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Outline

This course will mainly focus on the following four topics:

1 Numerical methods for PDEs with applications to variational
image processing

2 Principal component pursuit problem for low-rank textures

3 Sparse representation and dictionary learning

4 Projection methods for the incompressible Navier-Stokes
equations
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Topic 1:
Numerical Methods for PDEs with Applications

to Variational Image Processing
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Total variation

Let u : [a, b] → R. Let Pn = {x0 = a, x1, · · · , xn = b} be an arbitrary
partition of Ω := [a, b] and ∆xi = xi − xi−1. The total variation of u is

∥u∥TV(Ω) := sup
Pn

n

∑
i=1

|u(xi)− u(xi−1)| = sup
Pn

n

∑
i=1

∣∣∣∣u(xi)− u(xi−1)

∆xi

∣∣∣∣ ∆xi

=
∫

Ω
|u′(x)| dx, if u is smooth.

Denoising is the problem of removing noise from an image:

minimize
(∫

Ω |u′(x)| dx + some data fidelity term
)

.
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Figure 3.2. A signal (left image) and its noisy version (right image).
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Figure 3.3. Four reconstructions of a noisy signal by RLS solutions.

smooth enough and is very close to the noisy signal b. For λ = 10 the RLS solution is a
rather good estimate of the original vector x. For λ= 100 we get a smoother RLS signal,
but evidently it is less accurate than xRLS(10), especially near the boundaries. The RLS
solution for λ= 1000 is very smooth, but it is a rather poor estimate of the original signal.
In any case, it is evident that the parameter λ is chosen via a trade off between data fidelity
(closeness of x to b) and smoothness (size of Lx). The four plots where produced by the
MATLAB commands

L=zeros(299,300);
for i=1:299

L(i,i)=1;
L(i,i+1)=-1;

end

x_rls=(eye(300)+1*L’*L)\b;
x_rls=[x_rls,(eye(300)+10*L’*L)\b];
x_rls=[x_rls,(eye(300)+100*L’*L)\b];
x_rls=[x_rls,(eye(300)+1000*L’*L)\b];
figure(2)
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Euler-Lagrange equation of the ROF model

Let us consider the following energy minimization problem
(Rudin-Osher-Fatemi model):

min
u∈V

(∫
Ω
|∇u| dx +

λ

2

∫
Ω

(
u(x)− f (x)

)2 dx
)

,

where V is a suitable function space and λ > 0 is the regularization

parameter. Since
∫

Ω |∇u| dx =
∫

Ω

√
u2

x + u2
y dx, we have

L(x, y, u, ux, uy) =
√

u2
x + u2

y +
λ

2
(u − f )2,

which leads to the Euler-Lagrange equation with the Neumann
boundary condition,

−∇ ·
( ∇u
|∇u|

)
+ λu = λf in Ω,

∂u
∂n

= 0 on ∂Ω.
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The Euler-Lagrange equation

Let Ω ⊂ R2 be an open bounded domain. We consider the following
real-valued energy functional,

E[v] :=
∫

Ω
L
(
x, y, v(x, y), vx(x, y), vy(x, y)

)
dx,

where we assume that v ∈ C2(Ω) and L ∈ C2 with respect to its
arguments x = (x, y), v, vx and vy. According to the fundamental
lemma of calculus of variations, we have the following
Euler-Lagrange equation,

∂L
∂u

−∇ · ( ∂L
∂ux

,
∂L
∂uy

)⊤ = 0 in Ω,

and the homogeneous Neumann boundary condition,

∂L
∂ux

n1 +
∂L
∂uy

n2 = 0 on ∂Ω.
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Numerical methods

Therefore, the minimizer of the ROF model can be obtained by

Nonlinear PDE-based method: evolving a finite difference
approximation of the parabolic partial differential equation with
the homogeneous Neumann BC to reach a steady state solution:

Heat−type equation︷ ︸︸ ︷
∂u
∂t

−∇ ·
( ∇u
|∇u|

)
+ λu = λf for (t, x) ∈ (0, T)× Ω,

u(0, x) = f (x) for x ∈ Ω,

∇u · n = 0 for t ∈ [0, T] and x ∈ ∂Ω.

