
Numerical Methods for Variational Image Processing

Suh-Yuh Yang (楊肅煜)

Department of Mathematics, National Central University
Jhongli District, Taoyuan City 320317, Taiwan

First version: November 13, 2022/Last updated: May 14, 2024

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Variational Image Processing – 1/65



Outline

In these two lectures, I will briefly introduce

1 Variational method for image denoising

The Rudin-Osher-Fatemi total-variation model
Calculus of variations and the Euler-Lagrange equation
Implementation: a finite difference method

2 Variational method for image segmentation

The Mumford-Shah model and the Chan-Vese model
Implementation: the level set method + a finite difference
method
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What are these topics doing?

1 Variational image denoising

2 Variational image segmentation
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Lecture 1: Variational method for image denoising

The content of this lecture is mainly based on

P. Getreuer, Rudin-Osher-Fatemi total variation denoising using
split Bregman, Image Processing On Line, 2 (2012), pp. 74-95.

L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation
based noise removal algorithms, Physica D, 60 (1992), pp.
259-268.
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Total variation (TV)

Let Ω := (a, b) ⊂ R be an open bounded interval. Let Pn = {x0, x1,
· · · , xn}, with x0 = a and xn = b, be an arbitrary partition of Ω = [a, b]
and ∆xi = xi − xi−1, for i = 1, 2, · · · , n. The total variation of a
real-valued function u : Ω→ R is defined as the quantity,

∥u∥TV(Ω) := sup
Pn

n

∑
i=1
|u(xi)− u(xi−1)|.

If ∥u∥TV(Ω) < ∞, then we say u is a function of bounded variation.

Remarks:

If u is a smooth function, then we have

∥u∥TV(Ω) = sup
Pn

n

∑
i=1

∣∣∣∣u(xi)− u(xi−1)

∆xi

∣∣∣∣∆xi =
∫

Ω
|u′(x)| dx.

∥u∥TV(Ω) = 0 does not imply u ≡ 0; any constant function u has
∥u∥TV(Ω) = 0 =⇒ ∥u∥TV(Ω) is not a norm on any vector space.
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Examples of bounded variation functions

All these three functions f , g and h have total variation 2
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Denoising

Total variation of u = ∥u∥TV(Ω) =
∫

Ω
|u′(x)| dx if u is smooth.

Denoising is the problem of removing noise from an image.

minimizes
(∫

Ω |u
′(x)| dx + some data fidelity term

)
=⇒ denoising!
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Figure 3.2. A signal (left image) and its noisy version (right image).
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Figure 3.3. Four reconstructions of a noisy signal by RLS solutions.

smooth enough and is very close to the noisy signal b. For λ = 10 the RLS solution is a
rather good estimate of the original vector x. For λ= 100 we get a smoother RLS signal,
but evidently it is less accurate than xRLS(10), especially near the boundaries. The RLS
solution for λ= 1000 is very smooth, but it is a rather poor estimate of the original signal.
In any case, it is evident that the parameter λ is chosen via a trade off between data fidelity
(closeness of x to b) and smoothness (size of Lx). The four plots where produced by the
MATLAB commands

L=zeros(299,300);
for i=1:299

L(i,i)=1;
L(i,i+1)=-1;

end

x_rls=(eye(300)+1*L’*L)\b;
x_rls=[x_rls,(eye(300)+10*L’*L)\b];
x_rls=[x_rls,(eye(300)+100*L’*L)\b];
x_rls=[x_rls,(eye(300)+1000*L’*L)\b];
figure(2)
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A noisy signal and its denoising result
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The ROF total-variation model

Let f : Ω ⊂ R2 → R be a given noisy image. Rudin, Osher, and
Fatemi (Physica D, 1992) proposed the model for image denoising:

min
u∈BV(Ω)∩L2(Ω)

(
∥u∥TV(Ω)︸ ︷︷ ︸
regularizer

+
λ

2

∫
Ω

(
u(x)− f (x)

)2 dx︸ ︷︷ ︸
data fidelity

)
,

where λ > 0 is a tuning parameter which controls the regularization
strength. Notice that

A smaller value of λ will lead to a more regular solution.

The space of functions with bounded variation help remove
spurious oscillations (noise) and preserve sharp signals (edges).

The TV term allows the solution to have discontinuities.
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The bounded variation space BV(Ω)

Let Ω be an open subset of R2. The space of functions of bounded
variation BV(Ω) is defined as the space of real-valued function
u ∈ L1(Ω) such that the total variation is finite, i.e.,

BV(Ω) = {u ∈ L1(Ω) : ∥u∥TV(Ω) < ∞},

where

∥u∥TV(Ω) = sup
{ ∫

Ω u∇ · φdx : φ ∈ C1
c (Ω, R2), ∥φ∥(L∞(Ω))2 ≤ 1

}
C1

c (Ω, R2) is the space of continuously differentiable vector
functions with compact support in Ω.

L1(Ω) and L∞(Ω) are the usual Lp(Ω) space for p = 1 and
p = ∞, respectively, equipped with the ∥ · ∥Lp(Ω) norm.

Then BV(Ω) is a Banach space with the norm,

∥u∥BV(Ω) := ∥u∥L1(Ω) + ∥u∥TV(Ω).
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The existence, uniqueness and stability of solution

Theorem: Consider the ROF total-variation model. Then we have

(1) If u is smooth, then ∥u∥TV(Ω) =
∫

Ω |∇u| dx.

(2) If f ∈ L2(Ω), then the minimizer exists and is unique and is stable in
L2 with respect to perturbations in f .

ROF model for image denoising: Below we assume that u is smooth,
and we consider the model

min
u∈V

(∫
Ω
|∇u| dx +

λ

2

∫
Ω

(
u(x)− f (x)

)2 dx
)

.

Let E[·] be the energy functional over the vector space V ,

E[u] :=
∫

Ω
|∇u| dx +

λ

2

∫
Ω

(
u(x)− f (x)

)2 dx.
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Calculus of variations

Let Ω ⊂ R2 be an open bounded domain. We consider the following
real-valued energy functional,

E[v] :=
∫

Ω
L
(
x, y, v(x, y), vx(x, y), vy(x, y)

)
dx,

where we assume that v ∈ C2(Ω) and L ∈ C2 with respect to its
arguments x = (x, y), v, vx and vy.

