}$ ．
－$\mu>0, v \geq 0, \lambda_{1}>0$ ，and $\lambda_{2}>0$ are tuning parameters（actually， one of them can be fixed as 1）．
－Chan－Vese model finds a piecewise constant function u and a curve set \mathcal{C} to minimize the energy functional，where u has only two constant values，

$$
u(x)=\left\{\begin{array}{l}
c_{1}, x \text { is inside } \mathcal{C} \\
c_{2}, x \text { is outside } \mathcal{C}
\end{array}\right.
$$

Level set function

Therefore，we represent \mathcal{C} implicitly by the zero level contour of a level set function $\phi: \bar{\Omega} \rightarrow \mathbb{R}$ ，i．e．，

$$
\mathcal{C}=\{x \in \bar{\Omega}: \phi(x)=0\} .
$$

The zero level contour \mathcal{C} partitions the image domain into two disjoint regions Ω_{in} and Ω_{out} such that

$$
\phi(x)>0 \text { for } x \in \Omega_{\mathrm{in}} \text { and } \phi(x)<0 \text { for } x \in \Omega_{\mathrm{out}} .
$$

For example，given $r>0$ ，we define a level set function

$$
\phi(x)=\phi(x, y)=r-\sqrt{x^{2}+y^{2}}
$$

whose zero level contour is the circle of radius $r>0$ ．

Chan－Vese two－phase model

Let H denote the Heaviside function and δ the Dirac delta function，

$$
H(s)=\left\{\begin{array}{ll}
1 & s \geq 0, \\
0 & s<0,
\end{array} \quad \text { and } \quad \frac{d}{d s} H(s)=\delta(s) .\right.
$$

Then the Chan－Vese two－phase model has the form

$$
\begin{aligned}
\min _{c_{1}, c_{2}, \phi} & (\underbrace{\mu \int_{\Omega} \delta(\phi(x))|\nabla \phi(x)| d x}_{=v\left|\Omega_{\mathrm{in}}\right|}+\underbrace{v \int_{\Omega} H(\phi(x)) d x} \\
& =\mu \int_{\Omega}|\nabla H(\phi(x))| d x=\mu|\mathcal{C}| \\
& +\underbrace{\lambda_{1} \int_{\Omega}\left(f(x)-c_{1}\right)^{2} H(\phi(x)) d x}_{=\lambda_{1} \int_{\Omega_{\mathrm{in}}}\left(f(x)-c_{1}\right)^{2} d x} \\
& +\underbrace{\lambda_{2} \int_{\Omega}\left(f(x)-c_{2}\right)^{2}(1-H(\phi(x))) d x}_{=\lambda_{2} \int_{\Omega_{\mathrm{out}}}\left(f(x)-c_{2}\right)^{2} d x})
\end{aligned}
$$

Regularized Heaviside and delta functions

The Heaviside function H and the Dirac delta function δ can be approximately regularized as follows：for a sufficiently small $\epsilon>0$ ，

$$
\begin{aligned}
H_{\epsilon}(t):= & \frac{1}{2}\left(1+\frac{2}{\pi} \tan ^{-1}\left(\frac{t}{\epsilon}\right)\right), \quad \delta_{\epsilon}(t):=\frac{d}{d t} H_{\epsilon}(t)=\frac{\epsilon}{\pi\left(\epsilon^{2}+t^{2}\right)}, \\
& \int_{-\infty}^{\infty} \delta_{\epsilon}(t) d t=\int_{-\infty}^{\infty} \frac{\epsilon}{\pi\left(\epsilon^{2}+t^{2}\right)} d t=\cdots=1 .
\end{aligned}
$$

An alternating iterative scheme

The minimization is solved by an alternating iterative scheme，i．e．， alternatingly updating c_{1}, c_{2} and ϕ ．
（S1）Fixed ϕ ，the optimal values of c_{1} and c_{2} are the region averages，

$$
c_{1}=\frac{\int_{\Omega} f(x) H(\phi(x)) d x}{\int_{\Omega} H(\phi(x)) d x}, \quad c_{2}=\frac{\int_{\Omega} f(x)(1-H(\phi(x))) d x}{\int_{\Omega}(1-H(\phi(x))) d x} .
$$

（S2）Fixed c_{1}, c_{2} ，we solve the initial－boundary value problem（IBVP） for the Euler－Lagrange equation to reach a steady－state solution：

$$
\begin{aligned}
& \frac{\partial \phi}{\partial t}=\delta_{\epsilon}(\phi)\left(\mu \nabla \cdot \frac{\nabla \phi}{|\nabla \phi|}-v-\lambda_{1}\left(f-c_{1}\right)^{2}+\lambda_{2}\left(f-c_{2}\right)^{2}\right), \\
& \quad \text { for } t>0, x \in \Omega, \\
& \phi(0, x)=\phi_{0}(x), x \in \Omega \\
& \frac{\partial \phi}{\partial n}=0 \text { on } \partial \Omega, t \geq 0 .
\end{aligned}
$$