An alternating direction approach – split Bregman method:
Introducing the new unknown vector function d, we have the
constrained minimization problem:

min
u,d

(∫
Ω
|d| dx +

λ

2

∫
Ω

(
u(x)− f (x)

)2 dx
)

subject to d = ∇u.
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ROF total-variation model vs. adaptive diffusivity model

Let f : Ω ⊂ R2 → R be a given noisy image. Rudin-Osher-Fatemi
(1992) proposed the model:

min
u∈V

(∫
Ω
|∇u|+ λ

2
(
u − f

)2 dx
)

, λ > 0.

Hsieh-Shao-Yang (2018) proposed an adaptive model to alleviate
the staircasing effect:

min
u∈V

(∫
Ω

1
2

φ(|∇u∗|)|∇u|2 + λ

2
(u − f )2 dx

)
, λ > 0.

(a) (b) (c) (d)

(e) (f) (g) (h)
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A variational model for image contrast enhancement

Hsieh-Shao-Yang (2020): for every f ∈ {fR, fG, fB}, we solve

min
u∈V

(∫
Ω
|∇u −∇hc| dx +

λ

2

∫
Ω
(u − gc)

2 dx
)

,

where the adaptive functions gc and hc are defined as

gc(x) :=
{

αf , x ∈ Ωd,
f (x), x ∈ Ωb,

hc(x) :=
{

βf (x), x ∈ Ωd,
f (x), x ∈ Ωb.

Numerical methods: (i) Euler-Lagrange equation + solving IBVP; (ii)
direct discretization + split Bregman iterations.

Numerical results by the split Bregman iterations
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Mumford-Shah image segmentation model

Mumford-Shah model: it finds a piecewise smooth function u and a
curve set C, which separates the image domain into disjoint regions,
minimizing the energy functional:

min
u,C

(
µ
∣∣C∣∣+ λ

∫
Ω

(
f (x)− u(x)

)2 dx +
∫

Ω\C

∣∣∇u(x)
∣∣2 dx

)
,

where |C| denotes the total length of the curves in C.

The first term plays the regularization role, which ensures the
target objects can tightly be wrapped by C.

The second term is the data fidelity term, which forces u to be
close to the input image f .

The third term is the smoothing term, which forces the target
function u to be piecewise smooth within each of the regions
separated by the curves in C.

µ > 0, λ > 0 are tuning parameters to modulate these three terms.
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Chan-Vese two-phase model

In 1999, Chan and Vese proposed a two-phase segmentation model
based on the level set formulation:

min
c1,c2,C

(
µ
∣∣C∣∣+ ν

∣∣Ωin
∣∣+ λ1

∫
Ωin

(
f (x)− c1

)2 dx + λ2

∫
Ωout

(
f (x)− c2

)2 dx
)

.

Ωin denotes the region enclosed by the curves in C with area
|Ωin|, and Ωout := Ω \ Ωin.

µ > 0, ν ≥ 0, λ1 > 0, and λ2 > 0 are tuning parameters (actually,
one of them can be fixed as 1).

Chan-Vese model finds a piecewise constant function u and a
curve set C to minimize the energy functional, where u has only
two constant values,

u(x) =

{
c1, x is inside C,
c2, x is outside C.
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Level set function

Therefore, we represent C implicitly by the zero level contour of a
level set function ϕ : Ω → R, i.e.,

C = {x ∈ Ω : ϕ(x) = 0}.

The zero level contour C partitions the image domain into two
disjoint regions Ωin and Ωout such that

ϕ(x) > 0 for x ∈ Ωin and ϕ(x) < 0 for x ∈ Ωout.

For example, given r > 0, we define a level set function

ϕ(x) = ϕ(x, y) = r −
√

x2 + y2,

whose zero level contour is the circle of radius r > 0.
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Chan-Vese two-phase model

Let H denote the Heaviside function and δ the Dirac delta function,

H(s) =
{

1 s ≥ 0,
0 s < 0, and

d
ds

H(s) = δ(s).