If E[v] attains a local minimum (or maximum) at u and η(x, y) is
a smooth function on Ω, then for ε close to 0, we have

E[u] ≤ E[u + εη]. (or E[u] ≥ E[u + εη])

Define Φ(ε) := E[u + εη] in the variable ε. Then we have

Φ′(0) =
dΦ
dε

∣∣∣
ε=0

=
∫

Ω

dL
dε

∣∣∣
ε=0

dx = 0. (just a necessary condition)
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The total derivative of L

Taking the total derivative of L(x, y, v, vx, vy), where v = u + εη
vx = ux + εηx and vy = uy + εηy, we have

dL
dε

=
∂L
∂v

η +
∂L
∂vx

ηx +
∂L
∂vy

ηy =
∂L
∂v

η +
( ∂L

∂vx
,

∂L
∂vy

)⊤
· ∇η.

By the integration by parts, we obtain

0 =
∫

Ω

dL
dε

∣∣∣
ε=0

dx =
∫

Ω

∂L
∂u

η +
( ∂L

∂ux
,

∂L
∂uy

)⊤ · ∇η dx ↙ (⋆)

=
∫

Ω

∂L
∂u

η dx +
∫

∂Ω

(( ∂L
∂ux

,
∂L
∂uy

)⊤ · n)η dσ −
∫

Ω

(
∇ · ( ∂L

∂ux
,

∂L
∂uy

)⊤
)

η dx,

where L(x, y, v, vx, vy) = L(x, y, u, ux, uy) when ε = 0. Taking arbitrary
smooth functions η’s with η(x) = 0 on ∂Ω, we have∫

Ω
η
(∂L

∂u
−∇ · ( ∂L

∂ux
,

∂L
∂uy

)⊤
)

dx = 0.
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The Euler-Lagrange equation

According to the fundamental lemma of calculus of variations, we have
the Euler-Lagrange equation,

∂L
∂u
−∇ · ( ∂L

∂ux
,

∂L
∂uy

)⊤ = 0 in Ω, ← (⋆⋆)

and
δE
δu

:=
∂L
∂u
−∇ · ( ∂L

∂ux
,

∂L
∂uy

)⊤

is called the functional derivative of E[u].

By substituting (⋆⋆) into (⋆), we have∫
∂Ω

η
( ∂L

∂ux
n1 +

∂L
∂uy

n2

)
dσ = 0,

for any smooth function η on Ω, which implies the
homogeneous Neumann boundary condition,

∂L
∂ux

n1 +
∂L
∂uy

n2 = 0 on ∂Ω.
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Euler-Lagrange equation of the ROF model

Consider the energy minimization problem (ROF model):

min
u∈V

(∫
Ω
|∇u| dx +

λ

2

∫
Ω

(
u(x)− f (x)

)2 dx
)

,

where V is a suitable space and λ > 0 is the regularization parameter.

Since
∫

Ω |∇u| dx =
∫

Ω

√
u2

x + u2
y dx, we have

L(x, y, u, ux, uy) =
√

u2
x + u2

y +
λ

2
(u− f )2,

which leads to the Euler-Lagrange equation with the Neumann BC,

−∇ ·
( ∇u
|∇u|

)
+ λu = λf in Ω,

∂u
∂n

= 0 on ∂Ω.

The homogeneous Neumann boundary condition comes from

0 =
∂L
∂ux

n1 +
∂L
∂uy

n2 = (
∂L
∂ux

,
∂L
∂uy

) ·n =
( ∇u
|∇u|

)
·n =

1
|∇u|

∂u
∂n

on ∂Ω.

If |∇u| = 0 ⇒ ∇u = 0 ⇒ ∂u
∂n = 0. Otherwise, we still have ∂u

∂n = 0.
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Nonlinear PDE-based denoising algorithm

The boundary value problem of the ROF model is given by

−∇ ·
( ∇u
|∇u|

)
+ λu = λf in Ω,

∂u
∂n

= 0 on ∂Ω.

Therefore, the minimizer can be obtained numerically by evolving a
finite difference approximation of the parabolic partial differential
equation with the homogeneous Neumann boundary condition:

Heat−type equation︷ ︸︸ ︷
∂u
∂t
−∇ ·

( ∇u
|∇u|

)
+ λu = λf for (t, x) ∈ (0, T)×Ω,

u(0, x) = f (x) for x ∈ Ω, (initial condition)
∇u · n = 0 for t ∈ [0, T] and x ∈ ∂Ω. (boundary condition)
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Numerical differentiation: 1-D

Let v : [a, b]→ R and let a = x0 < x1 < · · · < xN = b be a uniform
partition of [a, b] with grid size h = (b− a)/N > 0.

Forward difference for v′(xi): Assume that v ∈ C2[a, b]. Then for
i = 1, 2, · · · , N− 1, by Taylor’s theorem, we have

v(xi + h) = v(xi) + v′(xi)h + 1
2 v′′(ξi)h2 for some ξi ∈ (xi, xi + h).

∴ v′(xi) =
1
h
(
v(xi + h)− v(xi)

)
− 1

2 v′′(ξi)h

∴ v′(xi) ≈ 1
h
(
v(xi+1)− v(xi)

)
, it is a first-order approximation!

Backward difference for v′(xi): Assume that v ∈ C2[a, b]. Then
for i = 1, 2, · · · , N− 1, by Taylor’s theorem, we have

v(xi − h) = v(xi)− v′(xi)h + 1
2 v′′(ξi)h2 for some ξi ∈ (xi − h, xi).

∴ v′(xi) =
1
h
(
v(xi)− v(xi − h)

)
+ 1

2 v′′(ξi)h

∴ v′(xi) ≈ 1
h
(
v(xi)− v(xi−1)

)
, it is a first-order approximation!
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Numerical differentiation (cont’d)

Central difference for v′(xi): Assume that v ∈ C3[a, b]. Then for
i = 1, 2, · · · , N− 1, by Taylor’s theorem, we have

v(xi + h) = v(xi) + v′(xi)h + 1
2 v′′(xi)h2 + 1

6 v(3)(ξi1)h3,

v(xi − h) = v(xi)− v′(xi)h + 1
2 v′′(xi)h2 − 1

6 v(3)(ξi2)h3,

for some ξi1 ∈ (xi, xi + h) and ξi2 ∈ (xi − h, xi). Subtracting the
second equation from the first equation, we have

v(xi + h)− v(xi − h) = 2v′(xi)h + 1
6 h3(v(3)(ξi1) + v(3)(ξi2)

)
.