Numerical experiments of the Chan－Vese model

numerical results by the alternating iterative scheme

Adaptive model for intensity inhomogeneous images

Liao－Yang－You（2022）proposed an entropy－weighted local intensity clustering－based model starting from the bias field model：$f=b I+n$ ：

$$
\min _{\mathcal{C}, b, c}\left(\mu|\mathcal{C}|+\int_{\Omega} E_{r}(y) \sum_{i=1}^{n} \int_{\Omega_{i}} K(y-x)\left(f(x)-b(y) c_{i}\right)^{2} d x d y\right) .
$$

Numerical method：a new alternating iterative scheme，called iterative convolution－thresholding（ICT）scheme．

initial contour，segmented result，bias field b ，and corrected image f / b

References

（1）T．F．Chan and L．A．Vese，Active contours without edges，IEEE Transactions on Image Processing， 10 （2001），pp．266－277．
（2）P．Getreuer，Chan－Vese segmentation，Image Processing On Line， 2 （2012），pp．214－224．
（3）P．－W．Hsieh，P．－C．Shao，and S．－Y．Yang，A regularization model with adaptive diffusivity for variational image denoising，Signal Processing， 149 （2018），pp．214－228．
（4）P．－W．Hsieh，P．－C．Shao，and S．－Y．Yang，Adaptive variational model for contrast enhancement of low－light images，SIAM Journal on Imaging Sciences， 13 （2020），pp．1－28．
（6）L．I．Rudin，S．Osher，and E．Fatemi，Nonlinear total variation based noise removal algorithms，Physica D， 60 （1992），pp． 259－268．

Topic 2：

Principal Component Pursuit Problem for Low－Rank Textures

Sparse plus low rank matrix decomposition

Let $M \in \mathbb{R}^{m \times n}$ be a given grayscale image．Suppose that M is the superposition of a low－rank component L and a sparse component S ，

$$
M=L+S .
$$

We are interested in finding the low－rank image L ，which has high repeatability along horizontal or vertical directions．

The sparse plus low rank decomposition problem can be formulated as the constrained minimization problem：

$$
\min _{L, S}\left(\operatorname{rank}(\boldsymbol{L})+\lambda\|\boldsymbol{S}\|_{0}\right) \quad \text { subject to } \quad \boldsymbol{M}=\boldsymbol{L}+\boldsymbol{S},
$$

where $\lambda>0$ is a tuning parameter and $\|S\|_{0}$ denotes the number of non－zero entries in S ．The problem is not convex．

The principal component pursuit problem

We approximate the sparse plus low rank decomposition problem by the following principal component pursuit（ $P C P$ ）problem：

$$
\min _{L, S}\left(\|\boldsymbol{L}\|_{*}+\lambda\|\boldsymbol{S}\|_{1}\right) \quad \text { subject to } \quad \boldsymbol{M}=\boldsymbol{L}+\boldsymbol{S}
$$

where $\|\boldsymbol{L}\|_{*}$ is the nuclear（Ky Fan／樊（土畿））norm of \boldsymbol{L} defined as

$$
\|\boldsymbol{L}\|_{*}:=\sum_{i=1}^{r} \sigma_{i},
$$

and $r \in \mathbb{N}^{+}$is the rank of L and σ_{i} are the singular values of L ，and $\|\boldsymbol{S}\|_{1}$ denotes the ℓ^{1}－norm of \boldsymbol{S}（seen as a long vector in $\mathbb{R}^{m n}$ ），

$$
\|\boldsymbol{S}\|_{1}:=\sum_{i, j}\left|S_{i j}\right| .
$$

The penalty formulation and alternating direction method

Let $\mu>0$ be the penalty parameter．Then we consider the relaxation using a penalty term to replace the constraint，

$$
\min _{L, S}\left(\|\boldsymbol{L}\|_{*}+\lambda\|\boldsymbol{S}\|_{1}+\frac{\mu}{2}\|\boldsymbol{M}-\boldsymbol{L}-\boldsymbol{S}\|_{F}^{2}\right),
$$

where $\|\cdot\|_{F}$ is the Frobenius norm．We set，for example， $\boldsymbol{S}^{(0)}=\mathbf{0}$ ．The ADM for the penalty formulation is given as follows：for $k \geq 0$ ，find

$$
\begin{aligned}
\boldsymbol{L}^{(k+1)} & =\underset{L}{\arg \min }\left(\|\boldsymbol{L}\|_{*}+\lambda\left\|\boldsymbol{S}^{(k)}\right\|_{1}+\frac{\mu}{2}\left\|\boldsymbol{M}-\boldsymbol{L}-\boldsymbol{S}^{(k)}\right\|_{F}^{2}\right), \\
\boldsymbol{S}^{(k+1)} & =\underset{S}{\arg \min }\left(\left\|\boldsymbol{L}^{(k+1)}\right\|_{*}+\lambda\|\boldsymbol{S}\|_{1}+\frac{\mu}{2}\left\|\boldsymbol{M}-\boldsymbol{L}^{(k+1)}-\boldsymbol{S}\right\|_{F}^{2}\right) .
\end{aligned}
$$