Then the Chan-Vese two-phase model has the form

min
c1,c2,ϕ

(
µ
∫

Ω
δ(ϕ(x))|∇ϕ(x)| dx︸ ︷︷ ︸

=µ
∫

Ω |∇H(ϕ(x))| dx=µ|C|

+ ν
∫

Ω
H(ϕ(x)) dx︸ ︷︷ ︸
=ν|Ωin|

+ λ1

∫
Ω

(
f (x)− c1

)2H(ϕ(x)) dx︸ ︷︷ ︸
=λ1

∫
Ωin

(f (x)−c1)2 dx

+ λ2

∫
Ω

(
f (x)− c2

)2(1 − H(ϕ(x))
)

dx︸ ︷︷ ︸
=λ2

∫
Ωout

(f (x)−c2)2 dx

)
.
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Regularized Heaviside and delta functions

The Heaviside function H and the Dirac delta function δ can be
approximately regularized as follows: for a sufficiently small ϵ > 0,

Hϵ(t) :=
1
2

(
1 +

2
π

tan−1(
t
ϵ
)
)

, δϵ(t) :=
d
dt

Hϵ(t) =
ϵ

π(ϵ2 + t2)
,

∫ ∞

−∞
δϵ(t)dt =

∫ ∞

−∞

ϵ

π(ϵ2 + t2)
dt = · · · = 1.
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An alternating iterative scheme

The minimization is solved by an alternating iterative scheme, i.e.,
alternatingly updating c1, c2 and ϕ.

(S1) Fixed ϕ, the optimal values of c1 and c2 are the region averages,

c1 =

∫
Ω f (x)H(ϕ(x)) dx∫

Ω H(ϕ(x)) dx
, c2 =

∫
Ω f (x)

(
1 − H(ϕ(x))

)
dx∫

Ω

(
1 − H(ϕ(x))

)
dx

.

(S2) Fixed c1, c2, we solve the initial-boundary value problem (IBVP)
for the Euler-Lagrange equation to reach a steady-state solution:

∂ϕ

∂t
= δϵ(ϕ)

(
µ∇ · ∇ϕ

|∇ϕ| − ν − λ1(f − c1)
2 + λ2(f − c2)

2
)

,

for t > 0, x ∈ Ω,

ϕ(0, x) = ϕ0(x), x ∈ Ω,

∂ϕ

∂n
= 0 on ∂Ω, t ≥ 0.
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Numerical experiments of the Chan-Vese model

numerical results by the alternating iterative scheme
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Adaptive model for intensity inhomogeneous images

Liao-Yang-You (2022) proposed an entropy-weighted local intensity
clustering-based model starting from the bias field model: f = bI + n:

min
C,b,c

(
µ
∣∣C∣∣+ ∫

Ω
Er(y)

n

∑
i=1

∫
Ωi

K(y − x)
(
f (x)− b(y)ci

)2 dx dy
)

.

Numerical method: a new alternating iterative scheme, called iterative
convolution-thresholding (ICT) scheme.

initial contour, segmented result, bias field b, and corrected image f /b
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Topic 2:
Principal Component Pursuit Problem

for Low-Rank Textures
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Sparse plus low rank matrix decomposition

Let M ∈ Rm×n be a given grayscale image. Suppose that M is the
superposition of a low-rank component L and a sparse component S,

M = L + S.
We are interested in finding the low-rank image L, which has high
repeatability along horizontal or vertical directions.

