Numerical Methods for Variational Image Processing

Suh-Yuh Yang (楊肅煜)

Department of Mathematics, National Central University Jhongli District, Taoyuan City 320317, Taiwan

First version: November 13, 2022/Last updated: May 14, 2024

Outline

In these two lectures, I will briefly introduce

1 Variational method for image denoising

- The Rudin-Osher-Fatemi total-variation model
- Calculus of variations and the Euler-Lagrange equation
- Implementation: a finite difference method
- **2** Variational method for image segmentation
 - The Mumford-Shah model and the Chan-Vese model
 - Implementation: the level set method + a finite difference method

What are these topics doing?

Variational image denoising

2 Variational image segmentation

Lecture 1: Variational method for image denoising

The content of this lecture is mainly based on

- P. Getreuer, Rudin-Osher-Fatemi total variation denoising using split Bregman, *Image Processing On Line*, 2 (2012), pp. 74-95.
- L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, *Physica D*, 60 (1992), pp. 259-268.

Total variation (TV)

Let $\Omega := (a, b) \subset \mathbb{R}$ be an open bounded interval. Let $\mathcal{P}_n = \{x_0, x_1, \dots, x_n\}$, with $x_0 = a$ and $x_n = b$, be an arbitrary partition of $\overline{\Omega} = [a, b]$ and $\Delta x_i = x_i - x_{i-1}$, for $i = 1, 2, \dots, n$. The total variation of a real-valued function $u : \overline{\Omega} \to \mathbb{R}$ is defined as the quantity,

$$||u||_{TV(\Omega)} := \sup_{\mathcal{P}_n} \sum_{i=1}^n |u(x_i) - u(x_{i-1})|.$$

If $||u||_{TV(\Omega)} < \infty$ *, then we say u is a function of bounded variation.*

Remarks:

• If *u* is a smooth function, then we have

$$||u||_{TV(\Omega)} = \sup_{\mathcal{P}_n} \sum_{i=1}^n \left| \frac{u(x_i) - u(x_{i-1})}{\Delta x_i} \right| \Delta x_i = \int_{\Omega} |u'(x)| \, dx.$$

• $||u||_{TV(\Omega)} = 0$ does not imply $u \equiv 0$; any constant function u has $||u||_{TV(\Omega)} = 0 \implies ||u||_{TV(\Omega)}$ is not a norm on any vector space.

Examples of bounded variation functions

All these three functions *f*, *g* and *h* have total variation 2

Denoising

Total variation of $u = ||u||_{TV(\Omega)} = \int_{\Omega} |u'(x)| dx$ if u is smooth. Denoising is the problem of removing noise from an image.

minimizes $\left(\int_{\Omega} |u'(x)| dx + \text{ some data fidelity term}\right) \Longrightarrow \text{denoising!}$

A noisy signal and its denoising result

The ROF total-variation model

Let $f : \overline{\Omega} \subset \mathbb{R}^2 \to \mathbb{R}$ be a given noisy image. Rudin, Osher, and Fatemi (*Physica D*, 1992) proposed the model for image denoising:

$$\min_{u \in BV(\Omega) \cap L^{2}(\Omega)} \left(\underbrace{\|u\|_{TV(\Omega)}}_{regularizer} + \frac{\lambda}{2} \underbrace{\int_{\Omega} \left(u(x) - f(x) \right)^{2} dx}_{data \ fidelity} \right),$$

where $\lambda > 0$ is a tuning parameter which controls the regularization strength. Notice that

- A smaller value of λ will lead to a more regular solution.
- The space of functions with bounded variation help remove spurious oscillations (noise) and preserve sharp signals (edges).
- The *TV* term allows the solution to have discontinuities.

