Numerical Methods for Variational Image Processing

Suh－Yuh Yang（楊肅暟）

Department of Mathematics，National Central University Jhongli District，Taoyuan City 320317，Taiwan

First version：November 13，2022／Last updated：April 22， 2024

Outline

In these two lectures，I will briefly introduce
（1）Variational method for image denoising
－The Rudin－Osher－Fatemi total－variation model
－Calculus of variations and the Euler－Lagrange equation
－Implementation：a finite difference method
（2）Variational method for image segmentation
－The Mumford－Shah model and the Chan－Vese model
－Implementation：the level set method + a finite difference method

What are these topics doing？

（1）Variational image denoising

（2）Variational image segmentation

Lecture 1：Variational method for image denoising

The content of this lecture is mainly based on
－P．Getreuer，Rudin－Osher－Fatemi total variation denoising using split Bregman，Image Processing On Line， 2 （2012），pp．74－95．
－L．I．Rudin，S．Osher，and E．Fatemi，Nonlinear total variation based noise removal algorithms，Physica D， 60 （1992），pp． 259－268．

Total variation（TV）

Let $\Omega:=(a, b) \subset \mathbb{R}$ be an open bounded interval．Let $\mathcal{P}_{n}=\left\{x_{0}, x_{1}\right.$ ， $\left.\cdots, x_{n}\right\}$ ，with $x_{0}=a$ and $x_{n}=b$ ，be an arbitrary partition of $\bar{\Omega}=[a, b]$ and $\Delta x_{i}=x_{i}-x_{i-1}$ ，for $i=1,2, \cdots, n$ ．The total variation of a real－valued function $u: \bar{\Omega} \rightarrow \mathbb{R}$ is defined as the quantity，

$$
\|u\|_{T V(\Omega)}:=\sup _{\mathcal{P}_{n}} \sum_{i=1}^{n}\left|u\left(x_{i}\right)-u\left(x_{i-1}\right)\right| .
$$

If $\|u\|_{T V(\Omega)}<\infty$ ，then we say u is a function of bounded variation．

Remarks：

－If u is a smooth function，then we have

$$
\|u\|_{T V(\Omega)}=\sup _{\mathcal{P}_{n}} \sum_{i=1}^{n}\left|\frac{u\left(x_{i}\right)-u\left(x_{i-1}\right)}{\Delta x_{i}}\right| \Delta x_{i}=\int_{\Omega}\left|u^{\prime}(x)\right| d x .
$$

－$\|u\|_{T V(\Omega)}=0$ does not imply $u \equiv 0$ ；any constant function u has $\|u\|_{T V(\Omega)}=0 \Longrightarrow\|u\|_{T V(\Omega)}$ is not a norm on any vector space．

Examples of bounded variation functions

All these three functions f, g and h have total variation 2

Denoising

Total variation of $u=\|u\|_{T V(\Omega)}=\int_{\Omega}\left|u^{\prime}(x)\right| d x$ if u is smooth．
Denoising is the problem of removing noise from an image． minimizes $\left(\int_{\Omega}\left|u^{\prime}(x)\right| d x+\right.$ some data fidelity term $) \Longrightarrow$ denoising！

A noisy signal and its denoising result

The ROF total－variation model

Let $f: \bar{\Omega} \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a given noisy image．Rudin，Osher，and Fatemi（Physica D，1992）proposed the model for image denoising：

where $\lambda>0$ is a tuning parameter which controls the regularization strength．Notice that
－A smaller value of λ will lead to a more regular solution．
－The space of functions with bounded variation help remove spurious oscillations（noise）and preserve sharp signals（edges）．
－The TV term allows the solution to have discontinuities．

The bounded variation space $B V(\Omega)$

Let Ω be an open subset of \mathbb{R}^{2} ．The space of functions of bounded variation $B V(\Omega)$ is defined as the space of real－valued function $u \in L^{1}(\Omega)$ such that the total variation is finite，i．e．，

$$
B V(\Omega)=\left\{u \in L^{1}(\Omega):\|u\|_{T V(\Omega)}<\infty\right\}
$$

where
－$\|u\|_{T V(\Omega)}=\sup \left\{\int_{\Omega} u \nabla \cdot \varphi d x: \varphi \in C_{c}^{1}\left(\Omega, \mathbb{R}^{2}\right),\|\varphi\|_{\left(L^{\infty}(\Omega)\right)^{2}} \leq 1\right\}$
－$C_{c}^{1}\left(\Omega, \mathbb{R}^{2}\right)$ is the space of continuously differentiable vector functions with compact support in Ω ．
－$L^{1}(\Omega)$ and $L^{\infty}(\Omega)$ are the usual $L^{p}(\Omega)$ space for $p=1$ and $p=\infty$ ，respectively，equipped with the $\|\cdot\|_{L^{p}(\Omega)}$ norm．
－Then $B V(\Omega)$ is a Banach space with the norm，

$$
\|u\|_{B V(\Omega)}:=\|u\|_{L^{1}(\Omega)}+\|u\|_{T V(\Omega)} .
$$

The existence，uniqueness and stability of solution

Theorem：Consider the ROF total－variation model．Then we have
（1）If u is smooth，then $\|u\|_{T V(\Omega)}=\int_{\Omega}|\nabla u| d x$ ．
（2）If $f \in L^{2}(\Omega)$ ，then the minimizer exists and is unique and is stable in L^{2} with respect to perturbations in f ．

ROF model for image denoising：Below we assume that u is smooth， and we consider the model

$$
\min _{u \in \mathcal{V}}\left(\int_{\Omega}|\nabla u| d x+\frac{\lambda}{2} \int_{\Omega}(u(x)-f(x))^{2} d x\right) .
$$

Let $E[\cdot]$ be the energy functional over the vector space \mathcal{V} ，

$$
E[u]:=\int_{\Omega}|\nabla u| d x+\frac{\lambda}{2} \int_{\Omega}(u(x)-f(x))^{2} d x .
$$

Calculus of variations

Let $\Omega \subset \mathbb{R}^{2}$ be an open bounded domain．We consider the following real－valued energy functional，

$$
E[v]:=\int_{\Omega} L\left(x, y, v(x, y), v_{x}(x, y), v_{y}(x, y)\right) d x,
$$

where we assume that $v \in C^{2}(\bar{\Omega})$ and $L \in C^{2}$ with respect to its arguments $\boldsymbol{x}=(x, y), v, v_{x}$ and v_{y} ．
－If $E[v]$ attains a local minimum（or maximum）at u and $\eta(x, y)$ is a smooth function on $\bar{\Omega}$ ，then for ε close to 0 ，we have

$$
E[u] \leq E[u+\varepsilon \eta] . \quad(\text { or } E[u] \geq E[u+\varepsilon \eta])
$$

－Define $\Phi(\varepsilon):=E[u+\varepsilon \eta]$ in the variable ε ．Then we have

$$
\Phi^{\prime}(0)=\left.\frac{d \Phi}{d \varepsilon}\right|_{\varepsilon=0}=\left.\int_{\Omega} \frac{d L}{d \varepsilon}\right|_{\varepsilon=0} d x=0 . \quad \text { (just a necessary condition) }
$$

The total derivative of L

Taking the total derivative of $L\left(x, y, v, v_{x}, v_{y}\right)$ ，where $v=u+\varepsilon \eta$ $v_{x}=u_{x}+\varepsilon \eta_{x}$ and $v_{y}=u_{y}+\varepsilon \eta_{y}$ ，we have

$$
\frac{d L}{d \varepsilon}=\frac{\partial L}{\partial v} \eta+\frac{\partial L}{\partial v_{x}} \eta_{x}+\frac{\partial L}{\partial v_{y}} \eta_{y}=\frac{\partial L}{\partial v} \eta+\left(\frac{\partial L}{\partial v_{x}}, \frac{\partial L}{\partial v_{y}}\right)^{\top} \cdot \nabla \eta
$$

By the integration by parts，we obtain

$$
\begin{aligned}
0 & =\left.\int_{\Omega} \frac{d L}{d \varepsilon}\right|_{\varepsilon=0} d x=\int_{\Omega} \frac{\partial L}{\partial u} \eta+\left(\frac{\partial L}{\partial u_{x}}, \frac{\partial L}{\partial u_{y}}\right)^{\top} \cdot \nabla \eta d x \quad \swarrow(*) \\
& =\int_{\Omega} \frac{\partial L}{\partial u} \eta d x+\int_{\partial \Omega}\left(\left(\frac{\partial L}{\partial u_{x}}, \frac{\partial L}{\partial u_{y}}\right)^{\top} \cdot \boldsymbol{n}\right) \eta d \sigma-\int_{\Omega}\left(\nabla \cdot\left(\frac{\partial L}{\partial u_{x}}, \frac{\partial L}{\partial u_{y}}\right)^{\top}\right) \eta d x,
\end{aligned}
$$

where $L\left(x, y, v, v_{x}, v_{y}\right)=L\left(x, y, u, u_{x}, u_{y}\right)$ when $\varepsilon=0$ ．Taking arbitrary smooth functions η^{\prime}＇s with $\eta(x)=0$ on $\partial \Omega$ ，we have

$$
\int_{\Omega} \eta\left(\frac{\partial L}{\partial u}-\nabla \cdot\left(\frac{\partial L}{\partial u_{x}}, \frac{\partial L}{\partial u_{y}}\right)^{\top}\right) d x=0 .
$$

The Euler－Lagrange equation

－According to the fundamental lemma of calculus of variations，we have the Euler－Lagrange equation，

$$
\frac{\partial L}{\partial u}-\nabla \cdot\left(\frac{\partial L}{\partial u_{x}}, \frac{\partial L}{\partial u_{y}}\right)^{\top}=0 \quad \text { in } \Omega, \quad \leftarrow(\star \star)
$$

and

$$
\frac{\delta E}{\delta u}:=\frac{\partial L}{\partial u}-\nabla \cdot\left(\frac{\partial L}{\partial u_{x}}, \frac{\partial L}{\partial u_{y}}\right)^{\top}
$$

is called the functional derivative of $E[u]$ ．
－By substituting $(* *)$ into (\star) ，we have

$$
\int_{\partial \Omega} \eta\left(\frac{\partial L}{\partial u_{x}} n_{1}+\frac{\partial L}{\partial u_{y}} n_{2}\right) d \sigma=0,
$$

for any smooth function η on $\bar{\Omega}$ ，which implies the homogeneous Neumann boundary condition，

$$
\frac{\partial L}{\partial u_{x}} n_{1}+\frac{\partial L}{\partial u_{y}} n_{2}=0 \quad \text { on } \partial \Omega .
$$