∴ v′(xi) =
1

2h
(
v(xi + h)− v(xi − h)

)
− 1

6 h2 1
2
(
v(3)(ξi1) + v(3)(ξi2)

)
∵ 1

2
(
v(3)(ξi1) + v(3)(ξi2)

)
is between v(3)(ξi1) & v(3)(ξi2)

∴ By the intermediate value theorem, ∃ ξi ∈ (xi − h, xi + h) s.t.

v(3)(ξi) =
1
2
(
v(3)(ξi1) + v(3)(ξi2)

)
∴ v′(xi) =

1
2h
(
v(xi + h)− v(xi − h)

)
− 1

6 h2v(3)(ξi)

∴ v′(xi) ≈ 1
2h
(
v(xi+1)− v(xi−1)

)
, 2nd-order approximation!
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Numerical differentiation (cont’d)

• Central difference for v′′(xi): Assume that v ∈ C4[a, b]. Then for
i = 1, 2, · · · , N− 1, by Taylor’s theorem, we have

v(xi + h) = v(xi) + v′(xi)h + 1
2 v′′(xi)h2 + 1

6 v(3)(xi)h3 + 1
24 v(4)(ξi1)h4,

v(xi − h) = v(xi)− v′(xi)h + 1
2 v′′(xi)h2 − 1

6 v(3)(xi)h3 + 1
24 v(4)(ξi2)h4,

for some ξi1 ∈ (xi, xi + h) and ξi2 ∈ (xi − h, xi). Therefore, we have

v(xi + h) + v(xi − h) = 2v(xi) + v′′(xi)h2 + 1
24{v(4)(ξi1) + v(4)(ξi2)}h4.

∴
v′′(xi) =

1
h2 {v(xi + h)− 2v(xi) + v(xi − h)} − h2

24{v(4)(ξi1) + v(4)(ξi2)}
∵ v ∈ C4[a, b], 1

2{v(4)(ξi1) + v(4)(ξi2)} between v(4)(ξi1) & v(4)(ξi2)

∴ By IVT, ∃ ξi between ξi1 and ξi2 (⇒ ξi ∈ (xi − h, xi + h)) such that

v(4)(ξi) =
1
2{v(4)(ξi1) + v(4)(ξi2)}

∴ v′′(xi) =
1
h2 {v(xi + h)− 2v(xi) + v(xi − h)} − 1

12 h2v(4)(ξi)

∴ v′′(xi) ≈ 1
h2 {v(xi+1)− 2v(xi) + v(xi−1)}, 2nd-order approximation!
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Let un
i,j denote an approximation to u(tn, xi, yj)

∂u
∂x

(tn, xi, yj) ≈ ∇+
x un

i,j :=
un

i+1,j − un
i,j

h
(forward difference in x)

∂u
∂x

(tn, xi, yj) ≈ ∇−x un
i,j :=

un
i,j − un

i−1,j

h
(backward difference in x)

∂u
∂x

(tn, xi, yj) ≈ ∇xun
i,j :=

un
i+1,j − un

i−1,j

2h
=

1
2

(
∇+

x un
i,j +∇−x un

i,j

)
(central difference in x)

∂u
∂y

(tn, xi, yj) ≈ ∇+
y un

i,j :=
un

i,j+1 − un
i,j

h
(forward difference in y)

∂u
∂y

(tn, xi, yj) ≈ ∇−y un
i,j :=

un
i,j − un

i,j−1

h
(backward difference in y)

∂u
∂y

(tn, xi, yj) ≈ ∇yun
i,j :=

un
i,j+1 − un

i,j−1

2h
=

1
2

(
∇+

y un
i,j +∇−y un

i,j

)
(central difference in y)
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Central differences for second derivative

Central difference for second derivative in x:

∇−x (∇+
x un

i,j) = ∇−x
(un

i+1,j − un
i,j

h

)
=

1
h

(
∇−x un

i+1,j −∇−x un
i,j

)
=

1
h

(un
i+1,j − un

i,j

h
−

un
i,j − un

i−1,j

h

)
=

1
h2

(
un

i+1,j − 2un
i,j + un

i−1,j

)
≈ ∂2u

∂x2 (tn, xi, yj).

Central difference for second derivative in y:

∇−y (∇+
y un

i,j) =
1
h2

(
un

i,j+1 − 2un
i,j + un

i,j−1

)
≈ ∂2u

∂y2 (tn, xi, yj).

∇+
x (∇−x un

i,j) = ∇−x (∇+
x un

i,j), will also be denoted as ∇2
xun

i,j.

∇+
y (∇−y un

i,j) = ∇−y (∇+
y un

i,j), will also be denoted as ∇2
yun

i,j.

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Variational Image Processing – 20/65



Forward Euler in time t

We will consider a finite difference scheme for approximating the
solution of the IBVP for the Euler-Lagrange equation:

∂u
∂t
−∇ ·

( ∇u
|∇u|

)
+ λu = λf for (t, x) ∈ (0, T)×Ω,

u(0, x) = f (x) for x ∈ Ω,
∇u · n = 0 for t ∈ [0, T] and x ∈ ∂Ω.

Suppose that the image domain is given by Ω = [0, 1]× [0, 1]. Let
xi = ih and yj = jh, i, j = 0, 1, · · · , N, with h = 1/N, and tn = n∆t. Let
fi,j := f (xi, yj) and un

i,j be the difference approximation to u(tn, xi, yj).

Forward Euler in time t:

∂u
∂t

(tn, xi, yj) =
1

∆t
(
u(tn+1, xi, yj)− u(tn, xi, yj)

)
− 1

2
∂2u
∂t2 (τi, xi, yj)∆t

≈ 1
∆t
(
un+1

i,j − un
i,j
)
.
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The forward Euler finite difference scheme

The proposed explicit finite difference scheme is given by:

un+1
i,j − un

i,j

∆t
= λ(fi,j − un

i,j) +∇−x

(
∇+

x un
i,j√(

∇+
x un

i,j
)2

+
(
m(∇+

y un
i,j,∇

−
y un

i,j)
)2

)

+∇−y

(
∇+

y un
i,j√(

∇+
y un

i,j)
2 +

(
m(∇+

x un
i,j,∇

−
x un

i,j)
)2

)
, 1 ≤ i, j ≤ N− 1,

un
0,j = un

1,j, un
N,j = un

N−1,j, un
i,0 = un

i,1, un
i,N = un

i,N−1, 0 ≤ i, j ≤ N.

where m(a, b) =
( sign a + sign b

2

)
min{|a|, |b|} is the minmod operator;

see [ROF 1992] for more details.

The forward Euler scheme is conditionally stable, we need ∆t/h2 ≤ c.