By further analysis，we can prove that

$$
\begin{aligned}
\boldsymbol{L}^{(k+1)} & =\operatorname{SVT}_{\frac{1}{\mu}}\left(\boldsymbol{M}-\boldsymbol{S}^{(k)}\right), \\
\boldsymbol{S}^{(k+1)} & =\operatorname{sign}\left(\boldsymbol{M}-\boldsymbol{L}^{(k+1)}\right) \odot \max \left\{\left|\boldsymbol{M}-\boldsymbol{L}^{(k+1)}\right|-(\lambda / \mu), 0\right\},
\end{aligned}
$$

where \odot is the Hadamard product（i．e．，element－wise product）．

SVD and SVT

－Singular value decomposition（SVD）
Let $\boldsymbol{M} \in \mathbb{R}^{m \times n}$ ．The SVD of \boldsymbol{M} is the factorization in the form

$$
M=U \Sigma V^{\top}
$$

where $\boldsymbol{U} \in \mathbb{R}^{m \times m}$ and $\boldsymbol{V} \in \mathbb{R}^{n \times n}$ are orthogonal matrices $\left(\boldsymbol{U} \boldsymbol{U}^{\top}=\boldsymbol{I}\right.$ and $\boldsymbol{V} \boldsymbol{V}^{\top}=\boldsymbol{I}$ ）and $\boldsymbol{\Sigma} \in \mathbb{R}^{m \times n}$ is diagonal with all non－negative entries called the singular values of \mathbf{M} ．
－Singular value thresholding（SVT）
Let $\boldsymbol{M} \in \mathbb{R}^{m \times n}$ ．Suppose that the SVD of \boldsymbol{M} is given by $\boldsymbol{M}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\top}$ ． Then the singular value thresholding（SVT）of \boldsymbol{M} with threshold $\tau>0$ is defined by

$$
S V T_{\tau}(M)=U D_{\tau}(\Sigma) V^{\top}
$$

where

$$
\boldsymbol{D}_{\tau}(\boldsymbol{\Sigma})_{i i}=\max \left\{\boldsymbol{\Sigma}_{i i}-\tau, 0\right\} .
$$

Background recovering using the penalty method

Some project topics for PCP problem

－Implement the principal component pursuit problem for low－rank textures by the penalty method，the augmented Lagrange multiplier method，etc．
－Further study of the transform invariant low－rank textures：

References

（1）E．J．Candès，X．Li，Y．Ma，and J．Wright，Robust principal component analysis？Journal of the ACM， 58 （2011），Article 11.
（2）X．Ren and Z．Lin，Linearized alternating direction method with adaptive penalty and warm starts for fast solving transform invariant low－rank textures，International Journal of Computer Vision，104，（2013），pp．1－14．
（3）Z．Lin，R．Liu，and Z．Su，Linearized alternating direction method with adaptive penalty for low－rank representation， Proceedings of the 24th International Conference on Neural Information Processing Systems，2011，pp．612－620．
（4）G．Tang and A．Nehorai，Robust PCA based on low－rank and block－sparse matrix decomposition，45th Annual Conference on Information Sciences and Systems，2011，pp．1－5．
（6）Z．Zhang，A．Ganesh，X．Liang，and Y．Ma，TILT：transform invariant low－rank textures，International Journal of Computer Vision， 99 （2012），pp．1－24．

Topic 3：

Sparse Representation and Dictionary Learning

Sparse representation problem

Terms：Sparse Representation（稀疏表現）／Sparse Coding（稀疏編碼）
SR problem：Given a signal vector $\boldsymbol{x} \in \mathbb{R}^{m}$ and a dictionary matrix $\boldsymbol{D} \in$ $\mathbb{R}^{m \times n}$ ，we seek a sparse coefficient vector $z^{*} \in \mathbb{R}^{n}$ such that

$$
z^{*}=\underset{z}{\arg \min }\left(\frac{1}{2}\|x-D z\|_{2}^{2}+\lambda\|z\|_{0}\right),
$$

where $\lambda>0$ is a penalty parameter and $\|z\|_{0}$ counts the number of nonzero components of \boldsymbol{z} ．

Remarks：

－In the matrix－vector multiplication $\boldsymbol{D z}$ ，the components of z are the coefficients with respect to columns（also called atoms）of \boldsymbol{D} ．
－We call $\|z\|_{0}$ the ℓ^{0} norm of z ，even though ℓ^{0} is not really a norm，since the homogeneity property fails，$\|\alpha z\|_{0} \neq|\alpha|\|z\|_{0}$ ．
－It is inefficient to compute $\|z\|_{0}$ directly when n is large．In practice，we will use the ℓ^{1} norm instead of the ℓ^{0} norm．