Euler－Lagrange equation of the ROF model

Consider the energy minimization problem（ROF model）：

$$
\min _{u \in \mathcal{V}}\left(\int_{\Omega}|\nabla u| d x+\frac{\lambda}{2} \int_{\Omega}(u(x)-f(x))^{2} d x\right),
$$

where \mathcal{V} is a suitable space and $\lambda>0$ is the regularization parameter． Since $\int_{\Omega}|\nabla u| d x=\int_{\Omega} \sqrt{u_{x}^{2}+u_{y}^{2}} d x$ ，we have

$$
L\left(x, y, u, u_{x}, u_{y}\right)=\sqrt{u_{x}^{2}+u_{y}^{2}}+\frac{\lambda}{2}(u-f)^{2}
$$

which leads to the Euler－Lagrange equation with the Neumann BC，

$$
-\nabla \cdot\left(\frac{\nabla u}{|\nabla u|}\right)+\lambda u=\lambda f \quad \text { in } \Omega, \quad \frac{\partial u}{\partial n}=0 \quad \text { on } \partial \Omega .
$$

The homogeneous Neumann boundary condition comes from
$0=\frac{\partial L}{\partial u_{x}} n_{1}+\frac{\partial L}{\partial u_{y}} n_{2}=\left(\frac{\partial L}{\partial u_{x}}, \frac{\partial L}{\partial u_{y}}\right) \cdot n=\left(\frac{\nabla u}{|\nabla u|}\right) \cdot n=\frac{1}{|\nabla u|} \frac{\partial u}{\partial n} \quad$ on $\partial \Omega$ ．
If $|\nabla u|=0 \Rightarrow \nabla u=\mathbf{0} \Rightarrow \frac{\partial u}{\partial n}=0$ ．Otherwise，we still have $\frac{\partial u}{\partial n}=0$ ．

Nonlinear PDE－based denoising algorithm

The boundary value problem of the ROF model is given by

$$
\begin{aligned}
-\nabla \cdot\left(\frac{\nabla u}{|\nabla u|}\right)+\lambda u & =\lambda f \text { in } \Omega \\
\frac{\partial u}{\partial n} & =0 \quad \text { on } \partial \Omega
\end{aligned}
$$

Therefore，the minimizer can be obtained numerically by evolving a finite difference approximation of the parabolic partial differential equation with the homogeneous Neumann boundary condition：

Heat－type equation

$$
\begin{aligned}
& \frac{\partial u}{\partial t}-\nabla \cdot\left(\frac{\nabla u}{|\nabla u|}\right)+\lambda u=\lambda f \quad \text { for }(t, x) \in(0, T) \times \Omega \\
& u(0, x)=f(x) \text { for } x \in \bar{\Omega}, \quad \quad \text { (initial condition) } \\
& \nabla u \cdot n=0 \quad \text { for } t \in[0, T] \text { and } x \in \partial \Omega . \quad \text { (boundary condition) }
\end{aligned}
$$

Numerical differentiation：1－D

Let $v:[a, b] \rightarrow \mathbb{R}$ and let $a=x_{0}<x_{1}<\cdots<x_{N}=b$ be a uniform partition of $[a, b]$ with grid size $h=(b-a) / N>0$ ．
－Forward difference for $v^{\prime}\left(x_{i}\right):$ Assume that $v \in C^{2}[a, b]$ ．Then for $i=1,2, \cdots, N-1$ ，by Taylor＇s theorem，we have $v\left(x_{i}+h\right)=v\left(x_{i}\right)+v^{\prime}\left(x_{i}\right) h+\frac{1}{2} v^{\prime \prime}\left(\xi_{i}\right) h^{2}$ for some $\xi_{i} \in\left(x_{i}, x_{i}+h\right)$.
$\therefore v^{\prime}\left(x_{i}\right)=\frac{1}{h}\left(v\left(x_{i}+h\right)-v\left(x_{i}\right)\right)-\frac{1}{2} v^{\prime \prime}\left(\xi_{i}\right) h$
$\therefore v^{\prime}\left(x_{i}\right) \approx \frac{1}{h}\left(v\left(x_{i+1}\right)-v\left(x_{i}\right)\right)$ ，it is a first－order approximation！
－Backward difference for $v^{\prime}\left(x_{i}\right):$ Assume that $v \in C^{2}[a, b]$ ．Then for $i=1,2, \cdots, N-1$ ，by Taylor＇s theorem，we have $v\left(x_{i}-h\right)=v\left(x_{i}\right)-v^{\prime}\left(x_{i}\right) h+\frac{1}{2} v^{\prime \prime}\left(\xi_{i}\right) h^{2}$ for some $\xi_{i} \in\left(x_{i}-h, x_{i}\right)$ ．
$\therefore v^{\prime}\left(x_{i}\right)=\frac{1}{h}\left(v\left(x_{i}\right)-v\left(x_{i}-h\right)\right)+\frac{1}{2} v^{\prime \prime}\left(\xi_{i}\right) h$
$\therefore v^{\prime}\left(x_{i}\right) \approx \frac{1}{h}\left(v\left(x_{i}\right)-v\left(x_{i-1}\right)\right)$ ，it is a first－order approximation！

Numerical differentiation（cont＇d）

－Central difference for $v^{\prime}\left(x_{i}\right):$ Assume that $v \in C^{3}[a, b]$ ．Then for $i=1,2, \cdots, N-1$ ，by Taylor＇s theorem，we have
$v\left(x_{i}+h\right)=v\left(x_{i}\right)+v^{\prime}\left(x_{i}\right) h+\frac{1}{2} v^{\prime \prime}\left(x_{i}\right) h^{2}+\frac{1}{6} v^{(3)}\left(\xi_{i 1}\right) h^{3}$,
$v\left(x_{i}-h\right)=v\left(x_{i}\right)-v^{\prime}\left(x_{i}\right) h+\frac{1}{2} v^{\prime \prime}\left(x_{i}\right) h^{2}-\frac{1}{6} v^{(3)}\left(\xi_{i 2}\right) h^{3}$,
for some $\xi_{i 1} \in\left(x_{i}, x_{i}+h\right)$ and $\xi_{i 2} \in\left(x_{i}-h, x_{i}\right)$ ．Subtracting the second equation from the first equation，we have

$$
\begin{aligned}
& v\left(x_{i}+h\right)-v\left(x_{i}-h\right)=2 v^{\prime}\left(x_{i}\right) h+\frac{1}{6} h^{3}\left(v^{(3)}\left(\xi_{i 1}\right)+v^{(3)}\left(\xi_{i 2}\right)\right) . \\
& \therefore v^{\prime}\left(x_{i}\right)=\frac{1}{2 h}\left(v\left(x_{i}+h\right)-v\left(x_{i}-h\right)\right)-\frac{1}{6} h^{2} \frac{1}{2}\left(v^{(3)}\left(\xi_{i 1}\right)+v^{(3)}\left(\xi_{i 2}\right)\right) \\
& \because \frac{1}{2}\left(v^{(3)}\left(\xi_{i 1}\right)+v^{(3)}\left(\xi_{i 2}\right)\right) \text { is between } v^{(3)}\left(\xi_{i 1}\right) \& v^{(3)}\left(\xi_{i 2}\right)
\end{aligned}
$$

\therefore By the intermediate value theorem，$\exists \xi_{i} \in\left(x_{i}-h, x_{i}+h\right)$ s．t．

$$
\begin{aligned}
& v^{(3)}\left(\xi_{i}\right)=\frac{1}{2}\left(v^{(3)}\left(\xi_{i 1}\right)+v^{(3)}\left(\xi_{i 2}\right)\right) \\
\therefore & v^{\prime}\left(x_{i}\right)=\frac{1}{2 h}\left(v\left(x_{i}+h\right)-v\left(x_{i}-h\right)\right)-\frac{1}{6} h^{2} v^{(3)}\left(\xi_{i}\right) \\
\therefore & v^{\prime}\left(x_{i}\right) \approx \frac{1}{2 h}\left(v\left(x_{i+1}\right)-v\left(x_{i-1}\right)\right), \text { 2nd-order approximation! }
\end{aligned}
$$