The bounded variation space $BV(\Omega)$

Let Ω be an open subset of \mathbb{R}^2 . The space of functions of bounded variation $BV(\Omega)$ is defined as the space of real-valued function $u \in L^1(\Omega)$ such that the total variation is finite, i.e.,

 $BV(\Omega) = \{ u \in L^1(\Omega) : \|u\|_{TV(\Omega)} < \infty \},\$

where

- $\|u\|_{TV(\Omega)} = \sup\left\{\int_{\Omega} u \nabla \cdot \varphi d\mathbf{x} : \varphi \in C^1_c(\Omega, \mathbb{R}^2), \|\varphi\|_{(L^{\infty}(\Omega))^2} \leq 1\right\}$
- C¹_c(Ω, ℝ²) is the space of continuously differentiable vector functions with compact support in Ω.
- *L*¹(Ω) and *L*[∞](Ω) are the usual *L*^p(Ω) space for *p* = 1 and *p* = ∞, respectively, equipped with the || · ||_{L^p(Ω)} norm.
- Then $BV(\Omega)$ is a Banach space with the norm,

 $||u||_{BV(\Omega)} := ||u||_{L^1(\Omega)} + ||u||_{TV(\Omega)}.$

The existence, uniqueness and stability of solution

Theorem: Consider the ROF total-variation model. Then we have

- (1) If u is smooth, then $||u||_{TV(\Omega)} = \int_{\Omega} |\nabla u| dx$.
- (2) If $f \in L^2(\Omega)$, then the minimizer exists and is unique and is stable in L^2 with respect to perturbations in f.

ROF model for image denoising: Below we assume that *u* is smooth, and we consider the model

$$\min_{u\in\mathcal{V}}\left(\int_{\Omega}|\nabla u|\,d\mathbf{x}+\frac{\lambda}{2}\int_{\Omega}\left(u(\mathbf{x})-f(\mathbf{x})\right)^{2}d\mathbf{x}\right).$$

Let $E[\cdot]$ be the energy functional over the vector space \mathcal{V} ,

$$E[u] := \int_{\Omega} |\nabla u| \, d\mathbf{x} + \frac{\lambda}{2} \int_{\Omega} \left(u(\mathbf{x}) - f(\mathbf{x}) \right)^2 d\mathbf{x}.$$

Calculus of variations

Let $\Omega \subset \mathbb{R}^2$ be an open bounded domain. We consider the following real-valued energy functional,

$$E[v] := \int_{\Omega} L(x, y, v(x, y), v_x(x, y), v_y(x, y)) dx,$$

where we assume that $v \in C^2(\overline{\Omega})$ and $L \in C^2$ with respect to its arguments $x = (x, y), v, v_x$ and v_y .

• If E[v] attains a local minimum (or maximum) at u and $\eta(x, y)$ is a smooth function on $\overline{\Omega}$, then for ε close to 0, we have

 $E[u] \le E[u + \varepsilon \eta].$ (or $E[u] \ge E[u + \varepsilon \eta]$)

• Define $\Phi(\varepsilon) := E[u + \varepsilon \eta]$ in the variable ε . Then we have

$$\Phi'(0) = \frac{d\Phi}{d\varepsilon}\Big|_{\varepsilon=0} = \int_{\Omega} \frac{dL}{d\varepsilon}\Big|_{\varepsilon=0} d\mathbf{x} = 0. \quad (just \ a \ necessary \ condition)$$

The total derivative of *L*

Taking the total derivative of $L(x, y, v, v_x, v_y)$, where $v = u + \varepsilon \eta$ $v_x = u_x + \varepsilon \eta_x$ and $v_y = u_y + \varepsilon \eta_y$, we have

$$\frac{dL}{d\varepsilon} = \frac{\partial L}{\partial v}\eta + \frac{\partial L}{\partial v_x}\eta_x + \frac{\partial L}{\partial v_y}\eta_y = \frac{\partial L}{\partial v}\eta + \left(\frac{\partial L}{\partial v_x}, \frac{\partial L}{\partial v_y}\right)^\top \cdot \nabla \eta.$$