The ℓ^{1}－norm SR problem

－ℓ^{1}－norm SR problem：Given a signal vector $\boldsymbol{x} \in \mathbb{R}^{m}$ and a dictionary matrix $\boldsymbol{D} \in \mathbb{R}^{m \times n}$ ，we seek a coefficient vector $\boldsymbol{z}^{*} \in \mathbb{R}^{n}$ such that

$$
z^{*}=\underset{z \in \mathbb{R}^{n}}{\arg \min }\left(\frac{1}{2}\|x-\boldsymbol{D} z\|_{2}^{2}+\lambda\|z\|_{1}\right), \quad \lambda>0 .
$$

The existence（and uniqueness）of solution of the problem（ \star ） can be ensured because matrix $\boldsymbol{D}^{\top} \boldsymbol{D}$ is symmetric（＋positive definite）and the second term $\lambda\|\cdot\|_{1}$ is a convex function．
－Problem (\star) is also a regression analysis method in statistics and machine learning．It is the so－called least absolute shrinkage and selection operator（LASSO）．

R．J．Tibshirani，The lasso problem and uniqueness，Electronic Journal of Statistics， 7 （2013），pp．1456－1490 \oplus A．Ali， 13 （2019），pp．2307－2347．

Alternating direction method of multipliers（ADMM）

－For the ℓ^{1}－norm SR problem，

$$
z^{*}=\underset{z}{\arg \min }\left(\frac{1}{2}\|x-D z\|_{2}^{2}+\lambda\|z\|_{1}\right), \quad \lambda>0
$$

we set

$$
f(z):=\frac{1}{2}\|x-D z\|_{2}^{2}, g(y):=\lambda\|y\|_{1}, A z+B y=c \Leftrightarrow z-y=0
$$

－The ADMM for the ℓ^{1}－norm SR problem is given by

$$
\begin{align*}
& \boldsymbol{z}^{(i+1)}=\underset{\boldsymbol{z}}{\arg \min }\left(\frac{1}{2}\|\boldsymbol{x}-\boldsymbol{D} \boldsymbol{z}\|_{2}^{2}+\frac{\rho}{2}\left\|\boldsymbol{z}-\boldsymbol{y}^{(i)}+\boldsymbol{u}^{(i)}\right\|_{2}^{2}\right) \\
& \boldsymbol{y}^{(i+1)}=\underset{y}{\arg \min }\left(\lambda\|\boldsymbol{y}\|_{1}+\frac{\rho}{2}\left\|\boldsymbol{z}^{(i+1)}-\boldsymbol{y}+\boldsymbol{u}^{(i)}\right\|_{2}^{2}\right) \\
& \boldsymbol{u}^{(i+1)}=\boldsymbol{u}^{(i)}+\rho\left(\boldsymbol{z}^{(i+1)}-\boldsymbol{y}^{(i+1)}\right), \quad(A 3) \tag{A3}
\end{align*}
$$

where $\rho>0$ is the another penalty parameter．

Solving minimization problem（A1）

Define

$$
F_{1}(z):=\frac{1}{2}\|\boldsymbol{x}-\boldsymbol{D} \boldsymbol{z}\|_{2}^{2}+\frac{\rho}{2}\left\|\boldsymbol{z}-\boldsymbol{y}^{(i)}+\boldsymbol{u}^{(i)}\right\|_{2}^{2} .
$$

Then F_{1} is a quadratic function in variables $z_{1}, z_{2}, \cdots, z_{n}$ and $F_{1}(z) \geq 0 \forall z \in \mathbb{R}^{n}$ ．To solve＂ $\min _{z} F_{1}(z)$＂，first we compute

$$
\begin{aligned}
\nabla F_{1}(\boldsymbol{z}) & =-\boldsymbol{D}^{\top}(\boldsymbol{x}-\boldsymbol{D} \boldsymbol{z})+\rho \boldsymbol{I}\left(\boldsymbol{z}-\boldsymbol{y}^{(i)}+\boldsymbol{u}^{(i)}\right) \\
& =\left(\boldsymbol{D}^{\top} \boldsymbol{D}+\boldsymbol{\rho}\right) \boldsymbol{z}-\left(\boldsymbol{D}^{\top} \boldsymbol{x}+\rho\left(\boldsymbol{y}^{(i)}-\boldsymbol{u}^{(i)}\right)\right) .
\end{aligned}
$$