Numerical differentiation（cont＇d）

－Central difference for $v^{\prime \prime}\left(x_{i}\right):$ Assume that $v \in C^{4}[a, b]$ ．Then for $i=1,2, \cdots, N-1$ ，by Taylor＇s theorem，we have
$v\left(x_{i}+h\right)=v\left(x_{i}\right)+v^{\prime}\left(x_{i}\right) h+\frac{1}{2} v^{\prime \prime}\left(x_{i}\right) h^{2}+\frac{1}{6} v^{(3)}\left(x_{i}\right) h^{3}+\frac{1}{24} v^{(4)}\left(\xi_{i 1}\right) h^{4}$, $v\left(x_{i}-h\right)=v\left(x_{i}\right)-v^{\prime}\left(x_{i}\right) h+\frac{1}{2} v^{\prime \prime}\left(x_{i}\right) h^{2}-\frac{1}{6} v^{(3)}\left(x_{i}\right) h^{3}+\frac{1}{24} v^{(4)}\left(\xi_{i 2}\right) h^{4}$ ， for some $\xi_{i 1} \in\left(x_{i}, x_{i}+h\right)$ and $\xi_{i 2} \in\left(x_{i}-h, x_{i}\right)$ ．Therefore，we have $v\left(x_{i}+h\right)+v\left(x_{i}-h\right)=2 v\left(x_{i}\right)+v^{\prime \prime}\left(x_{i}\right) h^{2}+\frac{1}{24}\left\{v^{(4)}\left(\xi_{i 1}\right)+v^{(4)}\left(\xi_{i 2}\right)\right\} h^{4}$.
\therefore
$\therefore \ddot{v}^{\prime \prime}\left(x_{i}\right)=\frac{1}{h^{2}}\left\{v\left(x_{i}+h\right)-2 v\left(x_{i}\right)+v\left(x_{i}-h\right)\right\}-\frac{h^{2}}{24}\left\{v^{(4)}\left(\xi_{i 1}\right)+v^{(4)}\left(\xi_{i 2}\right)\right\}$
$\because v \in C^{4}[a, b], \frac{1}{2}\left\{v^{(4)}\left(\xi_{i 1}\right)+v^{(4)}\left(\xi_{i 2}\right)\right\}$ between $v^{(4)}\left(\xi_{i 1}\right) \& v^{(4)}\left(\xi_{i 2}\right)$
\therefore By IVT，$\exists \xi_{i}$ between $\xi_{i 1}$ and $\xi_{i 2}\left(\Rightarrow \xi_{i} \in\left(x_{i}-h, x_{i}+h\right)\right)$ such that

$$
\begin{aligned}
& v^{(4)}\left(\xi_{i}\right)=\frac{1}{2}\left\{v^{(4)}\left(\xi_{i 1}\right)+v^{(4)}\left(\xi_{i 2}\right)\right\} \\
\therefore & v^{\prime \prime}\left(x_{i}\right)=\frac{1}{h^{2}}\left\{v\left(x_{i}+h\right)-2 v\left(x_{i}\right)+v\left(x_{i}-h\right)\right\}-\frac{1}{12} h^{2} v^{(4)}\left(\xi_{i}\right) \\
\therefore & v^{\prime \prime}\left(x_{i}\right) \approx \frac{1}{h^{2}}\left\{v\left(x_{i+1}\right)-2 v\left(x_{i}\right)+v\left(x_{i-1}\right)\right\}, \text { 2nd-order approximation! }
\end{aligned}
$$

Let $u_{i, j}^{n}$ denote an approximation to $u\left(t_{n}, x_{i}, y_{j}\right)$
－$\frac{\partial u}{\partial x}\left(t_{n}, x_{i}, y_{j}\right) \approx \nabla_{x}^{+} u_{i, j}^{n}:=\frac{u_{i+1, j}^{n}-u_{i, j}^{n}}{h}$（forward difference in x ）
－$\frac{\partial u}{\partial x}\left(t_{n}, x_{i}, y_{j}\right) \approx \nabla_{x}^{-} u_{i, j}^{n}:=\frac{u_{i, j}^{n}-u_{i-1, j}^{n}}{h}$（backward difference in x ）
－$\frac{\partial u}{\partial x}\left(t_{n}, x_{i}, y_{j}\right) \approx \nabla_{x} u_{i, j}^{n}:=\frac{u_{i+1, j}^{n}-u_{i-1, j}^{n}}{2 h}=\frac{1}{2}\left(\nabla_{x}^{+} u_{i, j}^{n}+\nabla_{x}^{-} u_{i, j}^{n}\right)$
（central difference in x ）
－$\frac{\partial u}{\partial y}\left(t_{n}, x_{i}, y_{j}\right) \approx \nabla_{y}^{+} u_{i, j}^{n}:=\frac{u_{i, j+1}^{n}-u_{i, j}^{n}}{h}$（forward difference in y ）
－$\frac{\partial u}{\partial y}\left(t_{n}, x_{i}, y_{j}\right) \approx \nabla_{y}^{-} u_{i, j}^{n}:=\frac{u_{i, j}^{n}-u_{i, j-1}^{n}}{h}$（backward difference in y ）
－$\frac{\partial u}{\partial y}\left(t_{n}, x_{i}, y_{j}\right) \approx \nabla_{y} u_{i, j}^{n}:=\frac{u_{i, j+1}^{n}-u_{i, j-1}^{n}}{2 h}=\frac{1}{2}\left(\nabla_{y}^{+} u_{i, j}^{n}+\nabla_{y}^{-} u_{i, j}^{n}\right)$ （central difference in y ）

Central differences for second derivative

－Central difference for second derivative in x ：

$$
\begin{aligned}
\nabla_{x}^{-}\left(\nabla_{x}^{+} u_{i, j}^{n}\right) & =\nabla_{x}^{-}\left(\frac{u_{i+1, j}^{n}-u_{i, j}^{n}}{h}\right)=\frac{1}{h}\left(\nabla_{x}^{-} u_{i+1, j}^{n}-\nabla_{x}^{-} u_{i, j}^{n}\right) \\
& =\frac{1}{h}\left(\frac{u_{i+1, j}^{n}-u_{i, j}^{n}}{h}-\frac{u_{i, j}^{n}-u_{i-1, j}^{n}}{h}\right) \\
& =\frac{1}{h^{2}}\left(u_{i+1, j}^{n}-2 u_{i, j}^{n}+u_{i-1, j}^{n}\right) \approx \frac{\partial^{2} u}{\partial x^{2}}\left(t_{n}, x_{i}, y_{j}\right) .
\end{aligned}
$$

－Central difference for second derivative in y ：

$$
\nabla_{y}^{-}\left(\nabla_{y}^{+} u_{i, j}^{n}\right)=\frac{1}{h^{2}}\left(u_{i, j+1}^{n}-2 u_{i, j}^{n}+u_{i, j-1}^{n}\right) \approx \frac{\partial^{2} u}{\partial y^{2}}\left(t_{n}, x_{i}, y_{j}\right) .
$$

－$\nabla_{x}^{+}\left(\nabla_{x}^{-} u_{i, j}^{n}\right)=\nabla_{x}^{-}\left(\nabla_{x}^{+} u_{i, j}^{n}\right)$ ，will also be denoted as $\nabla_{x}^{2} u_{i, j}^{n}$ ． $\nabla_{y}^{+}\left(\nabla_{y}^{-} u_{i, j}^{n}\right)=\nabla_{y}^{-}\left(\nabla_{y}^{+} u_{i, j}^{n}\right)$ ，will also be denoted as $\nabla_{y}^{2} u_{i, j}^{n}$ ．

Forward Euler in time t

We will consider a finite difference scheme for approximating the solution of the IBVP for the Euler－Lagrange equation：

$$
\begin{aligned}
& \frac{\partial u}{\partial t}-\nabla \cdot\left(\frac{\nabla u}{|\nabla u|}\right)+\lambda u=\lambda f \quad \text { for }(t, x) \in(0, T) \times \Omega, \\
& u(0, x)=f(x) \text { for } x \in \bar{\Omega}, \\
& \nabla u \cdot n=0 \quad \text { for } t \in[0, T] \text { and } x \in \partial \Omega .
\end{aligned}
$$

Suppose that the image domain is given by $\bar{\Omega}=[0,1] \times[0,1]$ ．Let $x_{i}=$ ih and $y_{j}=j h, i, j=0,1, \cdots, N$ ，with $h=1 / N$ ，and $t_{n}=n \Delta t$ ．Let $f_{i, j}:=f\left(x_{i}, y_{j}\right)$ and $u_{i, j}^{n}$ be the difference approximation to $u\left(t_{n}, x_{i}, y_{j}\right)$ ．

Forward Euler in time t ：

$$
\begin{aligned}
\frac{\partial u}{\partial t}\left(t_{n}, x_{i}, y_{j}\right) & =\frac{1}{\Delta t}\left(u\left(t_{n+1}, x_{i}, y_{j}\right)-u\left(t_{n}, x_{i}, y_{j}\right)\right)-\frac{1}{2} \frac{\partial^{2} u}{\partial t^{2}}\left(\tau_{i}, x_{i}, y_{j}\right) \Delta t \\
& \approx \frac{1}{\Delta t}\left(u_{i, j}^{n+1}-u_{i, j}^{n}\right) .
\end{aligned}
$$

The forward Euler finite difference scheme

The proposed explicit finite difference scheme is given by：

$$
\begin{aligned}
& \frac{u_{i, j}^{n+1}-u_{i, j}^{n}}{\Delta t}=\lambda\left(f_{i, j}-u_{i, j}^{n}\right)+\nabla_{x}^{-}\left(\frac{\nabla_{x}^{+} u_{i, j}^{n}}{\sqrt{\left(\nabla_{x}^{+} u_{i, j}^{n}\right)^{2}+\left(m\left(\nabla_{y}^{+} u_{i, j^{\prime}}^{n} \nabla_{y}^{-} u_{i, j}^{n}\right)\right)^{2}}}\right) \\
& +\nabla_{y}^{-}\left(\frac{\nabla_{y}^{+} u_{i, j}^{n}}{\sqrt{\left(\nabla_{y}^{+} u_{i, j}^{n}\right)^{2}+\left(m\left(\nabla_{x}^{+} u_{i, j^{\prime}}^{n} \nabla_{x}^{-} u_{i, j}^{n}\right)\right)^{2}}}\right), \quad 1 \leq i, j \leq N-1, \\
& u_{0, j}^{n}=u_{1, j^{\prime}}^{n} u_{N, j}^{n}=u_{N-1, j^{\prime}}^{n} u_{i, 0}^{n}=u_{i, 1}^{n} u_{i, N}^{n}=u_{i, N-1^{\prime},}^{n} \quad 0 \leq i, j \leq N .
\end{aligned}
$$

where $m(a, b)=\left(\frac{\operatorname{sign} a+\operatorname{sign} b}{2}\right) \min \{|a|,|b|\}$ is the minmod operator； see［ROF 1992］for more details．
－The forward Euler scheme is conditionally stable，we need $\Delta t / h^{2} \leq c$ ．
－Numerous other algorithms have been proposed to solve the TV denoising minimization problem，e．g．，the split Bregman iterations．