Numerous other algorithms have been proposed to solve the TV
denoising minimization problem, e.g., the split Bregman iterations.
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Rescaling the finite difference scheme

Let δ+x un
i,j := un

i+1,j − un
i,j, δ−x un

i,j := un
i,j − un

i−1,j, δ+y un
i,j := un

i,j+1 − un
i,j,

δ−y un
i,j := un

i,j − un
i,j−1. Then the proposed finite difference scheme can

be rewritten as

un+1
i,j − un

i,j

∆t
= λ(fi,j − un

i,j) +
1
h

δ−x

(
δ+x un

i,j√(
δ+x un

i,j
)2

+
(
m(δ+y un

i,j, δ−y un
i,j)
)2

)

+
1
h

δ−y

(
δ+y un

i,j√(
δ+y un

i,j)
2 +

(
m(δ+x un

i,j, δ−x un
i,j)
)2

)
, 1 ≤ i, j ≤ N− 1,

un
0,j = un

1,j, un
N,j = un

N−1,j, un
i,0 = un

i,1, un
i,N = un

i,N−1, 0 ≤ i, j ≤ N.

Let An
i,j :=

δ+x un
i,j√(

δ+x un
i,j
)2

+
(
m(δ+y un

i,j, δ−y un
i,j)
)2

,

Bn
i,j :=

δ+y un
i,j√(

δ+y un
i,j)

2 +
(
m(δ+x un

i,j, δ−x un
i,j)
)2

.
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Rescaling the finite difference scheme (cont’d)

Then we have

un+1
i,j − un

i,j

∆t
= λ(fi,j − un

i,j) +
1
h δ−x An

i,j +
1
h δ−y Bn

i,j, 1 ≤ i, j ≤ N− 1,

un
0,j = un

1,j, un
N,j = un

N−1,j, un
i,0 = un

i,1, un
i,N = un

i,N−1, 0 ≤ i, j ≤ N.

Setting ∆̃t =
∆t
h

and λ̃ = hλ, the first equation becomes

un+1
i,j − un

i,j

∆̃t
= λ̃(fi,j − un

i,j) + δ−x An
i,j + δ−y Bn

i,j, 1 ≤ i, j ≤ N− 1.

Rearranging the equation, we finally obtain

un+1
i,j = un

i,j + ∆̃tλ̃(fi,j − un
i,j) + ∆̃tδ−x An

i,j + ∆̃tδ−y Bn
i,j, 1 ≤ i, j ≤ N− 1.
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A uniform partition of Ω = (0, 1)× (0, 1)

Let • denote an arbitrary point (x, y) in Ω.

(1) In usual finite differences, the grid points (xi, yj) locate at •.
(2) In image processing, however, a digital image is usually stored

as a matrix. Thus, it is more convenient to use the “cell-centered
grids,” i.e., grid points (xi, yj) located at × with the coordinates

xi =
h
2
+ (i− 1)h, yj =

h
2
+ (j− 1)h, i, j = (0), 1, · · ·N, (N + 1).

And the homogeneous Neumann BC implies
un

0,j = un
1,j, un

N+1,j = un
N,j, un

i,0 = un
i,1, un

i,N+1 = un
i,N, 1 ≤ i, j ≤ N.

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Variational Image Processing – 25/65



ROF finite difference solutions at different steps

Gaussian noise (0, 0.005), h = 1/256, λ̃ = hλ = 0.05,
∆̃t = ∆t/h = 0.01, at 500, 1000, 1500, 2000-th steps
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Three indices to measure the quality

Below are three indices to measure the quality of images and to
evaluate the denoising performance. Let ũ be the clean image, u be
the mean intensity of the clean image, and u be the produced image.

MSE(ũ, u) :=
1

N2

N

∑
i=1

N

∑
j=1

(ũi,j − ui,j)
2 (mean squared error)

PSNR := 10 log10

( 2552

MSE(ũ, u)

)
(peak signal to noise ratio)

SNR := 10 log10

(MSE(ũ, u)
MSE(ũ, u)

)
(signal to noise ratio)

In general, the higher the value of PSNR the better the quality of the
produced image.

There is another index, structural similarity (SSIM). The maximum
value of SSIM is 1.
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ROF finite difference solutions of different λ’s (cameraman)

Gaussian noise (0, 0.005), h = 1/256, λ̃ = hλ = 1/10, 1/20, 1/30, 1/40,
∆̃t = ∆t/h = 0.01, at 1000-th step
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ROF finite difference solutions of different λ’s (Einstein)

Gaussian noise (0, 0.005), h = 1/340, λ̃ = hλ = 1/10, 1/20, 1/30, 1/40,
∆̃t = ∆t/h = 0.01, at 1000-th step

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Variational Image Processing – 29/65



Discretization of the ROF model using cell-centered grids

Using the cell-centered grids of Ω, we approximate the total variation
term by

∥u∥TV(Ω) ≈ h2
N

∑
i=1

N

∑
j=1
|∇hui,j|.

Here we define the discrete gradient operator ∇h by

∇hui,j := (∇xui,j,∇yui,j)
⊤

and recall that

∇xui,j =
ui+1,j − ui−1,j

2h
, ∇yui,j =

ui,j+1 − ui,j−1

2h
, 1 ≤ i, j ≤ N,

u0,j = u1,j, uN+1,j = uN,j, ui,0 = ui,1, ui,N+1 = ui,N, 1 ≤ i, j ≤ N.
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The constrained minimization of the ROF model

Introducing the new unknown vector function d, we have the
constrained minimization problem:

min
u, d

(∫
Ω
|d| dx +

λ

2

∫
Ω

(
u(x)− f (x)

)2 dx
)

subject to d = ∇u.

Therefore, the approximate constrained minimization of the ROF
model can be posed as follows:

min
u, d

( N

∑
i,j=1
|di,j|+

λ

2

N

∑
i,j=1

(fi,j − ui,j)
2
)

subject to di,j = ∇hui,j,

where u and d denote all ui,j and di,j. Introducing a penalty parameter
γ > 0, we obtain the unconstrained minimization problem:

min
u, d

( N

∑
i,j=1
|di,j|+

λ

2

N

∑
i,j=1

(fi,j − ui,j)
2 +

γ

2

N

∑
i,j=1
|di,j −∇hui,j − bi,j|2

)
,

where b (denotes all bi,j) is an auxiliary variable, which can be expressed in
terms of u and d, related to the Bregman iterations, and | · | := ∥ · ∥2 in R2.
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An alternating direction approach: split Bregman method

Goldstein and Osher (2009) proposed to solve the above-mentioned
problem by an alternating direction approach: (see Getreuer 2012)

u-subproblem: With d and b fixed, we solve

uk+1 = arg min
u

(λ

2 ∑
i,j
(fi,j − ui,j)

2 +
γ

2 ∑
i,j
|dk

i,j −∇hui,j − bk
i,j|2
)

,

where the superscript k denotes the values evaluated at k-iteration. It
can be viewed as the approximation of the minimization problem:

min
u

λ

2

∫
Ω
(f − u)2 dx +

γ

2

∫
Ω
|dk −∇u− bk|2 dx.