Letting $\nabla F_{1}(z)=\mathbf{0}$ ，we have

$$
\left(\boldsymbol{D}^{\top} \boldsymbol{D}+\rho \boldsymbol{I}\right) \boldsymbol{z}=\left(\boldsymbol{D}^{\top} \boldsymbol{x}+\rho\left(\boldsymbol{y}^{(i)}-\boldsymbol{u}^{(i)}\right)\right) .
$$

Therefore，we obtain the solution

$$
\boldsymbol{z}^{(i+1)}=\left(\boldsymbol{D}^{\top} \boldsymbol{D}+\rho \boldsymbol{I}\right)^{-1}\left(\boldsymbol{D}^{\top} \boldsymbol{x}+\rho\left(\boldsymbol{y}^{(i)}-\boldsymbol{u}^{(i)}\right)\right) .
$$

Solving minimization problem（A2）

Using the soft－thresholding function $\mathcal{S}_{\lambda / \rho}$ ，problem（A2）has the closed form solution：

$$
y^{(i+1)}=\mathcal{S}_{\lambda / \rho}\left(z^{(i+1)}+u^{(i)}\right),
$$

where

$$
\mathcal{S}_{\lambda / \rho}(\boldsymbol{v})=\operatorname{sign}(\boldsymbol{v}) \odot \max (\mathbf{0},|\boldsymbol{v}|-\lambda / \rho),
$$

and $\operatorname{sign}(\cdot), \max (\cdot, \cdot)$ ，and $|\cdot|$ are all applied to the input vector v component－wisely，and \odot is the Hadamard product．

Finally，the iterative scheme can be posed as follows：

$$
\begin{aligned}
& \boldsymbol{z}^{(i+1)}=\left(\boldsymbol{D}^{\top} \boldsymbol{D}+\rho \boldsymbol{I}\right)^{-1}\left(\boldsymbol{D}^{\top} \boldsymbol{x}+\rho\left(\boldsymbol{y}^{(i)}-\boldsymbol{u}^{(i)}\right)\right), \\
& \boldsymbol{y}^{(i+1)}=\mathcal{S}_{\lambda / \rho}\left(\boldsymbol{z}^{(i+1)}+\boldsymbol{u}^{(i)}\right) \\
& \boldsymbol{u}^{(i+1)}=\boldsymbol{u}^{(i)}+\rho\left(\boldsymbol{z}^{(i+1)}-\boldsymbol{y}^{(i+1)}\right) .
\end{aligned}
$$

Sparse dictionary learning

SDL problem：Let $\left\{\boldsymbol{x}_{i}\right\}_{i=1}^{N} \subset \mathbb{R}^{m}$ be a given dataset of signals．We seek a dictionary matrix $\boldsymbol{D}=\left[\boldsymbol{d}_{1}, \boldsymbol{d}_{2}, \cdots, \boldsymbol{d}_{n}\right] \in \mathbb{R}^{m \times n}$ together with the sparse coefficient vectors $\left\{\boldsymbol{z}_{i}\right\}_{i=1}^{N} \subset \mathbb{R}^{n}$ that solve the minimization problem：

$$
\begin{aligned}
\min _{D,\left\{z_{i}\right\}}\left(\frac{1}{2} \sum_{i=1}^{N}\left\|x_{i}-D z_{i}\right\|_{2}^{2}+\lambda \sum_{i=1}^{N}\left\|z_{i}\right\|_{1}\right) \\
\quad \text { subject to }\left\|d_{k}\right\|_{2} \leq 1, \forall 1 \leq k \leq n, \quad \lambda>0 .
\end{aligned}
$$

Numerical method：alternating direction method of multipliers（ADMM）．

Some project topics for SR and DL

Single image inpainting：we use the complete patches to train the dictionary，recover the incomplete patches by the sparse representation．

Other applications：single image super－resolution，image fusion，．．．

References and source codes

（1）S．Boyd，N．Parikh，E．Chu，B．Peleato，and J．Eckstein， Distributed optimization and statistical learning via the ADMM， Foundations and Trends in Machine Learning， 3 （2010），pp．1－122．
（2）M．Elad，Sparse and Redundant Representations：From Theory to Applications in Signal and Image Processing，Springer，New York， 2010.
（3）Y．Sharon，J．Wright，and Y．Ma，Computation and relaxation of conditions for equivalence between ℓ^{1} and ℓ^{0} minimization， UIUC Technical Report UILU－ENG－07－2008， 2007.
（9）Sparse dictionary learning：
https：
／／en．wikipedia．org／wiki／Sparse＿dictionary＿learning
（3）Matlab codes：
http：／／brendt．wohlberg．net／software／SPORCO／

Topic 4：

Projection Methods for the Incompressible Navier－Stokes Equations

Fluid－structure interaction problem（流構耦合問題）

－For computational fluid dynamics（CFD），the primary issues are accuracy，computational efficiency，and the ability to handle complex geometries．
－A fluid－structure interaction（FSI）problem describes the coupled dynamics of fluid mechanics and structure mechanics．
－It usually requires the modeling of complex geometric structure and moving boundaries．It is very challenging for conventional body－fitted approach．