The sparse plus low rank decomposition problem can be formulated as the
constrained minimization problem:

min
L,S

(
rank(L) + λ∥S∥0

)
subject to M = L + S,

where λ > 0 is a tuning parameter and ∥S∥0 denotes the number of
non-zero entries in S. The problem is not convex.
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The principal component pursuit problem

We approximate the sparse plus low rank decomposition problem by
the following principal component pursuit (PCP) problem:

min
L,S

(
∥L∥∗ + λ∥S∥1

)
subject to M = L + S,

where ∥L∥∗ is the nuclear (Ky Fan/樊(土畿)) norm of L defined as

∥L∥∗ :=
r

∑
i=1

σi,

and r ∈ N+ is the rank of L and σi are the singular values of L, and
∥S∥1 denotes the ℓ1-norm of S (seen as a long vector in Rmn),

∥S∥1 := ∑
i,j
|Sij|.

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Introduction to Project Topics – 21/49



The penalty formulation and alternating direction method

Let µ > 0 be the penalty parameter. Then we consider the relaxation
using a penalty term to replace the constraint,

min
L,S

(
∥L∥∗ + λ∥S∥1 +

µ

2
∥M − L − S∥2

F

)
,

where ∥ · ∥F is the Frobenius norm. We set, for example, S(0) = 0. The
ADM for the penalty formulation is given as follows: for k ≥ 0, find

L(k+1) = arg min
L

(
∥L∥∗ + λ∥S(k)∥1 +

µ

2
∥M − L − S(k)∥2

F

)
,

S(k+1) = arg min
S

(
∥L(k+1)∥∗ + λ∥S∥1 +

µ

2
∥M − L(k+1) − S∥2

F

)
.

By further analysis, we can prove that

L(k+1) = SVT 1
µ

(
M − S(k)),

S(k+1) = sign(M − L(k+1))⊙ max
{
|M − L(k+1)| − (λ/µ), 0

}
,

where ⊙ is the Hadamard product (i.e., element-wise product).
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SVD and SVT

Singular value decomposition (SVD)
Let M ∈ Rm×n. The SVD of M is the factorization in the form

M = UΣV⊤,

where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices (UU⊤ = I
and VV⊤ = I) and Σ ∈ Rm×n is diagonal with all non-negative
entries called the singular values of M.

Singular value thresholding (SVT)

Let M ∈ Rm×n. Suppose that the SVD of M is given by M = UΣV⊤.
Then the singular value thresholding (SVT) of M with threshold τ > 0
is defined by

SVTτ(M) = UDτ(Σ)V⊤,

where
Dτ(Σ)ii = max

{
Σii − τ, 0

}
.
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Background recovering using the penalty method
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Some project topics for PCP problem

Implement the principal component pursuit problem for
low-rank textures by the penalty method, the augmented
Lagrange multiplier method, etc.

Further study of the transform invariant low-rank textures:

⇒ ⇒
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Topic 3:
Sparse Representation and Dictionary

Learning
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Sparse representation problem

Terms: Sparse Representation (稀疏表現)/Sparse Coding (稀疏編碼)

SR problem: Given a signal vector x ∈ Rm and a dictionary matrix D ∈
Rm×n, we seek a sparse coefficient vector z∗ ∈ Rn such that

z∗ = arg min
z

(1
2
∥x − Dz∥2

2 + λ ∥z∥0

)
,

where λ > 0 is a penalty parameter and ∥z∥0 counts the number of nonzero
components of z.

Remarks:

In the matrix-vector multiplication Dz, the components of z are
the coefficients with respect to columns (also called atoms) of D.

We call ∥z∥0 the ℓ0 norm of z, even though ℓ0 is not really a
norm, since the homogeneity property fails, ∥αz∥0 ̸= |α|∥z∥0.

It is inefficient to compute ∥z∥0 directly when n is large. In
practice, we will use the ℓ1 norm instead of the ℓ0 norm.
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The ℓ1-norm SR problem

ℓ1-norm SR problem: Given a signal vector x ∈ Rm and a
dictionary matrix D ∈ Rm×n, we seek a coefficient vector z∗ ∈ Rn

such that

z∗ = arg min
z∈Rn

(1
2
∥x − Dz∥2

2 + λ ∥z∥1

)
, λ > 0. (⋆)

The existence (and uniqueness) of solution of the problem (⋆)

can be ensured because matrix D⊤D is symmetric (+ positive
definite) and the second term λ∥ · ∥1 is a convex function.