The associated Euler-Lagrange equation of the above minimization
problem (also called the screened Poisson equation) is given by

λu− γ∇ · ∇u = λf − γ∇ · (dk − bk),

where ∇u is the gradient of u, ∇ · v is the divergence of vector
function v, and ∆u := ∇2u := ∇ · ∇u is the Laplacian of u.
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The discrete screened Poisson equation

The discrete screened Poisson equation is given by

λui,j − γ∇2
hui,j = λfi,j − γ∇h · (dk

i,j − bk
i,j), 1 ≤ i, j ≤ N,

which should be supplemented with the BC:
u0,j = u1,j, uN+1,j = uN,j, ui,0 = ui,1, ui,N+1 = ui,N, 1 ≤ i, j ≤ N.

The term ∆hui,j := ∇2
hui,j := ∇−h · ∇

+
h ui,j

∇−h · ∇
+
h ui,j = (∇−x ,∇−y )⊤ · (∇+

x ui,j,∇+
y ui,j)

⊤

= ∇−x (∇+
x ui,j) +∇−y (∇+

y ui,j)

=
1
h2

((
ui+1,j − 2ui,j + ui−1,j

)
+
(
ui,j+1 − 2ui,j + ui,j−1

))
=

1
h2

(
−4ui,j + ui−1,j + ui+1,j + ui,j−1 + ui,j+1

)
.

Let gk
i,j = (gk

1,i,j, gk
2,i,j)

⊤ := dk
i,j − bk

i,j. Then

∇h · gk
i,j = ∇xgk

1,i,j +∇ygk
2,i,j =

gk
1,i+1,j − gk

1,i−1,j

2h
+

gk
2,i,j+1 − gk

2,i,j−1

2h
.
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The resulting linear system: Au = r

Finally, the resulting linear system Au = r will be given by(
λ + 4

γ

h2

)
ui,j −

γ

h2

(
ui−1,j + ui+1,j + ui,j−1 + ui,j+1

)
= λfi,j −

γ

2h

(
gk

1,i+1,j − gk
1,i−1,j + gk

2,i,j+1 − gk
2,i,j−1

)
, 1 ≤ i, j ≤ N.

Since λ > 0 and γ > 0, Au = r will be symmetric and diagonally
dominant. It can be solved by many different methods such as
the iterative techniques.

For example, the Gauss-Seidel iterative method gives(
λ + 4

γ

h2

)
uk+1

i,j = ck
i,j +

γ

h2

(
uk+1

i−1,j + uk
i+1,j + uk+1

i,j−1 + uk
i,j+1

)
, k ≥ 0,

where

ck
i,j := λfi,j −

γ

2h

(
gk

1,i+1,j − gk
1,i−1,j + gk

2,i,j+1 − gk
2,i,j−1

)
.
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d-subproblem

d-subproblem: With u fixed, we solve

dk+1 = arg min
d

( N

∑
i,j=1
|di,j|+

γ

2

N

∑
i,j=1
|di,j −∇huk+1

i,j − bk
i,j|2
)

,

which has a closed-form solution,

dk+1
i,j =

∇huk+1
i,j + bk

i,j

|∇huk+1
i,j + bk

i,j|
max

{
|∇huk+1

i,j + bk
i,j| −

1
γ

, 0
}

, 1 ≤ i, j ≤ N.

How to find the closed-form solution?

The solution of d-subproblem can be found componentwisely. For
each (i, j), we consider the following minimization problem:

min
x=(x1,x2)⊤∈R2

{
|x|+ γ

2
|x− y|2

}
,

where γ > 0 and y = (y1, y2)
⊤ ∈ R2 are given.

Note that | · | := ∥ · ∥2 in R2.
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Updating b and selecting γ

Updating b: The auxiliary variable b is initialized to zero and
updated as

bk+1
i,j = bk

i,j +∇huk+1
i,j − dk+1

i,j , 1 ≤ i, j ≤ N.

Selecting γ: A good choice of γ is one for which both u and d
subproblems converge quickly and are numerically
well-conditioned.

− In u subproblem, the effect of ∇ · ∇ and ∇· increase when
γ gets larger. It is also ill-conditioned in the limit γ→ ∞.

− In d subproblem, the shrinking effect is more dramatic
when γ is small.

− γ should be neither extremely large nor small for good
convergence.

In our simulations, we take γ/h = 0.1.
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Implementation details of split Bregman iterations

u-subproblem: We multiply the following identity with h,(
λ + 4

γ

h2

)
ui,j −

γ

h2

(
ui−1,j + ui+1,j + ui,j−1 + ui,j+1

)
= λfi,j −

γ

2h

(
gk

1,i+1,j − gk
1,i−1,j + gk

2,i,j+1 − gk
2,i,j−1

)
, 1 ≤ i, j ≤ N.

Then we have(
λh + 4

γ

h
)
ui,j −

γ

h

(
ui−1,j + ui+1,j + ui,j−1 + ui,j+1

)
= λhfi,j −

γ

2h

(
hgk

1,i+1,j − hgk
1,i−1,j + hgk

2,i,j+1 − hgk
2,i,j−1

)
, 1 ≤ i, j ≤ N.