Rescaling the finite difference scheme

Let $\delta_{x}^{+} u_{i, j}^{n}:=u_{i+1, j}^{n}-u_{i, j}^{n} \quad \delta_{x}^{-} u_{i, j}^{n}:=u_{i, j}^{n}-u_{i-1, j^{\prime}}^{n} \quad \delta_{y}^{+} u_{i, j}^{n}:=u_{i, j+1}^{n}-u_{i, j}^{n}$ $\delta_{y}^{-} u_{i, j}^{n}:=u_{i, j}^{n}-u_{i, j-1}^{n}$ ．Then the proposed finite difference scheme can be rewritten as

$$
\begin{aligned}
& \frac{u_{i, j}^{n+1}-u_{i, j}^{n}}{\Delta t}=\lambda\left(f_{i, j}-u_{i, j}^{n}\right)+\frac{1}{h} \delta_{x}^{-}\left(\frac{\delta_{x}^{+} u_{i, j}^{n}}{\sqrt{\left(\delta_{x}^{+} u_{i, j}^{n}\right)^{2}+\left(m\left(\delta_{y}^{+} u_{i, j}^{n} \delta_{y}^{-} u_{i, j}^{n}\right)\right)^{2}}}\right) \\
& \quad+\frac{1}{h} \delta_{y}^{-}\left(\frac{\delta_{y}^{+} u_{i, j}^{n}}{\sqrt{\left(\delta_{y}^{+} u_{i, j}^{n}\right)^{2}+\left(m\left(\delta_{x}^{+} u_{i, j}^{n} \delta_{x}^{-} u_{i, j}^{n}\right)\right)^{2}}}\right), \quad 1 \leq i, j \leq N-1, \\
& u_{0, j}^{n}=u_{1, j}^{n} u_{N, j}^{n}=u_{N-1, j^{\prime}}^{n} u_{i, 0}^{n}=u_{i, 1}^{n}, u_{i, N}^{n}=u_{i, N-1}^{n}, \quad 0 \leq i, j \leq N . \\
& \text { Let } A_{i, j}^{n}:=\frac{\delta_{x}^{+} u_{i, j}^{n}}{\sqrt{\left(\delta_{x}^{+} u_{i, j}^{n}\right)^{2}+\left(m\left(\delta_{y}^{+} u_{i, j^{\prime}}^{n} \delta_{y}^{-} u_{i, j}^{n}\right)^{2}\right.}}, \\
& B_{i, j}^{n}:=\frac{\delta_{y}^{+} u_{i, j}^{n}}{\sqrt{\left(\delta_{y}^{+} u_{i, j}^{n}\right)^{2}+\left(m\left(\delta_{x}^{+} u_{i, j^{\prime}}^{n} \delta_{x}^{-} u_{i, j}^{n}\right)\right)^{2}}} .
\end{aligned}
$$

Rescaling the finite difference scheme（cont＇d）

Then we have

$$
\begin{aligned}
& \frac{u_{i, j}^{n+1}-u_{i, j}^{n}}{\Delta t}=\lambda\left(f_{i, j}-u_{i, j}^{n}\right)+\frac{1}{h} \delta_{x}^{-} A_{i, j}^{n}+\frac{1}{h} \delta_{y}^{-} B_{i, j}^{n} \quad 1 \leq i, j \leq N-1 \\
& u_{0, j}^{n}=u_{1, j}^{n}, u_{N, j}^{n}=u_{N-1, j^{\prime}}^{n} u_{i, 0}^{n}=u_{i, 1}^{n}, u_{i, N}^{n}=u_{i, N-1}^{n}, \quad 0 \leq i, j \leq N .
\end{aligned}
$$

Setting $\widetilde{\Delta t}=\frac{\Delta t}{h}$ and $\widetilde{\lambda}=h \lambda$ ，the first equation becomes

$$
\frac{u_{i, j}^{n+1}-u_{i, j}^{n}}{\widetilde{\Delta t}}=\tilde{\lambda}\left(f_{i, j}-u_{i, j}^{n}\right)+\delta_{x}^{-} A_{i, j}^{n}+\delta_{y}^{-} B_{i, j}^{n}, \quad 1 \leq i, j \leq N-1
$$

Rearranging the equation，we finally obtain

$$
u_{i, j}^{n+1}=u_{i, j}^{n}+\widetilde{\Delta t} \widetilde{\lambda}\left(f_{i, j}-u_{i, j}^{n}\right)+\widetilde{\Delta t} \delta_{x}^{-} A_{i, j}^{n}+\widetilde{\Delta t} \delta_{y}^{-} B_{i, j}^{n} \quad 1 \leq i, j \leq N-1 .
$$

A uniform partition of $\Omega=(0,1) \times(0,1)$

Let \bullet denote an arbitrary point (x, y) in $\bar{\Omega}$ ．
（1）In usual finite differences，the grid points $\left(x_{i}, y_{j}\right)$ locate at \bullet ．
（2）In image processing，however，a digital image is usually stored as a matrix．Thus，it is more convenient to use the＂cell－centered grids，＂i．e．，grid points $\left(x_{i}, y_{j}\right)$ located at \times with the coordinates

$$
x_{i}=\frac{h}{2}+(i-1) h, \quad y_{j}=\frac{h}{2}+(j-1) h, \quad i, j=(0), 1, \cdots N,(N+1) .
$$

And the homogeneous Neumann BC implies

$$
u_{0, j}^{n}=u_{1, j}^{n}, u_{N+1, j}^{n}=u_{N, j}^{n}, u_{i, 0}^{n}=u_{i, 1}^{n}, u_{i, N+1}^{n}=u_{i, N}^{n}, \quad 1 \leq i, j \leq N .
$$

ROF finite difference solutions at different steps

noisy（PSNR＝23．3241）

denoised $(P S N R=27.4343)$

denoised $(P S N R=29.0856)$

Gaussian noise（ $0,0.005$ ），$h=1 / 256, \widetilde{\lambda}=h \lambda=0.05$ ，

$$
\widetilde{\Delta t}=\Delta t / h=0.01, \text { at } 500,1000,1500,2000-\text { th steps }
$$

Three indices to measure the quality

Below are three indices to measure the quality of images and to evaluate the denoising performance．Let \widetilde{u} be the clean image， \bar{u} be the mean intensity of the clean image，and u be the produced image．

$$
\begin{array}{rll}
\operatorname{MSE}(\widetilde{u}, u) & :=\frac{1}{N^{2}} \sum_{i=1}^{N} \sum_{j=1}^{N}\left(\widetilde{u}_{i, j}-u_{i, j}\right)^{2} & \text { (mean squared error) } \\
\text { PSNR } & :=10 \log _{10}\left(\frac{255^{2}}{\operatorname{MSE}(\widetilde{u}, u)}\right) & \text { (peak signal to noise ratio) } \\
\text { SNR } & :=10 \log _{10}\left(\frac{M S E(\widetilde{u}, \bar{u})}{\operatorname{MSE(\widetilde {u},u)})}\right. & \text { (signal to noise ratio) }
\end{array}
$$

In general，the higher the value of PSNR the better the quality of the produced image．

There is another index，structural similarity（SSIM）．The maximum value of SSIM is 1 ．

ROF finite difference solutions of different λ^{\prime}＇s（cameraman）

denoised $($ PSNR＝28．7006）

denoised $($ PSNR＝29．2673）

denoised $($ PSNR＝29．3919）

denoised（PSNR＝29．4236）

Gaussian noise（ $0,0.005$ ），$h=1 / 256, \widetilde{\lambda}=h \lambda=1 / 10,1 / 20,1 / 30,1 / 40$ ，

$$
\widetilde{\Delta t}=\Delta t / h=0.01, \text { at } 1000-\text { th step }
$$

ROF finite difference solutions of different λ＇s（Einstein）

denoised $(P S N R=29.4614)$

denoised $(P S N R=30.5647)$

denoised $($ PSNR $=30.9154)$

denoised $(P S N R=31.0644)$

Gaussian noise $(0,0.005), h=1 / 340, \widetilde{\lambda}=h \lambda=1 / 10,1 / 20,1 / 30,1 / 40$ ，

$$
\widetilde{\Delta t}=\Delta t / h=0.01, \text { at 1000-th step }
$$

Discretization of the ROF model using cell－centered grids

Using the cell－centered grids of $\bar{\Omega}$ ，we approximate the total variation term by

$$
\|u\|_{T V(\Omega)} \approx h^{2} \sum_{i=1}^{N} \sum_{j=1}^{N}\left|\nabla_{h} u_{i, j}\right|
$$

Here we define the discrete gradient operator ∇_{h} by

$$
\nabla_{h} u_{i, j}:=\left(\nabla_{x} u_{i, j}, \nabla_{y} u_{i, j}\right)^{\top}
$$

and recall that

$$
\begin{aligned}
& \nabla_{x} u_{i, j}=\frac{u_{i+1, j}-u_{i-1, j}}{2 h}, \quad \nabla_{y} u_{i, j}=\frac{u_{i, j+1}-u_{i, j-1}}{2 h}, \quad 1 \leq i, j \leq N \\
& u_{0, j}=u_{1, j}, \quad u_{N+1, j}=u_{N, j}, \quad u_{i, 0}=u_{i, 1}, \quad u_{i, N+1}=u_{i, N}, \quad 1 \leq i, j \leq N
\end{aligned}
$$

The constrained minimization of the ROF model

Introducing the new unknown vector function d ，we have the constrained minimization problem：

$$
\min _{u, d}\left(\int_{\Omega}|d| d x+\frac{\lambda}{2} \int_{\Omega}(u(x)-f(x))^{2} d x\right) \quad \text { subject to } d=\nabla u .
$$

Therefore，the approximate constrained minimization of the ROF model can be posed as follows：

$$
\min _{u, d}\left(\sum_{i, j=1}^{N}\left|d_{i, j}\right|+\frac{\lambda}{2} \sum_{i, j=1}^{N}\left(f_{i, j}-u_{i, j}\right)^{2}\right) \quad \text { subject to } d_{i, j}=\nabla_{h} u_{i, j},
$$

where u and d denote all $u_{i, j}$ and $d_{i, j}$ ．Introducing a penalty parameter $\gamma>0$ ，we obtain the unconstrained minimization problem：

$$
\min _{u, d}\left(\sum_{i, j=1}^{N}\left|d_{i, j}\right|+\frac{\lambda}{2} \sum_{i, j=1}^{N}\left(f_{i, j}-u_{i, j}\right)^{2}+\frac{\gamma}{2} \sum_{i, j=1}^{N}\left|d_{i, j}-\nabla_{h} u_{i, j}-b_{i, j}\right|^{2}\right),
$$

where b（denotes all $b_{i, j}$ ）is an auxiliary variable，which can be expressed in terms of u and d ，related to the Bregman iterations，and $|\cdot|:=\|\cdot\|_{2}$ in \mathbb{R}^{2} ．