Problem (⋆) is also a regression analysis method in statistics and
machine learning. It is the so-called least absolute shrinkage and
selection operator (LASSO).

R. J. Tibshirani, The lasso problem and uniqueness, Electronic Journal of
Statistics, 7 (2013), pp. 1456-1490 ⊕ A. Ali, 13 (2019), pp. 2307-2347.
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Alternating direction method of multipliers (ADMM)

For the ℓ1-norm SR problem,

z∗ = arg min
z

(1
2
∥x − Dz∥2

2 + λ ∥z∥1

)
, λ > 0, (⋆)

we set

f (z) :=
1
2
∥x − Dz∥2

2, g(y) := λ∥y∥1, Az + By = c ⇔ z − y = 0.

The ADMM for the ℓ1-norm SR problem is given by

z(i+1) = arg min
z

(1
2
∥x − Dz∥2

2 +
ρ

2
∥z − y(i) + u(i)∥2

2

)
, (A1)

y(i+1) = arg min
y

(
λ∥y∥1 +

ρ

2
∥z(i+1) − y + u(i)∥2

2

)
, (A2)

u(i+1) = u(i) + ρ(z(i+1) − y(i+1)), (A3)

where ρ > 0 is the another penalty parameter.
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Solving minimization problem (A1)

Define
F1(z) :=

1
2
∥x − Dz∥2

2 +
ρ

2
∥z − y(i) + u(i)∥2

2.

Then F1 is a quadratic function in variables z1, z2, · · · , zn and
F1(z) ≥ 0 ∀ z ∈ Rn. To solve “min

z
F1(z)”, first we compute

∇F1(z) = −D⊤(x − Dz) + ρI(z − y(i) + u(i))

= (D⊤D + ρI)z −
(
D⊤x + ρ(y(i) − u(i))

)
.

Letting ∇F1(z) = 0, we have

(D⊤D + ρI)z =
(
D⊤x + ρ(y(i) − u(i))

)
.

Therefore, we obtain the solution

z(i+1) = (D⊤D + ρI)−1(D⊤x + ρ(y(i) − u(i))
)
.
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Solving minimization problem (A2)

Using the soft-thresholding function Sλ/ρ, problem (A2) has the closed
form solution:

y(i+1) = Sλ/ρ(z
(i+1) + u(i)),

where
Sλ/ρ(v) = sign(v)⊙ max(0, |v| − λ/ρ),

and sign(·), max(·, ·), and | · | are all applied to the input vector v
component-wisely, and ⊙ is the Hadamard product.

Finally, the iterative scheme can be posed as follows:

z(i+1) = (D⊤D + ρI)−1(D⊤x + ρ(y(i) − u(i))
)
,

y(i+1) = Sλ/ρ(z
(i+1) + u(i)),

u(i+1) = u(i) + ρ(z(i+1) − y(i+1)).
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Sparse dictionary learning

SDL problem: Let {xi}N
i=1 ⊂ Rm be a given dataset of signals. We seek a

dictionary matrix D = [d1, d2, · · · , dn] ∈ Rm×n together with the sparse
coefficient vectors {zi}N

i=1 ⊂ Rn that solve the minimization problem:

min
D,{zi}

(1
2

N

∑
i=1

∥xi − Dzi∥2
2 + λ

N

∑
i=1

∥zi∥1

)
subject to ∥dk∥2 ≤ 1, ∀ 1 ≤ k ≤ n, λ > 0.

Numerical method: alternating direction method of multipliers (ADMM).
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Some project topics for SR and DL

Single image inpainting: we use the complete patches to train the
dictionary, recover the incomplete patches by the sparse representation.

Other applications: single image super-resolution, image fusion, ...
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Topic 4:
Projection Methods for the Incompressible

Navier-Stokes Equations
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Fluid-structure interaction problem (流構耦合問題)

For computational fluid dynamics (CFD), the primary issues are
accuracy, computational efficiency, and the ability to handle
complex geometries.