By the integration by parts, we obtain

$$0 = \int_{\Omega} \frac{dL}{d\varepsilon} \Big|_{\varepsilon=0} d\mathbf{x} = \int_{\Omega} \frac{\partial L}{\partial u} \eta + \left(\frac{\partial L}{\partial u_x}, \frac{\partial L}{\partial u_y}\right)^\top \cdot \nabla \eta \, d\mathbf{x} \quad \swarrow (\star)$$

$$= \int_{\Omega} \frac{\partial L}{\partial u} \eta \, d\mathbf{x} + \int_{\partial \Omega} \left(\left(\frac{\partial L}{\partial u_x}, \frac{\partial L}{\partial u_y}\right)^\top \cdot \mathbf{n} \right) \eta \, d\sigma - \int_{\Omega} \left(\nabla \cdot \left(\frac{\partial L}{\partial u_x}, \frac{\partial L}{\partial u_y}\right)^\top \right) \eta \, d\mathbf{x},$$

where $L(x, y, v, v_x, v_y) = L(x, y, u, u_x, u_y)$ when $\varepsilon = 0$. Taking arbitrary smooth functions η 's with $\eta(\mathbf{x}) = 0$ on $\partial\Omega$, we have

$$\int_{\Omega} \eta \left(\frac{\partial L}{\partial u} - \nabla \cdot \left(\frac{\partial L}{\partial u_x}, \frac{\partial L}{\partial u_y} \right)^{\top} \right) dx = 0.$$

The Euler-Lagrange equation

• According to the fundamental lemma of calculus of variations, we have the Euler-Lagrange equation,

$$\frac{\partial L}{\partial u} - \nabla \cdot (\frac{\partial L}{\partial u_x}, \frac{\partial L}{\partial u_y})^\top = 0 \quad \text{in } \Omega, \qquad \leftarrow (\star \star)$$

and

$$\frac{\delta E}{\delta u} := \frac{\partial L}{\partial u} - \nabla \cdot \left(\frac{\partial L}{\partial u_x}, \frac{\partial L}{\partial u_y}\right)^\top$$

is called the functional derivative of E[u].

• By substituting (**) into (*), we have

$$\int_{\partial\Omega} \eta \left(\frac{\partial L}{\partial u_x} n_1 + \frac{\partial L}{\partial u_y} n_2 \right) d\sigma = 0,$$

for any smooth function η on $\overline{\Omega}$, which implies the homogeneous Neumann boundary condition,

$$\frac{\partial L}{\partial u_x}n_1 + \frac{\partial L}{\partial u_y}n_2 = 0 \quad \text{on } \partial\Omega.$$

Euler-Lagrange equation of the ROF model

Consider the energy minimization problem (ROF model):

$$\min_{u\in\mathcal{V}}\left(\int_{\Omega}|\nabla u|\,dx+\frac{\lambda}{2}\int_{\Omega}\left(u(x)-f(x)\right)^{2}dx\right),$$

where \mathcal{V} is a suitable space and $\lambda > 0$ is the regularization parameter. Since $\int_{\Omega} |\nabla u| d\mathbf{x} = \int_{\Omega} \sqrt{u_x^2 + u_y^2} d\mathbf{x}$, we have

$$L(x, y, u, u_x, u_y) = \sqrt{u_x^2 + u_y^2} + \frac{\lambda}{2}(u - f)^2,$$

which leads to the Euler-Lagrange equation with the Neumann BC,

$$-\nabla \cdot \left(\frac{\nabla u}{|\nabla u|}\right) + \lambda u = \lambda f \quad \text{in } \Omega, \qquad \frac{\partial u}{\partial n} = 0 \quad \text{on } \partial \Omega.$$

The homogeneous Neumann boundary condition comes from

$$0 = \frac{\partial L}{\partial u_x} n_1 + \frac{\partial L}{\partial u_y} n_2 = \left(\frac{\partial L}{\partial u_x}, \frac{\partial L}{\partial u_y}\right) \cdot \boldsymbol{n} = \left(\frac{\nabla u}{|\nabla u|}\right) \cdot \boldsymbol{n} = \frac{1}{|\nabla u|} \frac{\partial u}{\partial \boldsymbol{n}} \quad \text{on } \partial\Omega.$$

If $|\nabla u| = 0 \Rightarrow \nabla u = \mathbf{0} \Rightarrow \frac{\partial u}{\partial \boldsymbol{n}} = 0$. Otherwise, we still have $\frac{\partial u}{\partial \boldsymbol{n}} = 0$.