－We will introduce a Cartesian grid based non－boundary conforming approach，the direct－forcing immersed boundary projection methods．

Time－dependent incompressible Navier－Stokes equations

Let Ω be an open bounded domain in $\mathbb{R}^{d}, d=2$ or 3 ，and let $[0, T]$ be the time interval．The time－dependent，incompressible Navier－Stokes problem can be posed as：find u and p with $\int_{\Omega} p=0$ ，so that

$$
\begin{aligned}
\frac{\partial \boldsymbol{u}}{\partial t}-v \nabla^{2} \boldsymbol{u}+(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}+\nabla p & =\boldsymbol{f} \text { in } \Omega \times(0, T] \\
\nabla \cdot \boldsymbol{u} & =0 \quad \text { in } \Omega \times(0, T] \\
\boldsymbol{u} & =\boldsymbol{u}_{b} \quad \text { on } \partial \Omega \times[0, T] \\
\boldsymbol{u} & =\boldsymbol{u}_{0} \quad \text { in } \Omega \times\{t=0\} .
\end{aligned}
$$

－u is the velocity field，p the pressure（divided by a constant density $\rho), v$ the kinematic viscosity，f the density of body force．
－By the divergence theorem，boundary velocity \boldsymbol{u}_{b} must satisfy

$$
\int_{\partial \Omega} \boldsymbol{u}_{b} \cdot \boldsymbol{n} d A=\int_{\Omega} \nabla \cdot \boldsymbol{u} d V=0, \quad \forall t \in[0, T] .
$$

Time－discretization of the incompressible NS equations

First，we discretize the time variable of the Navier－Stokes problem， with the spatial variable being left continuous．Consider the implicit Euler time－discretization with explicit first－order approximation to the nonlinear convection term：

$$
\begin{aligned}
\frac{\boldsymbol{u}^{n+1}-\boldsymbol{u}^{n}}{\Delta t}-v \nabla^{2} \boldsymbol{u}^{n+1}+\left(\boldsymbol{u}^{n} \cdot \nabla\right) \boldsymbol{u}^{n}+\nabla p^{n+1} & =f^{n+1} \text { in } \Omega, \\
\nabla \cdot \boldsymbol{u}^{n+1} & =0 \text { in } \Omega, \\
\boldsymbol{u}^{n+1} & =\boldsymbol{u}_{b}^{n+1} \quad \text { on } \partial \Omega,
\end{aligned}
$$

where $t_{i}:=i \Delta t$ for $i=0,1, \cdots, \Delta t>0$ is the time step length，and g^{n} denotes an approximate（or exact）value of $g\left(t_{n}\right)$ at the time level n ．

It is highly inefficient in solving this coupled system of Stokes－like equations directly．This is precisely the reason for proposing the projection approach to decouple the computation of（ $\left.u^{n+1}, p^{n+1}\right)$ ．

Helmholtz－Hodge decomposition

Let Ω be an open，bounded，connected，Lipschitz－continuous domain． A vector field $w \in L^{2}(\Omega)$ can be uniquely decomposed orthogonally as

$$
w=u+\nabla \varphi, \quad u \in H(\operatorname{div} ; \Omega) \text { and } \varphi \in H^{1}(\Omega),
$$

where \boldsymbol{u} has zero divergence $\nabla \cdot \boldsymbol{u}=0$ in Ω and $\boldsymbol{u} \cdot \boldsymbol{n}=0$ on $\partial \Omega$ ．

－Orthogonality： $\int_{\Omega} \boldsymbol{u} \cdot \nabla \varphi d V=0 \quad$（L2－inner product）
－The HHD describes the decomposition of a flow field w into its divergence－free component u and curl－free component $\nabla \varphi$ ．
－A．J．Chorin and J．E．Marsden，A Mathematical Introduction to Fluid Mechanics，2nd Edition，Springer－Verlag，New York， 1990.

Chorin projection scheme（Math．Comp．1968／69）

Step 1：Solve for the intermediate velocity field \boldsymbol{u}^{*} ，

$$
\left\{\begin{array}{rll}
\frac{\boldsymbol{u}^{*}-\boldsymbol{u}^{n}}{\Delta t}-v \nabla^{2} \boldsymbol{u}^{*}+\left(\boldsymbol{u}^{n} \cdot \nabla\right) \boldsymbol{u}^{n} & =f^{n+1} \quad \text { in } \Omega \\
\boldsymbol{u}^{*} & =\boldsymbol{u}_{b}^{n+1} \quad \text { on } \partial \Omega
\end{array}\right.
$$