An alternating direction approach：split Bregman method

Goldstein and Osher（2009）proposed to solve the above－mentioned problem by an alternating direction approach：（see Getreuer 2012）
u－subproblem：With d and b fixed，we solve

$$
u^{k+1}=\underset{u}{\arg \min }\left(\frac{\lambda}{2} \sum_{i, j}\left(f_{i, j}-u_{i, j}\right)^{2}+\frac{\gamma}{2} \sum_{i, j}\left|d_{i, j}^{k}-\nabla_{h} u_{i, j}-b_{i, j}^{k}\right|^{2}\right),
$$

where the superscript k denotes the values evaluated at k－iteration．It can be viewed as the approximation of the minimization problem：

$$
\min _{u} \frac{\lambda}{2} \int_{\Omega}(f-u)^{2} d x+\frac{\gamma}{2} \int_{\Omega}\left|d^{k}-\nabla u-b^{k}\right|^{2} d x .
$$

The associated Euler－Lagrange equation of the above minimization problem（also called the screened Poisson equation）is given by

$$
\lambda u-\gamma \nabla \cdot \nabla u=\lambda f-\gamma \nabla \cdot\left(d^{k}-b^{k}\right)
$$

where ∇u is the gradient of $u, \nabla \cdot v$ is the divergence of vector function v ，and $\Delta u:=\nabla^{2} u:=\nabla \cdot \nabla u$ is the Laplacian of u ．

The discrete screened Poisson equation

The discrete screened Poisson equation is given by

$$
\lambda u_{i, j}-\gamma \nabla_{h}^{2} u_{i, j}=\lambda f_{i, j}-\gamma \nabla_{h} \cdot\left(d_{i, j}^{k}-b_{i, j}^{k}\right), \quad 1 \leq i, j \leq N,
$$

which should be supplemented with the BC ：
$u_{0, j}=u_{1, j}, u_{N+1, j}=u_{N, j}, u_{i, 0}=u_{i, 1}, u_{i, N+1}=u_{i, N}, \quad 1 \leq i, j \leq N$ ．
－The term $\Delta_{h} u_{i, j}:=\nabla_{h}^{2} u_{i, j}:=\nabla_{h}^{-} \cdot \nabla_{h}^{+} u_{i, j}$

$$
\begin{aligned}
\nabla_{h}^{-} \cdot \nabla_{h}^{+} u_{i, j} & =\left(\nabla_{x}^{-}, \nabla_{y}^{-}\right)^{\top} \cdot\left(\nabla_{x}^{+} u_{i, j}, \nabla_{y}^{+} u_{i, j}\right)^{\top} \\
& =\nabla_{x}^{-}\left(\nabla_{x}^{+} u_{i, j}\right)+\nabla_{y}^{-}\left(\nabla_{y}^{+} u_{i, j}\right) \\
& =\frac{1}{h^{2}}\left(\left(u_{i+1, j}-2 u_{i, j}+u_{i-1, j}\right)+\left(u_{i, j+1}-2 u_{i, j}+u_{i, j-1}\right)\right) \\
& =\frac{1}{h^{2}}\left(-4 u_{i, j}+u_{i-1, j}+u_{i+1, j}+u_{i, j-1}+u_{i, j+1}\right) .
\end{aligned}
$$

－Let $g_{i, j}^{k}=\left(g_{1, i, i,}^{k}, g_{2, i, j}^{k}\right)^{\top}:=d_{i, j}^{k}-b_{i, j}^{k}$ ．Then

$$
\nabla_{h} \cdot g_{i, j}^{k}=\nabla_{x} g_{1, i, j}^{k}+\nabla_{y} g_{2, i, j}^{k}=\frac{g_{1, i+1, j}^{k}-g_{1, i-1, j}^{k}}{2 h}+\frac{g_{2, i, j+1}^{k}-g_{2, i, j-1}^{k}}{2 h}
$$

The resulting linear system：$A u=r$

Finally，the resulting linear system $A u=r$ will be given by

$$
\begin{aligned}
& \left(\lambda+4 \frac{\gamma}{h^{2}}\right) u_{i, j}-\frac{\gamma}{h^{2}}\left(u_{i-1, j}+u_{i+1, j}+u_{i, j-1}+u_{i, j+1}\right) \\
& \quad=\lambda f_{i, j}-\frac{\gamma}{2 h}\left(g_{1, i+1, j}^{k}-g_{1, i-1, j}^{k}+g_{2, i, j+1}^{k}-g_{2, i, j-1}^{k}\right), 1 \leq i, j \leq N .
\end{aligned}
$$

－Since $\lambda>0$ and $\gamma>0, \boldsymbol{A} \boldsymbol{u}=r$ will be symmetric and diagonally dominant．It can be solved by many different methods such as the iterative techniques．
－For example，the Gauss－Seidel iterative method gives

$$
\left(\lambda+4 \frac{\gamma}{h^{2}}\right) u_{i, j}^{k+1}=c_{i, j}^{k}+\frac{\gamma}{h^{2}}\left(u_{i-1, j}^{k+1}+u_{i+1, j}^{k}+u_{i, j-1}^{k+1}+u_{i, j+1}^{k}\right), k \geq 0,
$$

where

$$
c_{i, j}^{k}:=\lambda f_{i, j}-\frac{\gamma}{2 h}\left(g_{1, i+1, j}^{k}-g_{1, i-1, j}^{k}+g_{2, i, j+1}^{k}-g_{2, i, j-1}^{k}\right) .
$$

d－subproblem

d－subproblem：With u fixed，we solve

$$
d^{k+1}=\underset{d}{\arg \min }\left(\sum_{i, j=1}^{N}\left|d_{i, j}\right|+\frac{\gamma}{2} \sum_{i, j=1}^{N}\left|d_{i, j}-\nabla_{h} u_{i, j}^{k+1}-b_{i, j}^{k}\right|^{2}\right),
$$

which has a closed－form solution，

$$
d_{i, j}^{k+1}=\frac{\nabla_{h} u_{i, j}^{k+1}+b_{i, j}^{k}}{\left|\nabla_{h} u_{i, j}^{k+1}+b_{i, j}^{k}\right|} \max \left\{\left|\nabla_{h} u_{i, j}^{k+1}+b_{i, j}^{k}\right|-\frac{1}{\gamma}, 0\right\}, \quad 1 \leq i, j \leq N .
$$

How to find the closed－form solution？
The solution of d－subproblem can be found componentwisely．For each (i, j) ，we consider the following minimization problem：

$$
\min _{x=\left(x_{1}, x_{2}\right)^{\top} \in \mathbb{R}^{2}}\left\{|x|+\frac{\gamma}{2}|x-y|^{2}\right\},
$$

where $\gamma>0$ and $\boldsymbol{y}=\left(y_{1}, y_{2}\right)^{\top} \in \mathbb{R}^{2}$ are given．
Note that $|\cdot|:=\|\cdot\|_{2}$ in \mathbb{R}^{2} ．

Updating b and selecting γ

－Updating b ：The auxiliary variable b is initialized to zero and updated as

$$
b_{i, j}^{k+1}=b_{i, j}^{k}+\nabla_{h} u_{i, j}^{k+1}-d_{i, j}^{k+1}, \quad 1 \leq i, j \leq N .
$$

－Selecting γ ：A good choice of γ is one for which both u and d subproblems converge quickly and are numerically well－conditioned．
－In u subproblem，the effect of $\nabla \cdot \nabla$ and $\nabla \cdot$ increase when γ gets larger．It is also ill－conditioned in the limit $\gamma \rightarrow \infty$ ．
－In d subproblem，the shrinking effect is more dramatic when γ is small．
－γ should be neither extremely large nor small for good convergence．
In our simulations，we take $\gamma / h=5$ ．

Implementation details of split Bregman iterations

u－subproblem：We multiply the following identity with h ，

$$
\begin{aligned}
& \left(\lambda+4 \frac{\gamma}{h^{2}}\right) u_{i, j}-\frac{\gamma}{h^{2}}\left(u_{i-1, j}+u_{i+1, j}+u_{i, j-1}+u_{i, j+1}\right) \\
& \quad=\lambda f_{i, j}-\frac{\gamma}{2 h}\left(g_{1, i+1, j}^{k}-g_{1, i-1, j}^{k}+g_{2, i, j+1}^{k}-g_{2, i, j-1}^{k}\right), 1 \leq i, j \leq N .
\end{aligned}
$$

Then we have

$$
\begin{aligned}
(\lambda h & \left.+4 \frac{\gamma}{h}\right) u_{i, j}-\frac{\gamma}{h}\left(u_{i-1, j}+u_{i+1, j}+u_{i, j-1}+u_{i, j+1}\right) \\
& =\lambda h f_{i, j}-\frac{\gamma}{2 h}\left(h g_{1, i+1, j}^{k}-h g_{1, i-1, j}^{k}+h g_{2, i, j+1}^{k}-h g_{2, i, j-1}^{k}\right), 1 \leq i, j \leq N .
\end{aligned}
$$

Notice that $g_{i, j}^{k}=\left(g_{1, i, j}^{k}, g_{2, i, j}^{k}\right)^{\top}:=d_{i, j}^{k}-b_{i, j}^{k}$ ．Define $\widetilde{\lambda}=\lambda h, \widetilde{\gamma}=\frac{\gamma}{h}$ ， $\widetilde{g}_{i, j}^{k}=\left(\widetilde{g}_{1, i, j}^{k}, \widetilde{g}_{2, i, j}^{k}\right)^{\top}:=h d_{i, j}^{k}-h b_{i, j}^{k}:=\widetilde{d}_{i, j}^{k}-\widetilde{b}_{i, j}^{k}$ ．Then we have

$$
\begin{aligned}
(\widetilde{\lambda} & +4 \widetilde{\gamma}) u_{i, j}-\widetilde{\gamma}\left(u_{i-1, j}+u_{i+1, j}+u_{i, j-1}+u_{i, j+1}\right) \\
& =\widetilde{\lambda} f_{i, j}-\frac{\widetilde{\gamma}}{2}\left(\widetilde{g}_{1, i+1, j}^{k}-\widetilde{g}_{1, i-1, j}^{k}+\widetilde{g}_{2, i, j+1}^{k}-\widetilde{g}_{2, i, j-1}^{k}\right), 1 \leq i, j \leq N . \quad\left(\star_{1}\right)
\end{aligned}
$$