Nonlinear PDE-based denoising algorithm

The boundary value problem of the ROF model is given by

$$-\nabla \cdot \left(\frac{\nabla u}{|\nabla u|}\right) + \lambda u = \lambda f \text{ in } \Omega,$$
$$\frac{\partial u}{\partial n} = 0 \text{ on } \partial \Omega.$$

Therefore, the minimizer can be obtained numerically by evolving a *finite difference approximation* of the parabolic partial differential equation with the homogeneous Neumann boundary condition:

Heat-type equation $\frac{\partial u}{\partial t} - \nabla \cdot \left(\frac{\nabla u}{|\nabla u|}\right) + \lambda u = \lambda f \quad \text{for } (t, \mathbf{x}) \in (0, T) \times \Omega,$ $u(0, \mathbf{x}) = f(\mathbf{x}) \text{ for } \mathbf{x} \in \overline{\Omega}, \quad (\text{initial condition})$ $\nabla u \cdot \mathbf{n} = 0 \quad \text{for } t \in [0, T] \text{ and } \mathbf{x} \in \partial \Omega. \quad (\text{boundary condition})$

Numerical differentiation: 1-D

Let $v : [a, b] \to \mathbb{R}$ and let $a = x_0 < x_1 < \cdots < x_N = b$ be a uniform partition of [a, b] with grid size h = (b - a)/N > 0.

- Forward difference for $v'(x_i)$: Assume that $v \in C^2[a, b]$. Then for $i = 1, 2, \dots, N-1$, by Taylor's theorem, we have $v(x_i + h) = v(x_i) + v'(x_i)h + \frac{1}{2}v''(\xi_i)h^2$ for some $\xi_i \in (x_i, x_i + h)$. $\therefore v'(x_i) = \frac{1}{h}(v(x_i + h) - v(x_i)) - \frac{1}{2}v''(\xi_i)h$ $\therefore v'(x_i) \approx \frac{1}{h}(v(x_{i+1}) - v(x_i))$, it is a first-order approximation!
- Backward difference for $v'(x_i)$: Assume that $v \in C^2[a, b]$. Then for $i = 1, 2, \dots, N-1$, by Taylor's theorem, we have $v(x_i - h) = v(x_i) - v'(x_i)h + \frac{1}{2}v''(\xi_i)h^2$ for some $\xi_i \in (x_i - h, x_i)$. $\therefore v'(x_i) = \frac{1}{h}(v(x_i) - v(x_i - h)) + \frac{1}{2}v''(\xi_i)h$ $\therefore v'(x_i) \approx \frac{1}{h}(v(x_i) - v(x_{i-1}))$, it is a first-order approximation!

Numerical differentiation (cont'd)

• Central difference for $v'(x_i)$: Assume that $v \in C^3[a, b]$. Then for $i = 1, 2, \dots, N-1$, by Taylor's theorem, we have

$$\begin{aligned} v(x_i + h) &= v(x_i) + v'(x_i)h + \frac{1}{2}v''(x_i)h^2 + \frac{1}{6}v^{(3)}(\xi_{i1})h^3, \\ v(x_i - h) &= v(x_i) - v'(x_i)h + \frac{1}{2}v''(x_i)h^2 - \frac{1}{6}v^{(3)}(\xi_{i2})h^3, \end{aligned}$$

for some $\xi_{i1} \in (x_i, x_i + h)$ and $\xi_{i2} \in (x_i - h, x_i)$. Subtracting the second equation from the first equation, we have

- $v(x_i+h) v(x_i-h) = 2v'(x_i)h + \frac{1}{6}h^3(v^{(3)}(\xi_{i1}) + v^{(3)}(\xi_{i2})).$
- $\therefore v'(x_i) = \frac{1}{2h} \left(v(x_i + h) v(x_i h) \right) \frac{1}{6} h^2 \frac{1}{2} \left(v^{(3)}(\xi_{i1}) + v^{(3)}(\xi_{i2}) \right)$
- $\therefore \frac{1}{2} (v^{(3)}(\xi_{i1}) + v^{(3)}(\xi_{i2}))$ is between $v^{(3)}(\xi_{i1})$ & $v^{(3)}(\xi_{i2})$
- ∴ By the intermediate value theorem, $\exists \xi_i \in (x_i h, x_i + h)$ s.t. $v^{(3)}(\xi_i) = \frac{1}{2} (v^{(3)}(\xi_{i1}) + v^{(3)}(\xi_{i2}))$

 $\therefore v'(x_i) = \frac{1}{2h} (v(x_i + h) - v(x_i - h)) - \frac{1}{6} h^2 v^{(3)}(\xi_i)$

 $\therefore v'(x_i) \approx \frac{1}{2h} (v(x_{i+1}) - v(x_{i-1}))$, 2nd-order approximation!