Step 2：Determine \boldsymbol{u}^{n+1} and p^{n+1} by solving

$$
\left\{\begin{aligned}
\frac{\boldsymbol{u}^{n+1}-\boldsymbol{u}^{*}}{\Delta t}+\nabla p^{n+1} & =\mathbf{0} \text { in } \Omega, \\
\nabla \cdot \boldsymbol{u}^{n+1} & =0 \text { in } \Omega, \\
\boldsymbol{u}^{n+1} \cdot \boldsymbol{n} & =\boldsymbol{u}_{b}^{n+1} \cdot \boldsymbol{n} \quad \text { on } \partial \Omega,
\end{aligned}\right.
$$

which is equivalent to solving the pressure－Poisson equation with the homogeneous Neumann boundary condition：

$$
\left\{\begin{aligned}
\nabla^{2} p^{n+1} & =\frac{1}{\Delta t} \nabla \cdot u^{*} \quad \text { in } \Omega, \\
\nabla p^{n+1} \cdot n & =0 \text { on } \partial \Omega,
\end{aligned}\right.
$$

and then define the velocity field by $u^{n+1}=u^{*}-\Delta t \nabla p^{n+1}$ ．

Remarks on Chorin＇s first－order scheme

－The second step is usually referred to as the projection step．

$$
\boldsymbol{u}^{*}=\boldsymbol{u}^{n+1}+\Delta t \nabla p^{n+1}=\boldsymbol{u}^{n+1}+\nabla\left(\Delta t p^{n+1}\right) .
$$

This is indeed the standard HHD of \boldsymbol{u}^{*} when $\boldsymbol{u}_{b}^{n+1}=\mathbf{0}$ on $\partial \Omega$ ．
－Summing all equations in Chorin＇s projection scheme，we have

$$
\begin{aligned}
\frac{\boldsymbol{u}^{n+1}-\boldsymbol{u}^{n}}{\Delta t}-v \nabla^{2} \boldsymbol{u}^{*}+\left(\boldsymbol{u}^{n} \cdot \nabla\right) \boldsymbol{u}^{n}+\nabla p^{n+1} & =f^{n+1} \quad \text { in } \Omega \\
\nabla \cdot \boldsymbol{u}^{n+1} & =0 \text { in } \Omega \\
\boldsymbol{u}^{n+1} \cdot \boldsymbol{n} & =\boldsymbol{u}_{b}^{n+1} \cdot \boldsymbol{n} \quad \text { on } \partial \Omega
\end{aligned}
$$

different from the original semi－implicit discretization．Since

$$
\boldsymbol{u}^{n+1}=\boldsymbol{u}^{*}-\Delta t \nabla p^{n+1} \approx \boldsymbol{u}^{*} \text { in } \Omega \text { as } \Delta t \rightarrow 0^{+}
$$

it is not surprising that we should expect

$$
\nabla^{2} \boldsymbol{u}^{n+1} \approx \nabla^{2} \boldsymbol{u}^{*} \text { in } \Omega \quad \text { and } \boldsymbol{u}^{n+1} \approx \boldsymbol{u}_{b}^{n+1} \text { on } \partial \Omega \text { as } \Delta t \rightarrow 0^{+}
$$

Fluid－solid interaction（FSI）problem

A simple one－way coupling FSI problem is flow over a stationary or moving solid body with a prescribed velocity．

Let Ω be the fluid domain which encloses a rigid body positioned at $\bar{\Omega}_{s}(t)$ with a prescribed velocity $u_{s}(t, x)$ ．The FSI problem with initial value and no－slip boundary condition can be posed as follows：

$$
\begin{aligned}
\frac{\partial u}{\partial t}-v \nabla^{2} \boldsymbol{u}+(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}+\nabla p & =f \text { in }\left(\Omega \backslash \bar{\Omega}_{s}\right) \times(0, T], \\
\nabla \cdot \boldsymbol{u} & =0 \quad \text { in }\left(\Omega \backslash \bar{\Omega}_{s}\right) \times(0, T], \\
\boldsymbol{u} & =\boldsymbol{u}_{b} \quad \text { on } \partial \Omega \times[0, T], \\
\boldsymbol{u} & =\boldsymbol{u}_{s} \quad \text { on } \partial \Omega_{s} \times[0, T], \\
\boldsymbol{u} & =\boldsymbol{u}_{0} \quad \text { in }\left(\Omega \backslash \bar{\Omega}_{s}\right) \times\{t=0\},
\end{aligned}
$$

where u is the velocity field，p the pressure（divided by a constant density $\rho), v$ the kinematic viscosity，f the density of body force．