Notice that gk
i,j = (gk

1,i,j, gk
2,i,j)

⊤ := dk
i,j − bk

i,j. Define λ̃ = λh, γ̃ =
γ

h
,

g̃k
i,j = (g̃k

1,i,j, g̃k
2,i,j)

⊤ := hdk
i,j − hbk

i,j := d̃k
i,j − b̃k

i,j. Then we have(
λ̃ + 4γ̃

)
ui,j − γ̃

(
ui−1,j + ui+1,j + ui,j−1 + ui,j+1

)
= λ̃fi,j −

γ̃

2

(
g̃k

1,i+1,j − g̃k
1,i−1,j + g̃k

2,i,j+1 − g̃k
2,i,j−1

)
, 1 ≤ i, j ≤ N. (⋆1)
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Implementation details of split Bregman iterations (cont’d)

d-subproblem: If we define

∇̃ui,j := (δxui,j, δyui,j)
⊤ :=

(ui+1,j − ui−1,j

2
,

ui,j+1 − ui,j−1

2
)⊤,

then since

dk+1
i,j =

∇huk+1
i,j + bk

i,j

|∇huk+1
i,j + bk

i,j|
max

{
|∇huk+1

i,j + bk
i,j| −

1
γ

, 0
}

,

we have

d̃k+1
i,j = hdk+1

i,j =
h∇huk+1

i,j + hbk
i,j

|h∇huk+1
i,j + hbk

i,j|
h max

{
|∇huk+1

i,j + bk
i,j| −

1
γ

, 0
}

=
∇̃uk+1

i,j + b̃k
i,j

|∇̃uk+1
i,j + b̃k

i,j|
max

{
|∇̃uk+1

i,j + b̃k
i,j| −

1
γ̃

, 0
}

. (⋆2)
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Implementation details of split Bregman iterations (cont’d)

Updating b: First, we have

bk+1
i,j = bk

i,j +∇huk+1
i,j − dk+1

i,j .

By multiplying the identity with h, we obtain

hbk+1
i,j = hbk

i,j + h∇huk+1
i,j − hdk+1

i,j .

In other words,

b̃k+1
i,j = b̃k

i,j + ∇̃uk+1
i,j − d̃k+1

i,j . (⋆3)
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A summary

To sum up, we have the following remarks:

By change of variables, the split Bregman iterations can be
reformulated as (⋆1), (⋆2), (⋆3), where the grid size h can be
absorbed by other variables!

Most engineering-oriented papers usually take the spatial grid
size h = 1 in the finite differences. It is irrational from the
approximation viewpoint because the error terms in Taylor’s
theorem may not be small if we take h = 1.

However, if the grid size h has been absorbed by other variables
as discussed above, then it is reasonable for us to say that, in
some sense, the grid size h = 1.
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Numerical experiments (Einstein)

Gaussian noise (0, 0.005), h = 1/340, λ̃ = hλ = 0.1, 0.05, 0.025, 0.01,
γ̃ = γ/h = 0.1

A smaller value of λ implies stronger denoising. When λ is very small, the
image becomes cartoon-like with sharp jumps between nearly flat regions.
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Numerical experiments (Cameraman)

Gaussian noise (0, 0.005), h = 1/256, λ̃ = hλ = 0.1, 0.05, 0.025, 0.01,
γ̃ = γ/h = 0.1
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Numerical experiments (Lena)

Gaussian noise (0, 0.005), h = 1/512, λ̃ = hλ = 0.1, 0.05, 0.025, 0.01,
γ̃ = γ/h = 0.1
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Numerical experiments (square)

Gaussian noise (0, 0.005), h = 1/256, λ̃ = hλ = 0.1, 0.05, 0.025, 0.01,
γ̃ = γ/h = 0.1
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Lecture 2: Variational method for image segmentation

The content of this lecture is mainly based on

T. F. Chan and L. A. Vese, An active contour model without
edges, Lecture Notes in Computer Science, 1682 (1999), pp. 141-151.

T. F. Chan and L. A. Vese, Active contours without edges, IEEE
Transactions on Image Processing, 10 (2001), pp. 266-277.

P. Getreuer, Chan-Vese segmentation, Image Processing On Line, 2
(2012), pp. 214-224.
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Image segmentation in medical imaging

f & initialization C segmented image

bias field b corrected image I
Bias field model: f = bI + n, where n is the noise

In what follows, Ω denotes an open bounded subset in R2 and f : Ω→ R

denotes the given grayscale image to be segmented.
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Mumford-Shah model (CPAM 1989)

Mumford-Shah model: it finds a piecewise smooth function u and a
curve set C, which separates the image domain into disjoint regions,
minimizing the energy functional:

min
u,C

(
µ
∣∣C∣∣+ λ

∫
Ω

(
f (x)− u(x)

)2 dx +
∫

Ω\C

∣∣∇u(x)
∣∣2 dx

)
,

where |C| denotes the total length of the curves in C.

The first term plays the regularization role, which ensures the
target objects can tightly be wrapped by C.

The second term is the data fidelity term, which forces u to be
close to the input image f .

The third term is the smoothing term, which forces the target
function u to be piecewise smooth within each of the regions
separated by the curves in C.

µ > 0, λ > 0 are tuning parameters to modulate these three terms.
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Simplified Mumford-Shah model

The non-convexity of energy functional in the Mumford-Shah model
makes the minimization problem difficult to analyze and the
computational cost is much considerable.

The piecewise smooth model suffers for its sensitivity to the
initialization of C.

Simplified Mumford-Shah model: it finds a piecewise constant
function u and a curve set C to minimize the energy functional:

min
u,C

(
µ
∣∣C∣∣+ ∫

Ω

(
f (x)− u(x)

)2 dx
)

.

Note that u is constant on each connected component of Ω \ C.
The minimization problem is still non-convex.
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Chan (陳繁昌)-Vese two-phase model

In 1999, Chan and Vese proposed a two-phase segmentation model
based on the level set formulation (“active contours without edges”,
LNCS 1999):

min
c1,c2,C

(
µ
∣∣C∣∣+ ν

∣∣Ωin
∣∣+ λ1

∫
Ωin

(
f (x)− c1

)2 dx + λ2

∫
Ωout

(
f (x)− c2

)2 dx
)

,

where

Ωin denotes the region enclosed by the curves in C with area
|Ωin|, and Ωout := Ω \Ωin.

µ > 0, ν ≥ 0, λ1 > 0, and λ2 > 0 are tuning parameters (actually,
one of them can be fixed as 1).

Chan-Vese model finds a piecewise constant function u and a
curve set C to minimize the energy functional, where u has only
two constant values,

u(x) =

{
c1, x is inside C,
c2, x is outside C.
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Topological changes of C

To solve the minimization problem of Chan-Vese model, we evolve C
and find c1, c2 to minimize the energy functional. However, it is
generally hard to handle topological changes of the curves in C.

(quoted from wikipedia)
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Level set function

Therefore, we represent C implicitly by the zero level contour of a
level set function ϕ : Ω→ R, i.e.,

C = {x ∈ Ω : ϕ(x) = 0}.
The zero level contour C partitions the image domain into two
disjoint regions Ωin and Ωout such that

ϕ(x) ≥ 0 for x ∈ Ωin and ϕ(x) < 0 for x ∈ Ωout.