Numerical differentiation (cont'd)

• Central difference for $v''(x_i)$: Assume that $v \in C^4[a, b]$. Then for $i = 1, 2, \cdots, N - 1$, by Taylor's theorem, we have $v(x_i+h) = v(x_i) + v'(x_i)h + \frac{1}{2}v''(x_i)h^2 + \frac{1}{4}v^{(3)}(x_i)h^3 + \frac{1}{24}v^{(4)}(\xi_{i1})h^4,$ $v(x_i - h) = v(x_i) - v'(x_i)h + \frac{1}{2}v''(x_i)h^2 - \frac{1}{2}v^{(3)}(x_i)h^3 + \frac{1}{24}v^{(4)}(\xi_{i2})h^4,$ for some $\xi_{i1} \in (x_i, x_i + h)$ and $\xi_{i2} \in (x_i - h, x_i)$. Therefore, we have $v(x_i+h) + v(x_i-h) = 2v(x_i) + v''(x_i)h^2 + \frac{1}{24}\{v^{(4)}(\xi_{i1}) + v^{(4)}(\xi_{i2})\}h^4.$ $v''(x_i) = \frac{1}{h^2} \{ v(x_i + h) - 2v(x_i) + v(x_i - h) \} - \frac{h^2}{24} \{ v^{(4)}(\xi_{i1}) + v^{(4)}(\xi_{i2}) \}$ $v \in C^{4}[a, b], \frac{1}{2}\{v^{(4)}(\xi_{i1}) + v^{(4)}(\xi_{i2})\}$ between $v^{(4)}(\xi_{i1}) \& v^{(4)}(\xi_{i2})$: By IVT, $\exists \xi_i$ between ξ_{i1} and ξ_{i2} ($\Rightarrow \xi_i \in (x_i - h, x_i + h)$) such that $v^{(4)}(\xi_i) = \frac{1}{2} \{ v^{(4)}(\xi_{i1}) + v^{(4)}(\xi_{i2}) \}$ $\therefore v''(x_i) = \frac{1}{12} \{ v(x_i + h) - 2v(x_i) + v(x_i - h) \} - \frac{1}{12} h^2 v^{(4)}(\xi_i)$ $\therefore v''(x_i) \approx \frac{1}{h^2} \{v(x_{i+1}) - 2v(x_i) + v(x_{i-1})\}, \text{ 2nd-order approximation!}$

Let $u_{i,j}^n$ denote an approximation to $u(t_n, x_i, y_j)$

•
$$\frac{\partial u}{\partial x}(t_n, x_i, y_j) \approx \nabla_x^+ u_{i,j}^n := \frac{u_{i+1,j}^n - u_{i,j}^n}{h} \text{ (forward difference in x)}$$
•
$$\frac{\partial u}{\partial x}(t_n, x_i, y_j) \approx \nabla_x^- u_{i,j}^n := \frac{u_{i,j}^n - u_{i-1,j}^n}{h} \text{ (backward difference in x)}$$
•
$$\frac{\partial u}{\partial x}(t_n, x_i, y_j) \approx \nabla_x u_{i,j}^n := \frac{u_{i+1,j}^n - u_{i-1,j}^n}{2h} = \frac{1}{2} \left(\nabla_x^+ u_{i,j}^n + \nabla_x^- u_{i,j}^n \right) \text{ (central difference in x)}$$
•
$$\frac{\partial u}{\partial y}(t_n, x_i, y_j) \approx \nabla_y^+ u_{i,j}^n := \frac{u_{i,j+1}^n - u_{i,j}^n}{h} \text{ (forward difference in y)}$$
•
$$\frac{\partial u}{\partial y}(t_n, x_i, y_j) \approx \nabla_y^- u_{i,j}^n := \frac{u_{i,j+1}^n - u_{i,j-1}^n}{h} \text{ (backward difference in y)}$$
•
$$\frac{\partial u}{\partial y}(t_n, x_i, y_j) \approx \nabla_y u_{i,j}^n := \frac{u_{i,j+1}^n - u_{i,j-1}^n}{h} = \frac{1}{2} \left(\nabla_y^+ u_{i,j}^n + \nabla_y^- u_{i,j}^n \right) \text{ (central difference in y)}$$