A fluid-structure interaction (FSI) problem describes the coupled
dynamics of fluid mechanics and structure mechanics.

It usually requires the modeling of complex geometric structure
and moving boundaries. It is very challenging for conventional
body-fitted approach.

We will introduce a Cartesian grid based non-boundary conforming
approach, the direct-forcing immersed boundary projection methods.
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Time-dependent incompressible Navier-Stokes equations

Let Ω be an open bounded domain in Rd, d = 2 or 3, and let [0, T] be
the time interval. The time-dependent, incompressible Navier-Stokes
problem can be posed as: find u and p with

∫
Ω p = 0, so that

∂u
∂t

− ν∇2u + (u · ∇)u +∇p = f in Ω × (0, T],

∇ · u = 0 in Ω × (0, T],
u = ub on ∂Ω × [0, T],
u = u0 in Ω × {t = 0}.

u is the velocity field, p the pressure (divided by a constant
density ρ), ν the kinematic viscosity, f the density of body force.

By the divergence theorem, boundary velocity ub must satisfy∫
∂Ω

ub · n dA =
∫

Ω
∇ · u dV = 0, ∀ t ∈ [0, T].

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Introduction to Project Topics – 38/49



Time-discretization of the incompressible NS equations

First, we discretize the time variable of the Navier-Stokes problem,
with the spatial variable being left continuous. Consider the implicit
Euler time-discretization with explicit first-order approximation to
the nonlinear convection term:

un+1 − un

∆t
− ν∇2un+1 + (un · ∇)un +∇pn+1 = f n+1 in Ω,

∇ · un+1 = 0 in Ω,
un+1 = un+1

b on ∂Ω,

where ti := i∆t for i = 0, 1, · · · , ∆t > 0 is the time step length, and gn

denotes an approximate (or exact) value of g(tn) at the time level n.

It is highly inefficient in solving this coupled system of Stokes-like equations
directly. This is precisely the reason for proposing the projection approach to
decouple the computation of (un+1, pn+1).
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Helmholtz-Hodge decomposition

Let Ω be an open, bounded, connected, Lipschitz-continuous domain.
A vector field w ∈ L2(Ω) can be uniquely decomposed orthogonally as

w = u +∇φ, u ∈ H(div; Ω) and φ ∈ H1(Ω),

where u has zero divergence ∇ · u = 0 in Ω and u · n = 0 on ∂Ω.

gradient fields

vector fields that are 
divergence free and 
parallel to the boundary

∇ϕ w

u

Orthogonality:
∫

Ω u · ∇φ dV = 0 (L2-inner product)

The HHD describes the decomposition of a flow field w into its
divergence-free component u and curl-free component ∇φ.

A. J. Chorin and J. E. Marsden, A Mathematical Introduction to
Fluid Mechanics, 2nd Edition, Springer-Verlag, New York, 1990.
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Chorin projection scheme (Math. Comp. 1968/69)

Step 1: Solve for the intermediate velocity field u∗,
u∗ − un

∆t
− ν∇2u∗ + (un · ∇)un = f n+1 in Ω,

u∗ = un+1
b on ∂Ω.

Step 2: Determine un+1 and pn+1 by solving
un+1 − u∗

∆t
+∇pn+1 = 0 in Ω,

∇ · un+1 = 0 in Ω,
un+1 · n = un+1

b · n on ∂Ω,

which is equivalent to solving the pressure-Poisson equation with the
homogeneous Neumann boundary condition:{

∇2pn+1 =
1

∆t
∇ · u∗ in Ω,

∇pn+1 · n = 0 on ∂Ω,

and then define the velocity field by un+1 = u∗ − ∆t∇pn+1.
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Remarks on Chorin’s first-order scheme

The second step is usually referred to as the projection step.

u∗ = un+1 + ∆t∇pn+1 = un+1 +∇(∆tpn+1).

This is indeed the standard HHD of u∗ when un+1
b = 0 on ∂Ω.