For example, given r > 0, we define a level set function

ϕ(x) = ϕ(x, y) = r−
√

x2 + y2,

whose zero level contour is the circle of radius r > 0.
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Chan-Vese model

Let H denote the Heaviside function and δ the Dirac delta
function. Then

H(s) =
{

1 s ≥ 0,
0 s < 0, and

d
ds

H(s) = δ(s).

In terms of H, δ, and the level set function ϕ, the Chan-Vese
model has the form

min
c1, c2, ϕ

(
µ
∫

Ω
δ(ϕ(x))|∇ϕ(x)| dx + ν

∫
Ω

H(ϕ(x)) dx

+λ1

∫
Ω

(
f (x)− c1

)2H(ϕ(x)) dx

+λ2

∫
Ω

(
f (x)− c2

)2(1−H(ϕ(x))
)

dx
)

.

Original formulation:

min
c1,c2,C

(
µ
∣∣C∣∣+ ν

∣∣Ωin
∣∣+ λ1

∫
Ωin

(
f (x)− c1

)2
+ λ2

∫
Ωout

(
f (x)− c2

)2
)

.
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The regularized Heaviside and delta functions

The Heaviside function H and the Dirac delta function δ can be
approximately regularized as follows: for a sufficiently small ϵ > 0,

Hϵ(t) :=
1
2

(
1 +

2
π

tan−1(
t
ϵ
)
)

,

δϵ(t) :=
d
dt

Hϵ(t) =
ϵ

π(ϵ2 + t2)
,∫ ∞

−∞
δϵ(t)dt =

∫ ∞

−∞

ϵ

π(ϵ2 + t2)
dt = · · · = 1.
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Total length of C

The first term of the energy functional is the length of C, which can be
expressed as the total variation of H(ϕ) and then informally∣∣C∣∣ = ∫

Ω
|∇H(ϕ(x))| =

∫
Ω

∣∣dH
dϕ

(ϕ(x))
∣∣∣∣∇ϕ(x)

∣∣ = ∫
Ω

δ(ϕ(x))
∣∣∇ϕ(x)

∣∣.
A rough idea of the proof:

We partition Ω into very small subdomains, Ω = ∪i,jΩi,j, and define
Ci,j := C ∩Ωi,j. Then C = ∪i,jCi,j. We consider the approximation Hϵ(ϕ) of
H(ϕ) for 0 < ϵ≪ 1. On Ωi,j, we have∣∣Ci,j

∣∣ =
∣∣Ci,j

∣∣ ∫ ∞

−∞
δϵ(t)dt ≈

∫
Ωi,j

δϵ(ϕ(x))
∣∣∇ϕ(x)

∣∣ = ∫
Ωi,j

∣∣dHϵ

dϕ
(ϕ(x))

∣∣∣∣∇ϕ(x)
∣∣

=
∫

Ωi,j

|∇Hϵ(ϕ(x))|.

Taking summation over all i and j, we have∣∣C∣∣ = ∑
i,j

∣∣Ci,j
∣∣ ≈∑

i,j

∫
Ωi,j

|∇Hϵ(ϕ(x))| =
∫

Ω
|∇Hϵ(ϕ(x))| ≈

∫
Ω
|∇H(ϕ(x))|.
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An alternating iterative scheme

The minimization is solved by an alternating iterative scheme, i.e.,
alternatingly updating c1, c2 and ϕ.

(S1) Fixed ϕ, the optimal values of c1 and c2 are the region averages,

c1 =

∫
Ω f (x)H(ϕ(x)) dx∫

Ω H(ϕ(x)) dx
, c2 =

∫
Ω f (x)

(
1−H(ϕ(x))

)
dx∫

Ω

(
1−H(ϕ(x))

)
dx

.

(S2) Fixed c1, c2, we solve the initial-boundary value problem (IBVP)
to reach a steady-state:

∂ϕ

∂t
= δϵ(ϕ)

(
µ∇ · ∇ϕ

|∇ϕ| − ν− λ1(f − c1)
2 + λ2(f − c2)

2
)

,

for t > 0, x ∈ Ω,

ϕ(0, x) = ϕ0(x), x ∈ Ω,

∂ϕ

∂n
= 0 on ∂Ω, t ≥ 0.

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Variational Image Processing – 55/65



Euler-Lagrange equation

Fixed c1 and c2, the energy functional becomes

E[ϕ] =
∫

Ω
F(x, y, ϕ, ϕx, ϕy) dx,

where the integrand is given by

F(x, y, ϕ, ϕx, ϕy) = µδϵ(ϕ) |∇ϕ|+ νHϵ(ϕ) + λ1(f − c1)
2Hϵ(ϕ)

+λ2(f − c2)
2(1−Hϵ(ϕ)

)
.

By direct computations, we have

∂F
∂ϕ

= µδ′ϵ(ϕ) |∇ϕ|+ νδϵ(ϕ) + λ1(f − c1)
2δϵ(ϕ)− λ2(f − c2)

2δϵ(ϕ),

∂F
∂ϕx

= µδϵ(ϕ)
ϕx

|∇ϕ| ,
∂F
∂ϕy

= µδϵ(ϕ)
ϕy

|∇ϕ| .

The Euler-Lagrange equation with the Neumann BC are given by

∂F
∂ϕ
−∇ · ( ∂F

∂ϕx
,

∂F
∂ϕy

)⊤ = 0 in Ω, (
∂F
∂ϕx

,
∂F
∂ϕy

)⊤ · n = 0 on ∂Ω.
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Neumann boundary condition

It leads to the equation

∂ϕ

∂t
= δϵ(ϕ)

{
µ∇ ·

( ∇ϕ

|∇ϕ|

)
− ν− λ1(f − c1)

2 + λ2(f − c2)
2)

}
,

which has to be supplemented with an initial condition,

ϕ(0, x) = ϕ0(x), ∀ x ∈ Ω,

and the homogeneous Neumann boundary condition,

0 =
∂F
∂ϕx

n1 +
∂F
∂ϕy

n2 =
( ∂F

∂ϕx
,

∂F
∂ϕy

)⊤
· n = δϵ(ϕ)

∇ϕ

|∇ϕ| · n.