Central differences for second derivative

• Central difference for second derivative in *x*:

$$\begin{aligned} \nabla_x^- (\nabla_x^+ u_{i,j}^n) &= \nabla_x^- \Big(\frac{u_{i+1,j}^n - u_{i,j}^n}{h} \Big) = \frac{1}{h} \Big(\nabla_x^- u_{i+1,j}^n - \nabla_x^- u_{i,j}^n \Big) \\ &= \frac{1}{h} \Big(\frac{u_{i+1,j}^n - u_{i,j}^n}{h} - \frac{u_{i,j}^n - u_{i-1,j}^n}{h} \Big) \\ &= \frac{1}{h^2} \Big(u_{i+1,j}^n - 2u_{i,j}^n + u_{i-1,j}^n \Big) \approx \frac{\partial^2 u}{\partial x^2} (t_n, x_i, y_j). \end{aligned}$$

• Central difference for second derivative in *y*:

۲

$$\nabla_y^-(\nabla_y^+ u_{i,j}^n) = \frac{1}{h^2} \left(u_{i,j+1}^n - 2u_{i,j}^n + u_{i,j-1}^n \right) \approx \frac{\partial^2 u}{\partial y^2} (t_n, x_i, y_j).$$
$$\nabla_x^+(\nabla_x^- u_{i,j}^n) = \nabla_x^-(\nabla_x^+ u_{i,j}^n), \text{ will also be denoted as } \nabla_x^2 u_{i,j}^n.$$

$$\nabla_y^+(\nabla_y^- u_{i,j}^n) = \nabla_y^-(\nabla_y^+ u_{i,j}^n)$$
, will also be denoted as $\nabla_y^2 u_{i,j}^n$

Forward Euler in time *t*

We will consider a finite difference scheme for approximating the solution of the IBVP for the Euler-Lagrange equation:

$$\frac{\partial u}{\partial t} - \nabla \cdot \left(\frac{\nabla u}{|\nabla u|}\right) + \lambda u = \lambda f \quad \text{for } (t, \mathbf{x}) \in (0, T) \times \Omega,$$
$$u(0, \mathbf{x}) = f(\mathbf{x}) \text{ for } \mathbf{x} \in \overline{\Omega},$$
$$\nabla u \cdot \mathbf{n} = 0 \quad \text{for } t \in [0, T] \text{ and } \mathbf{x} \in \partial \Omega.$$

Suppose that the image domain is given by $\overline{\Omega} = [0, 1] \times [0, 1]$. Let $x_i = ih$ and $y_j = jh$, $i, j = 0, 1, \dots, N$, with h = 1/N, and $t_n = n\Delta t$. Let $f_{i,j} := f(x_i, y_j)$ and $u_{i,j}^n$ be the difference approximation to $u(t_n, x_i, y_j)$.

Forward Euler in time *t*:

$$\begin{aligned} \frac{\partial u}{\partial t}(t_n, x_i, y_j) &= \frac{1}{\Delta t} \left(u(t_{n+1}, x_i, y_j) - u(t_n, x_i, y_j) \right) - \frac{1}{2} \frac{\partial^2 u}{\partial t^2}(\tau_i, x_i, y_j) \Delta t \\ &\approx \frac{1}{\Delta t} \left(u_{i,j}^{n+1} - u_{i,j}^n \right). \end{aligned}$$