Summing all equations in Chorin’s projection scheme, we have

un+1 − un

∆t
− ν∇2u∗ + (un · ∇)un +∇pn+1 = f n+1 in Ω,

∇ · un+1 = 0 in Ω,
un+1 · n = un+1

b · n on ∂Ω,

different from the original semi-implicit discretization. Since

un+1 = u∗ − ∆t∇pn+1 ≈ u∗ in Ω as ∆t → 0+,

it is not surprising that we should expect

∇2un+1 ≈ ∇2u∗ in Ω and un+1 ≈ un+1
b on ∂Ω as ∆t → 0+.
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Fluid-solid interaction (FSI) problem

A simple one-way coupling FSI problem is flow over a stationary or
moving solid body with a prescribed velocity.

Let Ω be the fluid domain which encloses a rigid body positioned at
Ωs(t) with a prescribed velocity us(t, x). The FSI problem with initial
value and no-slip boundary condition can be posed as follows:

∂u
∂t

− ν∇2u + (u · ∇)u +∇p = f in (Ω \ Ωs)× (0, T],

∇ · u = 0 in (Ω \ Ωs)× (0, T],
u = ub on ∂Ω × [0, T],
u = us on ∂Ωs × [0, T],
u = u0 in (Ω \ Ωs)× {t = 0},

Ω

Ωs(t) • us(t,x)

where u is the velocity field, p the pressure (divided by a constant
density ρ), ν the kinematic viscosity, f the density of body force.
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The body-fitted approach

The body-fitted approach is a conventional method for solving the
FSI problem. For example, using the semi-implicit discretization at
time t = tn+1, we solve in the fluid domain Ω \ Ωn+1

s the system

un+1 − un

∆t
− ν∇2un+1 + (un · ∇)un +∇pn+1 = f n+1 in Ω \ Ωn+1

s ,

∇ · un+1 = 0 in Ω \ Ωn+1
s ,

un+1 = un+1
b on ∂Ω,

un+1 = un+1
s on ∂Ωn+1

s ,

where ti := i∆t for i = 0, 1, · · · , ∆t > 0 is the time step length, and gn

denotes an approximate or exact value of g(tn) at the time level n.

It is highly inefficient in solving these equations directly when the solid body
Ωs has a complex geometry or moves in the fluid. Below, we will consider a
direct-forcing immersed boundary (IB) projection approach.
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Direct-forcing immersed boundary (IB) approach

We first consider the solid object as a portion of the fluid and then
introduce a virtual force F to the momentum equation, and we expect
the problem can be solved on the whole domain Ω and do not need
to set the interior boundary condition u = us on the interface ∂Ωs:

∂u
∂t

− ν∇2u + (u · ∇)u +∇p = f + F in Ω × (0, T],

∇ · u = 0 in Ω × (0, T],
u = ub on ∂Ω × [0, T],
u = u0 in Ω × {t = 0}.

Note that the virtual force F is distributed only in the whole solid
object region Ωs(t), making the region acts exactly as if it were a solid
rigid body immersed in the fluid with a prescribed velocity us(t, x).

But, at this moment, we do not know how to specify the virtual force F
such that the region fulfills the prescribed velocity us(t, x).
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Time-discretization of the incompressible N-S equations

Let us first discretize the time variable of the Navier-Stokes problem,
with the spatial variable being left continuous. Consider the implicit
Euler time-discretization with an explicit first-order approximation to
the nonlinear convection. Then we have the BVP at time t = tn+1:

un+1 − un

∆t
− ν∇2un+1 + (un · ∇)un +∇pn+1 = f n+1 + Fn+1 in Ω,

∇ · un+1 = 0 in Ω,
un+1 = un+1

b on ∂Ω.

It is highly inefficient in solving this BVP directly, even if Fn+1 is
already known. This is the reason for proposing the projection
approach to decouple the computation of (un+1, pn+1).

Next, we will consider a direct-forcing IB approach based on the
first-order Chorin projection scheme. The virtual force Fn+1 will be
specified in the scheme when we decouple the time-discretized problem.
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Flow past a swimming fish-like solid body
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Sedimentation of multiple particles
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