Implementation details of split Bregman iterations（cont＇d）

d－subproblem：If we define

$$
\widetilde{\nabla} u_{i, j}:=\left(\delta_{x} u_{i, j}, \delta_{y} u_{i, j}\right)^{\top}:=\left(\frac{u_{i+1, j}-u_{i-1, j}}{2}, \frac{u_{i, j+1}-u_{i, j-1}}{2}\right)^{\top},
$$

then since

$$
d_{i, j}^{k+1}=\frac{\nabla_{h} u_{i, j}^{k+1}+b_{i, j}^{k}}{\left|\nabla_{h} u_{i, j}^{k+1}+b_{i, j}^{k}\right|} \max \left\{\left|\nabla_{h} u_{i, j}^{k+1}+b_{i, j}^{k}\right|-\frac{1}{\gamma}, 0\right\}
$$

we have

$$
\begin{align*}
\widetilde{d}_{i, j}^{k+1} & =h d_{i, j}^{k+1}=\frac{h \nabla_{h} u_{i, j}^{k+1}+h b_{i, j}^{k}}{\left|h \nabla_{h} u_{i, j}^{k+1}+h b_{i, j}^{k}\right|} h \max \left\{\left|\nabla_{h} u_{i, j}^{k+1}+b_{i, j}^{k}\right|-\frac{1}{\gamma}, 0\right\} \\
& =\frac{\widetilde{\nabla} u_{i, j}^{k+1}+\widetilde{b}_{i, j}^{k}}{\left|\widetilde{\nabla} u_{i, j}^{k+1}+\widetilde{b}_{i, j}^{k}\right|} \max \left\{\left|\widetilde{\nabla} u_{i, j}^{k+1}+\widetilde{b}_{i, j}^{k}\right|-\frac{1}{\widetilde{\gamma}}, 0\right\} . \quad\left(\star_{2}\right) \tag{2}
\end{align*}
$$

Implementation details of split Bregman iterations（cont＇d）

Updating b ：First，we have

$$
b_{i, j}^{k+1}=b_{i, j}^{k}+\nabla_{h} u_{i, j}^{k+1}-d_{i, j}^{k+1} .
$$

By multiplying the identity with h ，we obtain

$$
h b_{i, j}^{k+1}=h b_{i, j}^{k}+h \nabla_{h} u_{i, j}^{k+1}-h d_{i, j}^{k+1} .
$$

In other words，

$$
\widetilde{b}_{i, j}^{k+1}=\widetilde{b}_{i, j}^{k}+\widetilde{\nabla}_{h} u_{i, j}^{k+1}-\widetilde{d}_{i, j}^{k+1} .
$$

A summary

To sum up，we have the following remarks：
－By change of variables，the split Bregman iterations can be reformulated as $\left(\star_{1}\right),\left(\star_{2}\right),\left(\star_{3}\right)$ ，where the grid size h can be absorbed by other variables！
－Most engineering－oriented papers usually take the spatial grid size $h=1$ in the finite differences．It is irrational from the approximation viewpoint because the error terms in Taylor＇s theorem may not be small if we take $h=1$ ．
－However，if the grid size h has been absorbed by other variables as discussed above，then it is reasonable for us to say that，in some sense，the grid size $h=1$ ．

Numerical experiments（Einstein）

denoised（PSNR＝30．907）

Gaussian noise $(0,0.005), h=1 / 340, \widetilde{\lambda}=h \lambda=0.1,0.05,0.025,0.01$ ，

$$
\widetilde{\gamma}=\gamma / h=0.1
$$

A smaller value of λ implies stronger denoising．When λ is very small，the image becomes cartoon－like with sharp jumps between nearly flat regions．

Numerical experiments（Cameraman）

denoised（PSNR＝27．9462）
denoised $($ PSNR＝25．4248）
denoised（PSNR＝22．2792）

Gaussian noise $(0,0.005), h=1 / 256, \widetilde{\lambda}=h \lambda=0.1,0.05,0.025,0.01$ ， $\widetilde{\gamma}=\gamma / h=0.1$

Numerical experiments（Lena）

noisy（PSNR＝23．0184）

denoised（PSNR＝30．8091）

Gaussian noise $(0,0.005), h=1 / 512, \widetilde{\lambda}=h \lambda=0.1,0.05,0.025,0.01$ ，

$$
\widetilde{\gamma}=\gamma / h=0.1
$$

Numerical experiments（square）

noisy（PSNR＝26．0402）

denoised（PSNR＝30．5713）

Gaussian noise $(0,0.005), h=1 / 256, \widetilde{\lambda}=h \lambda=0.1,0.05,0.025,0.01$ ，

$$
\widetilde{\gamma}=\gamma / h=0.1
$$

Lecture 2：Variational method for image segmentation

The content of this lecture is mainly based on
－T．F．Chan and L．A．Vese，An active contour model without edges，Lecture Notes in Computer Science， 1682 （1999），pp．141－151．
－T．F．Chan and L．A．Vese，Active contours without edges，IEEE Transactions on Image Processing， 10 （2001），pp．266－277．
－P．Getreuer，Chan－Vese segmentation，Image Processing On Line， 2 （2012），pp．214－224．

Image segmentation in medical imaging

Bias field model：$f=b I+n$ ，where n is the noise
In what follows，Ω denotes an open bounded subset in \mathbb{R}^{2} and $f: \bar{\Omega} \rightarrow \mathbb{R}$ denotes the given grayscale image to be segmented．

Mumford－Shah model（CPAM 1989）

Mumford－Shah model：it finds a piecewise smooth function u and a curve set \mathcal{C} ，which separates the image domain into disjoint regions， minimizing the energy functional：

$$
\min _{u, \mathcal{C}}\left(\mu|\mathcal{C}|+\lambda \int_{\Omega}(f(x)-u(x))^{2} d x+\int_{\Omega \backslash \mathcal{C}}|\nabla u(x)|^{2} d x\right)
$$

where $|\mathcal{C}|$ denotes the total length of the curves in \mathcal{C} ．
－The first term plays the regularization role，which ensures the target objects can tightly be wrapped by \mathcal{C} ．
－The second term is the data fidelity term，which forces u to be close to the input image f ．
－The third term is the smoothing term，which forces the target function u to be piecewise smooth within each of the regions separated by the curves in \mathcal{C} ．
－$\mu>0, \lambda>0$ are tuning parameters to modulate these three terms．

Simplified Mumford－Shah model

－The non－convexity of energy functional in the Mumford－Shah model makes the minimization problem difficult to analyze and the computational cost is much considerable．
－The piecewise smooth model suffers for its sensitivity to the initialization of \mathcal{C} ．
－Simplified Mumford－Shah model：it finds a piecewise constant function u and a curve set \mathcal{C} to minimize the energy functional：

$$
\min _{u, \mathcal{C}}\left(\mu|\mathcal{C}|+\int_{\Omega}(f(x)-u(x))^{2} d x\right) .
$$

Note that u is constant on each connected component of $\Omega \backslash \mathcal{C}$ ． The minimization problem is still non－convex．

Chan（陳繁昌）－Vese two－phase model

In 1999，Chan and Vese proposed a two－phase segmentation model based on the level set formulation（＂active contours without edges＂， LNCS 1999）：

$$
\min _{c_{1}, c_{2}, \mathcal{C}}\left(\mu|\mathcal{C}|+v\left|\Omega_{\mathrm{in}}\right|+\lambda_{1} \int_{\Omega_{\mathrm{in}}}\left(f(x)-c_{1}\right)^{2} d x+\lambda_{2} \int_{\Omega_{\mathrm{out}}}\left(f(x)-c_{2}\right)^{2} d x\right)
$$

where
－$\Omega_{\text {in }}$ denotes the region enclosed by the curves in \mathcal{C} with area $\left|\Omega_{\mathrm{in}}\right|$ ，and $\Omega_{\mathrm{out}}:=\Omega \backslash \Omega_{\mathrm{in}}$ ．
－$\mu>0, v \geq 0, \lambda_{1}>0$ ，and $\lambda_{2}>0$ are tuning parameters（actually， one of them can be fixed as 1 ）．
－Chan－Vese model finds a piecewise constant function u and a curve $\operatorname{set} \mathcal{C}$ to minimize the energy functional，where u has only two constant values，

$$
u(x)=\left\{\begin{array}{l}
c_{1}, x \text { is inside } \mathcal{C} \\
c_{2}, x \text { is outside } \mathcal{C}
\end{array}\right.
$$

Topological changes of \mathcal{C}

To solve the minimization problem of Chan－Vese model，we evolve \mathcal{C} and find c_{1}, c_{2} to minimize the energy functional．However，it is generally hard to handle topological changes of the curves in \mathcal{C} ．

（quoted from wikipedia）

Level set function

Therefore，we represent \mathcal{C} implicitly by the zero level contour of a level set function $\phi: \bar{\Omega} \rightarrow \mathbb{R}$ ，i．e．，

$$
\mathcal{C}=\{x \in \bar{\Omega}: \phi(x)=0\} .
$$

The zero level contour \mathcal{C} partitions the image domain into two disjoint regions Ω_{in} and Ω_{out} such that

$$
\phi(x) \geq 0 \text { for } x \in \Omega_{\mathrm{in}} \quad \text { and } \quad \phi(x)<0 \text { for } x \in \Omega_{\mathrm{out}} .
$$