The forward Euler finite difference scheme

The proposed explicit finite difference scheme is given by:

$$\begin{split} \frac{u_{i,j}^{n+1} - u_{i,j}^{n}}{\Delta t} &= \lambda(f_{i,j} - u_{i,j}^{n}) + \nabla_{x}^{-} \left(\frac{\nabla_{x}^{+} u_{i,j}^{n}}{\sqrt{\left(\nabla_{x}^{+} u_{i,j}^{n}\right)^{2} + \left(m(\nabla_{y}^{+} u_{i,j}^{n}, \nabla_{y}^{-} u_{i,j}^{n})\right)^{2}}}{+ \nabla_{y}^{-} \left(\frac{\nabla_{y}^{+} u_{i,j}^{n}}{\sqrt{\left(\nabla_{y}^{+} u_{i,j}^{n}\right)^{2} + \left(m(\nabla_{x}^{+} u_{i,j}^{n}, \nabla_{x}^{-} u_{i,j}^{n})\right)^{2}}} \right), \quad 1 \le i, j \le N - 1, \end{split}$$

$$u_{0,j}^n = u_{1,j}^n, \ u_{N,j}^n = u_{N-1,j}^n, \ u_{i,0}^n = u_{i,1}^n, \ u_{i,N}^n = u_{i,N-1}^n, \quad 0 \le i,j \le N.$$

where $m(a, b) = \left(\frac{\operatorname{sign} a + \operatorname{sign} b}{2}\right) \min\{|a|, |b|\}$ is the *minmod operator*; see [ROF 1992] for more details.

- The forward Euler scheme is conditionally stable, we need $\Delta t/h^2 \leq c$.
- Numerous other algorithms have been proposed to solve the TV denoising minimization problem, e.g., the split Bregman iterations.

Rescaling the finite difference scheme

Let $\delta_x^+ u_{i,j}^n := u_{i+1,j}^n - u_{i,j}^n$, $\delta_x^- u_{i,j}^n := u_{i,j}^n - u_{i-1,j}^n$, $\delta_y^+ u_{i,j}^n := u_{i,j+1}^n - u_{i,j}^n$, $\delta_y^- u_{i,j}^n := u_{i,j}^n - u_{i,j-1}^n$. Then the proposed finite difference scheme can be rewritten as

$$\frac{u_{i,j}^{n+1} - u_{i,j}^{n}}{\Delta t} = \lambda (f_{i,j} - u_{i,j}^{n}) + \frac{1}{h} \delta_{x}^{-} \left(\frac{\delta_{x}^{+} u_{i,j}^{n}}{\sqrt{\left(\delta_{x}^{+} u_{i,j}^{n}\right)^{2} + \left(m\left(\delta_{y}^{+} u_{i,j}^{n}, \delta_{y}^{-} u_{i,j}^{n}\right)\right)^{2}}} \right) + \frac{1}{h} \delta_{y}^{-} \left(\frac{\delta_{y}^{+} u_{i,j}^{n}}{\sqrt{\left(\delta_{y}^{+} u_{i,j}^{n}\right)^{2} + \left(m\left(\delta_{x}^{+} u_{i,j}^{n}, \delta_{x}^{-} u_{i,j}^{n}\right)\right)^{2}}} \right)}, \quad 1 \le i, j \le N-1,$$

$$u_{0,j}^{n} = u_{1,j}^{n}, \ u_{N,j}^{n} = u_{N-1,j}^{n}, \ u_{i,0}^{n} = u_{i,1}^{n}, \ u_{i,N}^{n} = u_{i,N-1}^{n}, \quad 0 \le i,j \le N.$$

Let $A_{i,j}^{n} := \frac{\delta_{x}^{+} u_{i,j}^{n}}{\sqrt{\left(\delta_{x}^{+} u_{i,j}^{n}\right)^{2} + \left(m(\delta_{y}^{+} u_{i,j}^{n}, \delta_{y}^{-} u_{i,j}^{n})\right)^{2}}}, \quad \delta_{x}^{+} u_{x}^{n}.$

$$B_{i,j}^{n} := \frac{g_{i,j}}{\sqrt{\left(\delta_{y}^{+}u_{i,j}^{n}\right)^{2} + \left(m\left(\delta_{x}^{+}u_{i,j}^{n},\delta_{x}^{-}u_{i,j}^{n}\right)\right)^{2}}}$$