The body－fitted approach

The body－fitted approach is a conventional method for solving the FSI problem．For example，using the semi－implicit discretization at time $t=t_{n+1}$ ，we solve in the fluid domain $\Omega \backslash \bar{\Omega}_{s}^{n+1}$ the system

$$
\begin{aligned}
\frac{\boldsymbol{u}^{n+1}-\boldsymbol{u}^{n}}{\Delta t}-v \nabla^{2} \boldsymbol{u}^{n+1}+\left(\boldsymbol{u}^{n} \cdot \nabla\right) \boldsymbol{u}^{n}+\nabla p^{n+1} & =f^{n+1} \quad \text { in } \Omega \backslash \bar{\Omega}_{s}^{n+1}, \\
\nabla \cdot \boldsymbol{u}^{n+1} & =0 \quad \text { in } \Omega \backslash \bar{\Omega}_{s}^{n+1}, \\
\boldsymbol{u}^{n+1} & =\boldsymbol{u}_{b}^{n+1} \quad \text { on } \partial \Omega, \\
\boldsymbol{u}^{n+1} & =\boldsymbol{u}_{s}^{n+1} \quad \text { on } \partial \Omega_{s}^{n+1},
\end{aligned}
$$

where $t_{i}:=i \Delta t$ for $i=0,1, \cdots, \Delta t>0$ is the time step length，and g^{n} denotes an approximate or exact value of $\boldsymbol{g}\left(t_{n}\right)$ at the time level n ．

It is highly inefficient in solving these equations directly when the solid body $\bar{\Omega}_{s}$ has a complex geometry or moves in the fluid．Below，we will consider a direct－forcing immersed boundary（IB）projection approach．

Direct－forcing immersed boundary（IB）approach

We first consider the solid object as a portion of the fluid and then introduce a virtual force F to the momentum equation，and we expect the problem can be solved on the whole domain Ω and do not need to set the interior boundary condition $\boldsymbol{u}=\boldsymbol{u}_{s}$ on the interface $\partial \Omega_{s}$ ：

$$
\begin{aligned}
\frac{\partial u}{\partial t}-v \nabla^{2} \boldsymbol{u}+(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}+\nabla p & =f+\boldsymbol{F} \text { in } \Omega \times(0, T], \\
\nabla \cdot \boldsymbol{u} & =0 \text { in } \Omega \times(0, T] \\
\boldsymbol{u} & =\boldsymbol{u}_{b} \text { on } \partial \Omega \times[0, T], \\
\boldsymbol{u} & =\boldsymbol{u}_{0} \quad \text { in } \Omega \times\{t=0\} .
\end{aligned}
$$

－Note that the virtual force \boldsymbol{F} is distributed only in the whole solid object region $\bar{\Omega}_{s}(t)$ ，making the region acts exactly as if it were a solid rigid body immersed in the fluid with a prescribed velocity $\boldsymbol{u}_{s}(t, x)$ ．
－But，at this moment，we do not know how to specify the virtual force \boldsymbol{F} such that the region fulfills the prescribed velocity $\boldsymbol{u}_{s}(t, x)$ ．

Time－discretization of the incompressible N －S equations

Let us first discretize the time variable of the Navier－Stokes problem， with the spatial variable being left continuous．Consider the implicit Euler time－discretization with an explicit first－order approximation to the nonlinear convection．Then we have the BVP at time $t=t_{n+1}$ ：

$$
\begin{aligned}
\frac{\boldsymbol{u}^{n+1}-\boldsymbol{u}^{n}}{\Delta t}-v \nabla^{2} \boldsymbol{u}^{n+1}+\left(\boldsymbol{u}^{n} \cdot \nabla\right) \boldsymbol{u}^{n}+\nabla p^{n+1} & =f^{n+1}+\boldsymbol{F}^{n+1} \quad \text { in } \Omega \\
\nabla \cdot \boldsymbol{u}^{n+1} & =0 \text { in } \Omega \\
\boldsymbol{u}^{n+1} & =\boldsymbol{u}_{b}^{n+1} \quad \text { on } \partial \Omega
\end{aligned}
$$

－It is highly inefficient in solving this BVP directly，even if F^{n+1} is already known．This is the reason for proposing the projection approach to decouple the computation of $\left(\boldsymbol{u}^{n+1}, p^{n+1}\right)$ ．
－Next，we will consider a direct－forcing IB approach based on the first－order Chorin projection scheme．The virtual force F^{n+1} will be specified in the scheme when we decouple the time－discretized problem．

Flow past a swimming fish－like solid body

Sedimentation of multiple particles

References

（1）D．Z．Noor，M．－J．Chern，and T．－L．Horng，An immersed boundary method to solve fluid－solid interaction problems， Computational Mechanics， 44 （2009），pp．447－453．
（2）P．－W．Hsieh，S．－Y．Yang，and C．－S．You，A direct－forcing immersed boundary projection method for simulating the dynamics of freely falling solid bodies in an incompressible viscous fluid，Annals of Mathematical Sciences and Applications，5 （2020），pp．75－100．
（3）T．－L．Horng，P．－W．Hsieh，S．－Y．Yang，and C．－S．You，A simple direct－forcing immersed boundary projection method with prediction－correction for fluid－solid interaction problems， Computers \＆Fluids， 176 （2018），pp．135－152．