For example，given $r>0$ ，we define a level set function

$$
\phi(x)=\phi(x, y)=r-\sqrt{x^{2}+y^{2}}
$$

whose zero level contour is the circle of radius $r>0$ ．

Chan－Vese model

－Let H denote the Heaviside function and δ the Dirac delta function．Then

$$
H(s)=\left\{\begin{array}{ll}
1 & s \geq 0, \\
0 & s<0,
\end{array} \quad \text { and } \quad \frac{d}{d s} H(s)=\delta(s) .\right.
$$

－In terms of H, δ ，and the level set function ϕ ，the Chan－Vese model has the form

$$
\begin{aligned}
\min _{c 1, c 2, \phi}(\mu & \int_{\Omega} \delta(\phi(x))|\nabla \phi(x)| d x+v \int_{\Omega} H(\phi(x)) d x \\
& +\lambda_{1} \int_{\Omega}\left(f(x)-c_{1}\right)^{2} H(\phi(x)) d x \\
& \left.+\lambda_{2} \int_{\Omega}\left(f(x)-c_{2}\right)^{2}(1-H(\phi(x))) d x\right) .
\end{aligned}
$$

Original formulation：

$$
\min _{c_{1}, c_{2}, \mathcal{C}}\left(\mu|\mathcal{C}|+v\left|\Omega_{\mathrm{in}}\right|+\lambda_{1} \int_{\Omega_{\mathrm{in}}}\left(f(x)-c_{1}\right)^{2}+\lambda_{2} \int_{\Omega_{\mathrm{out}}}\left(f(x)-c_{2}\right)^{2}\right)
$$

The regularized Heaviside and delta functions

The Heaviside function H and the Dirac delta function δ can be approximately regularized as follows：for a sufficiently small $\epsilon>0$ ，

$$
\begin{aligned}
H_{\epsilon}(t) & :=\frac{1}{2}\left(1+\frac{2}{\pi} \tan ^{-1}\left(\frac{t}{\epsilon}\right)\right) \\
\delta_{\epsilon}(t) & :=\frac{d}{d t} H_{\epsilon}(t)=\frac{\epsilon}{\pi\left(\epsilon^{2}+t^{2}\right)}, \\
\int_{-\infty}^{\infty} \delta_{\epsilon}(t) d t & =\int_{-\infty}^{\infty} \frac{\epsilon}{\pi\left(\epsilon^{2}+t^{2}\right)} d t=\cdots=1 .
\end{aligned}
$$

Total length of \mathcal{C}

The first term of the energy functional is the length of \mathcal{C} ，which can be expressed as the total variation of $H(\phi)$ and then informally

$$
|\mathcal{C}|=\int_{\Omega}|\nabla H(\phi(x))|=\int_{\Omega}\left|\frac{d H}{d \phi}(\phi(x))\right||\nabla \phi(x)|=\int_{\Omega} \delta(\phi(x))|\nabla \phi(x)| .
$$

A rough idea of the proof：

We partition Ω into very small subdomains，$\Omega=\cup_{i, j} \Omega_{i, j}$ ，and define $\mathcal{C}_{i, j}:=\mathcal{C} \cap \Omega_{i, j}$ ．Then $\mathcal{C}=\cup_{i, j} \mathcal{C}_{i, j}$ ．We consider the approximation $H_{\epsilon}(\phi)$ of $H(\phi)$ for $0<\epsilon \ll 1$ ．On $\Omega_{i, j}$ ，we have

$$
\begin{aligned}
\left|\mathcal{C}_{i, j}\right| & =\left|\mathcal{C}_{i, j}\right| \int_{-\infty}^{\infty} \delta_{\epsilon}(t) d t \approx \int_{\Omega_{i, j}} \delta_{\epsilon}(\phi(x))|\nabla \phi(x)|=\int_{\Omega_{i, j}}\left|\frac{d H_{\epsilon}}{d \phi}(\phi(x))\right||\nabla \phi(x)| \\
& =\int_{\Omega_{i, j}}\left|\nabla H_{\epsilon}(\phi(x))\right| .
\end{aligned}
$$

Taking summation over all i and j ，we have

$$
|\mathcal{C}|=\sum_{i, j}\left|\mathcal{C}_{i, j}\right| \approx \sum_{i, j} \int_{\Omega_{i, j}}\left|\nabla H_{\epsilon}(\phi(x))\right|=\int_{\Omega}\left|\nabla H_{\epsilon}(\phi(x))\right| \approx \int_{\Omega}|\nabla H(\phi(x))| .
$$

An alternating iterative scheme

The minimization is solved by an alternating iterative scheme，i．e．， alternatingly updating c_{1}, c_{2} and ϕ ．
（S1）Fixed ϕ ，the optimal values of c_{1} and c_{2} are the region averages，

$$
c_{1}=\frac{\int_{\Omega} f(x) H(\phi(x)) d x}{\int_{\Omega} H(\phi(x)) d x}, \quad c_{2}=\frac{\int_{\Omega} f(x)(1-H(\phi(x))) d x}{\int_{\Omega}(1-H(\phi(x))) d x} .
$$

（S2）Fixed c_{1}, c_{2} ，we solve the initial－boundary value problem（IBVP） to reach a steady－state：

$$
\begin{aligned}
& \frac{\partial \phi}{\partial t}=\delta_{\epsilon}(\phi)\left(\mu \nabla \cdot \frac{\nabla \phi}{|\nabla \phi|}-v-\lambda_{1}\left(f-c_{1}\right)^{2}+\lambda_{2}\left(f-c_{2}\right)^{2}\right), \\
& \quad \text { for } t>0, x \in \Omega, \\
& \phi(0, x)=\phi_{0}(x), x \in \Omega, \\
& \frac{\partial \phi}{\partial n}=0 \text { on } \partial \Omega, t \geq 0 .
\end{aligned}
$$

Euler－Lagrange equation

Fixed c_{1} and c_{2} ，the energy functional becomes

$$
E[\phi]=\int_{\Omega} F\left(x, y, \phi, \phi_{x}, \phi_{y}\right) d x
$$

where the integrand is given by

$$
\begin{aligned}
F\left(x, y, \phi, \phi_{x}, \phi_{y}\right)= & \mu \delta_{\epsilon}(\phi)|\nabla \phi|+v H_{\epsilon}(\phi)+\lambda_{1}\left(f-c_{1}\right)^{2} H_{\epsilon}(\phi) \\
& +\lambda_{2}\left(f-c_{2}\right)^{2}\left(1-H_{\epsilon}(\phi)\right) .
\end{aligned}
$$

By direct computations，we have

$$
\begin{aligned}
& \frac{\partial F}{\partial \phi}=\mu \delta_{\epsilon}^{\prime}(\phi)|\nabla \phi|+v \delta_{\epsilon}(\phi)+\lambda_{1}\left(f-c_{1}\right)^{2} \delta_{\epsilon}(\phi)-\lambda_{2}\left(f-c_{2}\right)^{2} \delta_{\epsilon}(\phi), \\
& \frac{\partial F}{\partial \phi_{x}}=\mu \delta_{\epsilon}(\phi) \frac{\phi_{x}}{|\nabla \phi|}, \quad \frac{\partial F}{\partial \phi_{y}}=\mu \delta_{\epsilon}(\phi) \frac{\phi_{y}}{|\nabla \phi|} .
\end{aligned}
$$

The Euler－Lagrange equation with the Neumann $B C$ are given by

$$
\frac{\partial F}{\partial \phi}-\nabla \cdot\left(\frac{\partial F}{\partial \phi_{x}}, \frac{\partial F}{\partial \phi_{y}}\right)^{\top}=0 \quad \text { in } \Omega, \quad\left(\frac{\partial F}{\partial \phi_{x}}, \frac{\partial F}{\partial \phi_{y}}\right)^{\top} \cdot \boldsymbol{n}=0 \quad \text { on } \partial \Omega .
$$

Neumann boundary condition

It leads to the equation

$$
\left.\frac{\partial \phi}{\partial t}=\delta_{\epsilon}(\phi)\left\{\mu \nabla \cdot\left(\frac{\nabla \phi}{|\nabla \phi|}\right)-v-\lambda_{1}\left(f-c_{1}\right)^{2}+\lambda_{2}\left(f-c_{2}\right)^{2}\right)\right\},
$$

which has to be supplemented with an initial condition，

$$
\phi(0, x)=\phi_{0}(x), \forall x \in \Omega,
$$

and the homogeneous Neumann boundary condition，

$$
0=\frac{\partial F}{\partial \phi_{x}} n_{1}+\frac{\partial F}{\partial \phi_{y}} n_{2}=\left(\frac{\partial F}{\partial \phi_{x}}, \frac{\partial F}{\partial \phi_{y}}\right)^{\top} \cdot \boldsymbol{n}=\delta_{\epsilon}(\phi) \frac{\nabla \phi}{|\nabla \phi|} \cdot \boldsymbol{n} .
$$

That is，the BC for $t \geq 0$ ，

$$
\frac{\delta_{\epsilon}(\phi)}{|\nabla \phi|} \frac{\partial \phi}{\partial n}=0 \quad \text { on } \partial \Omega \quad \Longrightarrow \quad \frac{\partial \phi}{\partial n}=0 \quad \text { on } \partial \Omega .
$$

Numerical implementation

－Assume that the image domain $\bar{\Omega}$ is the unit square $[0,1] \times[0,1]$ ．
－Let $\Omega_{D}:=\left\{\left(x_{i}, y_{j}\right) \mid i, j=0,1, \cdots, M\right\}$ be the set of grid points of a uniform partition of $\bar{\Omega}$ with size $h=1 / M$ ．
－Then $x_{i}=$ ih and $y_{j}=j h, i, j=0,1, \cdots, M$ ．Let $\phi_{i, j}(t)$ be the spatial difference approximation to $\phi\left(t, x_{i}, y_{j}\right)$ ．
－Let $t_{n}=n \Delta t, n \geq 0$ ，and $\Delta t>0$ be the time step，and let $\phi_{i, j}^{n}$ be the full difference approximation to $\phi\left(t_{n}, x_{i}, y_{j}\right)$ ．