That is, the BC for t ≥ 0,

δϵ(ϕ)

|∇ϕ|
∂ϕ

∂n
= 0 on ∂Ω =⇒ ∂ϕ

∂n
= 0 on ∂Ω.
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Numerical implementation

Assume that the image domain Ω is the unit square [0, 1]× [0, 1].

Let ΩD := {(xi, yj)| i, j = 0, 1, · · · , M} be the set of grid points of
a uniform partition of Ω with size h = 1/M.

Then xi = ih and yj = jh, i, j = 0, 1, · · · , M. Let ϕi,j(t) be the
spatial difference approximation to ϕ(t, xi, yj).

Let tn = n∆t, n ≥ 0, and ∆t > 0 be the time step, and let ϕn
i,j be

the full difference approximation to ϕ(tn, xi, yj).
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Discrete differential operators and BC

Define the discrete differential operators: for 1 ≤ i, j ≤ M− 1,

∇+
x ϕi,j =

ϕi+1,j − ϕi,j

h
, (forward difference)

∇−x ϕi,j =
ϕi,j − ϕi−1,j

h
, (backward difference)

∇+
y ϕi,j =

ϕi,j+1 − ϕi,j

h
, (forward difference)

∇−y ϕi,j =
ϕi,j − ϕi,j−1

h
, (backward difference)

∇0
xϕi,j :=

(∇+
x +∇−x

2

)
ϕi,j, ∇0

yϕi,j :=
(∇+

y +∇−y
2

)
ϕi,j.

(central differences)

Discretize the homogeneous Neumann BC:
∂ϕ

∂n
= 0 on ∂Ω

ϕ0,j = ϕ1,j, ϕM,j = ϕM−1,j, ϕi,0 = ϕi,1, ϕi,M = ϕi,M−1.
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Finite difference discretization: spatial variables

Performing the spatial discretization [Getreuer-2012], we have

∂ϕi,j

∂t
= δϵ(ϕi,j)

{
µ
(
∇−x

∇+
x ϕi,j√

η2 + (∇+
x ϕi,j)2 + (∇0

yϕi,j)2

+∇−y
∇+

y ϕi,j√
η2 + (∇0

xϕi,j)2 + (∇+
y ϕi,j)2

)

−ν− λ1(fi,j − c1)
2 + λ2(fi,j − c2)

2
}

,

where i, j = 1, 2, · · · , M− 1.

The purpose of small positive parameter η in the denominators prevents
division by zero.
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Spatial discretization

Define

Ai,j =
µ√

η2 + (∇+
x ϕi,j)2 + (∇0

yϕi,j)2
,

Bi,j =
µ√

η2 + (∇0
xϕi,j)2 + (∇+

y ϕi,j)2
.

Using the fact ∇+
x ϕi,j =

ϕi+1,j−ϕi,j
h , ∇+

y ϕi,j =
ϕi,j+1−ϕi,j

h and taking the
backward difference at Ai,j(ϕi+1,j − ϕi,j) and Bi,j(ϕi,j+1 − ϕi,j), then the
discretization can be written as

∂ϕi,j

∂t
= δϵ(ϕi,j)

{
1
h2

(
Ai,j(ϕi+1,j − ϕi,j)−Ai−1,j(ϕi,j − ϕi−1,j)

)
+

1
h2

(
Bi,j(ϕi,j+1 − ϕi,j)− Bi,j−1(ϕi,j − ϕi,j−1)

)
−ν− λ1(fi,j − c1)

2 + λ2(fi,j − c2)
2
}

.
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Temporal discretization

Define

Ãi,j =
1
h2 Ai,j, Ãi−1,j =

1
h2 Ai,j,

B̃i,j =
1
h2 Bi,j, B̃i,j−1 =

1
h2 Bi,j−1.

Time is discretized with a semi-implicit Gauss-Seidel method, values
ϕi,j, ϕi−1,j, ϕi,j−1 are evaluated at time tn+1 and all others at time tn.

ϕn+1
i,j − ϕn

i,j

∆t
= δϵ(ϕ

n
i,j)

{
Ãi,jϕ

n
i+1,j + Ãi−1,jϕ

n+1
i−1,j + B̃i,jϕ

n
i,j+1 + B̃i,j−1ϕn+1

i,j−1

−
(

Ãi,j + Ãi−1,j + B̃i,j + B̃i,j−1

)
ϕn+1

i,j

−ν− λ1(fi,j − c1)
2 + λ2(fi,j − c2)

2
}

.
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Gauss-Seidel scheme

This allows ϕ at time tn+1 to be solved by one Gauss-Seidel sweep from
left to right, bottom to top:

ϕn+1
i,j =

{
ϕn

i,j + ∆tδϵ(ϕ
n
i,j)
(

Ãi,jϕ
n
i+1,j + Ãi−1,jϕ

n+1
i−1,j + B̃i,jϕ

n
i,j+1

+B̃i,j−1ϕn+1
i,j−1 − ν− λ1(fi,j − c1)

2 + λ2(fi,j − c2)
2
)}

×
{

1 + ∆tδϵ(ϕi,j)
(

Ãi,j + Ãi−1,j + B̃i,j + B̃i,j−1

)}−1

,

where

Ãi,j =
µ

h2

√
η2 +

(
(ϕn

i+1,j − ϕn
i,j)/h

)2
+
(
(ϕn

i,j+1 − ϕn+1
i,j−1)/(2h)

)2
,

B̃i,j =
µ

h2

√
η2 +

(
(ϕn

i+1,j − ϕn+1
i−1,j)/(2h)

)2
+
(
(ϕn

i,j − ϕn
i+1,j)/h

)2
.
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Gauss-Seidel scheme

We can rewrite Ãi,j and B̃i,j as follows:

Ãi,j =
µ

h2

√
η2 +

(
(ϕn

i+1,j − ϕn
i,j)/h

)2
+
(
(ϕn

i,j+1 − ϕn+1
i,j−1)/(2h)

)2
,

=
(µ/h)√

(hη)2 + (ϕn
i+1,j − ϕn

i,j)
2 +

(
(ϕn

i,j+1 − ϕn+1
i,j−1)/2

)2
,

B̃i,j =
µ

h2

√
η2 +

(
(ϕn

i+1,j − ϕn+1
i−1,j)/(2h)

)2
+
(
(ϕn

i,j − ϕn
i+1,j)/h

)2

=
(µ/h)√

(hη)2 +
(
(ϕn

i+1,j − ϕn+1
i−1,j)/2

)2
+ (ϕn

i,j − ϕn
i+1,j)

2

.

In numerical implementation, we take (hη) = 10−8.
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Numerical experiments
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