Discrete differential operators and BC

－Define the discrete differential operators：for $1 \leq i, j \leq M-1$ ，

$$
\begin{aligned}
\nabla_{x}^{+} \phi_{i, j}= & \frac{\phi_{i+1, j}-\phi_{i, j}}{h},(\text { forward difference }) \\
\nabla_{x}^{-} \phi_{i, j}= & \frac{\phi_{i, j}-\phi_{i-1, j}}{h}, \text { (backward difference) } \\
\nabla_{y}^{+} \phi_{i, j}= & \frac{\phi_{i, j+1}-\phi_{i, j}}{h}, \text { (forward difference) } \\
\nabla_{y}^{-} \phi_{i, j}= & \frac{\phi_{i, j}-\phi_{i, j-1}}{h}, \text { (backward difference) } \\
\nabla_{x}^{0} \phi_{i, j}:= & \left(\frac{\nabla_{x}^{+}+\nabla_{x}^{-}}{2}\right) \phi_{i, j}, \quad \nabla_{y}^{0} \phi_{i, j}:=\left(\frac{\nabla_{y}^{+}+\nabla_{y}^{-}}{2}\right) \phi_{i, j} . \\
& \quad(\text { central differences })
\end{aligned}
$$

－Discretize the homogeneous Neumann BC：$\frac{\partial \phi}{\partial n}=0$ on $\partial \Omega$

$$
\phi_{0, j}=\phi_{1, j}, \quad \phi_{M, j}=\phi_{M-1, j}, \quad \phi_{i, 0}=\phi_{i, 1}, \quad \phi_{i, M}=\phi_{i, M-1} .
$$

Finite difference discretization：spatial variables

Performing the spatial discretization［Getreuer－2012］，we have

$$
\begin{array}{r}
\frac{\partial \phi_{i, j}}{\partial t}=\delta_{\epsilon}\left(\phi_{i, j}\right)\left\{\mu \left(\nabla_{x}^{-} \frac{\nabla_{x}^{+} \phi_{i, j}}{\sqrt{\eta^{2}+\left(\nabla_{x}^{+} \phi_{i, j}\right)^{2}+\left(\nabla_{y}^{0} \phi_{i, j}\right)^{2}}}\right.\right. \\
\left.+\nabla_{y}^{-} \frac{\nabla_{y}^{+} \phi_{i, j}}{\sqrt{\eta^{2}+\left(\nabla_{x}^{0} \phi_{i, j}\right)^{2}+\left(\nabla_{y}^{+} \phi_{i, j}\right)^{2}}}\right) \\
\left.-v-\lambda_{1}\left(f_{i, j}-c_{1}\right)^{2}+\lambda_{2}\left(f_{i, j}-c_{2}\right)^{2}\right\}
\end{array}
$$

where $i, j=1,2, \cdots, M-1$ ．
The purpose of small positive parameter η in the denominators prevents division by zero．

Spatial discretization

Define

$$
\begin{aligned}
A_{i, j} & =\frac{\mu}{\sqrt{\eta^{2}+\left(\nabla_{x}^{+} \phi_{i, j}\right)^{2}+\left(\nabla_{y}^{0} \phi_{i, j}\right)^{2}}} \\
B_{i, j} & =\frac{\mu}{\sqrt{\eta^{2}+\left(\nabla_{x}^{0} \phi_{i, j}\right)^{2}+\left(\nabla_{y}^{+} \phi_{i, j}\right)^{2}}} .
\end{aligned}
$$

Using the fact $\nabla_{x}^{+} \phi_{i, j}=\frac{\phi_{i+1, j}-\phi_{i, j}}{h}, \nabla_{y}^{+} \phi_{i, j}=\frac{\phi_{i, j+1}-\phi_{i, j}}{h}$ and taking the backward difference at $A_{i, j}\left(\phi_{i+1, j}-\phi_{i, j}\right)$ and $B_{i, j}\left(\phi_{i, j+1}-\phi_{i, j}\right)$ ，then the discretization can be written as

$$
\begin{aligned}
\frac{\partial \phi_{i, j}}{\partial t}=\delta_{\epsilon}\left(\phi_{i, j}\right)\{ & \frac{1}{h^{2}}\left(A_{i, j}\left(\phi_{i+1, j}-\phi_{i, j}\right)-A_{i-1, j}\left(\phi_{i, j}-\phi_{i-1, j}\right)\right) \\
& +\frac{1}{h^{2}}\left(B_{i, j}\left(\phi_{i, j+1}-\phi_{i, j}\right)-B_{i, j-1}\left(\phi_{i, j}-\phi_{i, j-1}\right)\right) \\
& \left.-v-\lambda_{1}\left(f_{i, j}-c_{1}\right)^{2}+\lambda_{2}\left(f_{i, j}-c_{2}\right)^{2}\right\} .
\end{aligned}
$$

Temporal discretization

Define

$$
\begin{array}{ll}
\widetilde{A}_{i, j}=\frac{1}{h^{2}} A_{i, j}, & \widetilde{A}_{i-1, j}=\frac{1}{h^{2}} A_{i, j}, \\
\widetilde{B}_{i, j}=\frac{1}{h^{2}} B_{i, j}, & \widetilde{B}_{i, j-1}=\frac{1}{h^{2}} B_{i, j-1} .
\end{array}
$$

Time is discretized with a semi－implicit Gauss－Seidel method，values $\phi_{i, j}, \phi_{i-1, j,}, \phi_{i, j-1}$ are evaluated at time t_{n+1} and all others at time t_{n} ．

$$
\begin{aligned}
\frac{\phi_{i, j}^{n+1}-\phi_{i, j}^{n}}{\Delta t}=\delta_{\epsilon}\left(\phi_{i, j}^{n}\right)\{ & \widetilde{A}_{i, j} \phi_{i+1, j}^{n}+\widetilde{A}_{i-1, j} \phi_{i-1, j}^{n+1}+\widetilde{B}_{i, j} \phi_{i, j+1}^{n}+\widetilde{B}_{i, j-1} \phi_{i, j-1}^{n+1} \\
& -\left(\widetilde{A}_{i, j}+\widetilde{A}_{i-1, j}+\widetilde{B}_{i, j}+\widetilde{B}_{i, j-1}\right) \phi_{i, j}^{n+1} \\
& \left.-v-\lambda_{1}\left(f_{i, j}-c_{1}\right)^{2}+\lambda_{2}\left(f_{i, j}-c_{2}\right)^{2}\right\} .
\end{aligned}
$$

Gauss－Seidel scheme

This allows ϕ at time t_{n+1} to be solved by one Gauss－Seidel sweep from left to right，bottom to top：

$$
\begin{aligned}
\phi_{i, j}^{n+1}= & \left\{\phi_{i, j}^{n}+\Delta t \delta_{\epsilon}\left(\phi_{i, j}^{n}\right)\left(\widetilde{A}_{i, j} \phi_{i+1, j}^{n}+\widetilde{A}_{i-1, j} \phi_{i-1, j}^{n+1}+\widetilde{B}_{i, j} \phi_{i, j+1}^{n}\right.\right. \\
& \left.\left.+\widetilde{B}_{i, j-1} \phi_{i, j-1}^{n+1}-v-\lambda_{1}\left(f_{i, j}-c_{1}\right)^{2}+\lambda_{2}\left(f_{i, j}-c_{2}\right)^{2}\right)\right\} \\
& \times\left\{1+\Delta t \delta_{\epsilon}\left(\phi_{i, j}\right)\left(\widetilde{A}_{i, j}+\widetilde{A}_{i-1, j}+\widetilde{B}_{i, j}+\widetilde{B}_{i, j-1}\right)\right\}^{-1}
\end{aligned}
$$

where

$$
\begin{aligned}
\widetilde{A}_{i, j} & =\frac{\mu}{h^{2} \sqrt{\eta^{2}+\left(\left(\phi_{i+1, j}^{n}-\phi_{i, j}^{n}\right) / h\right)^{2}+\left(\left(\phi_{i, j+1}^{n}-\phi_{i, j-1}^{n+1}\right) /(2 h)\right)^{2}}}, \\
\widetilde{B}_{i, j} & =\frac{\mu}{h^{2} \sqrt{\eta^{2}+\left(\left(\phi_{i+1, j}^{n}-\phi_{i-1, j}^{n+1}\right) /(2 h)\right)^{2}+\left(\left(\phi_{i, j}^{n}-\phi_{i+1, j}^{n}\right) / h\right)^{2}}} .
\end{aligned}
$$

Gauss－Seidel scheme

We can rewrite $\widetilde{A}_{i, j}$ and $\widetilde{B}_{i, j}$ as follows：

$$
\begin{aligned}
\widetilde{A}_{i, j} & =\frac{\mu}{h^{2} \sqrt{\eta^{2}+\left(\left(\phi_{i+1, j}^{n}-\phi_{i, j}^{n}\right) / h\right)^{2}+\left(\left(\phi_{i, j+1}^{n}-\phi_{i, j-1}^{n+1}\right) /(2 h)\right)^{2}}}, \\
& =\frac{(\mu / h)}{\sqrt{(h \eta)^{2}+\left(\phi_{i+1, j}^{n}-\phi_{i, j}^{n}\right)^{2}+\left(\left(\phi_{i, j+1}^{n}-\phi_{i, j-1}^{n+1}\right) / 2\right)^{2}}}, \\
\widetilde{B}_{i, j} & =\frac{\mu}{h^{2} \sqrt{\eta^{2}+\left(\left(\phi_{i+1, j}^{n}-\phi_{i-1, j}^{n+1}\right) /(2 h)\right)^{2}+\left(\left(\phi_{i, j}^{n}-\phi_{i+1, j}^{n}\right) / h\right)^{2}}} \\
& =\frac{(\mu / h)}{\sqrt{(h \eta)^{2}+\left(\left(\phi_{i+1, j}^{n}-\phi_{i-1, j}^{n+1}\right) / 2\right)^{2}+\left(\phi_{i, j}^{n}-\phi_{i+1, j}^{n}\right)^{2}}} .
\end{aligned}
$$

In numerical implementation，we take $(h \eta)=10^{-8}$ ．

Numerical experiments

initial contour

initial contour