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Variational Image Processing - 23/65

Rescaling the finite difference scheme (cont'd)

Then we have

$$\frac{u_{i,j}^{n+1} - u_{i,j}^n}{\Delta t} = \lambda(f_{i,j} - u_{i,j}^n) + \frac{1}{h}\delta_x^- A_{i,j}^n + \frac{1}{h}\delta_y^- B_{i,j}^n, \quad 1 \le i,j \le N-1,$$

$$u_{0,j}^n = u_{1,j}^n, \quad u_{N,j}^n = u_{N-1,j}^n, \quad u_{i,0}^n = u_{i,1}^n, \quad u_{i,N}^n = u_{i,N-1}^n, \quad 0 \le i,j \le N.$$
Setting $\widetilde{\Delta t} = \frac{\Delta t}{h}$ and $\widetilde{\lambda} = h\lambda$, the first equation becomes
$$\frac{u_{i,j}^{n+1} - u_{i,j}^n}{\widetilde{\Delta t}} = \widetilde{\lambda}(f_{i,j} - u_{i,j}^n) + \delta_x^- A_{i,j}^n + \delta_y^- B_{i,j}^n, \quad 1 \le i,j \le N-1.$$

Rearranging the equation, we finally obtain

$$u_{i,j}^{n+1} = u_{i,j}^n + \widetilde{\Delta t} \widetilde{\lambda} (f_{i,j} - u_{i,j}^n) + \widetilde{\Delta t} \delta_x^- A_{i,j}^n + \widetilde{\Delta t} \delta_y^- B_{i,j}^n, \quad 1 \le i,j \le N-1.$$

A uniform partition of $\Omega = (0, 1) \times (0, 1)$

Let • denote an arbitrary point (x, y) in $\overline{\Omega}$.

- (1) In usual finite differences, the grid points (x_i, y_j) locate at •.
- (2) In image processing, however, a digital image is usually stored as a matrix. Thus, it is more convenient to use the "*cell-centered grids*," i.e., grid points (x_i, y_j) located at × with the coordinates $x_i = \frac{h}{2} + (i-1)h, \ y_j = \frac{h}{2} + (j-1)h, \ i, j = (0), 1, \dots N, (N+1).$ And the homogeneous Neumann BC implies $u_{0,j}^n = u_{1,j}^n, \ u_{N+1,j}^n = u_{N,j}^n, \ u_{i,0}^n = u_{i,1}^n, \ u_{i,N+1}^n = u_{i,N}^n, \ 1 \le i, j \le N.$ © Sub-Yuh Yang (ﷺ) Math. Dept, NCU, Taiwan Variational Image Processing –25/65

ROF finite difference solutions at different steps

original

noisy (PSNR=23.3241)

denoised (PSNR=27.4343)

denoised (PSNR=29.2388)

denoised (PSNR=29.3847)

denoised (PSNR=29.0856)

Gaussian noise (0, 0.005), h = 1/256, $\tilde{\lambda} = h\lambda = 0.05$, $\tilde{\Delta t} = \Delta t/h = 0.01$, at 500, 1000, 1500, 2000-th steps

Three indices to measure the quality

Below are three indices to measure the quality of images and to evaluate the denoising performance. Let \tilde{u} be the clean image, \bar{u} be the mean intensity of the clean image, and u be the produced image.

$$MSE(\tilde{u}, u) := \frac{1}{N^2} \sum_{i=1}^{N} \sum_{j=1}^{N} (\tilde{u}_{i,j} - u_{i,j})^2 \quad (\text{mean squared error})$$

$$PSNR := 10 \log_{10} \left(\frac{255^2}{MSE(\tilde{u}, u)} \right) \quad (\text{peak signal to noise ratio})$$

$$SNR := 10 \log_{10} \left(\frac{MSE(\tilde{u}, \overline{u})}{MSE(\tilde{u}, u)} \right) \quad (\text{signal to noise ratio})$$

In general, the higher the value of *PSNR* the better the quality of the produced image.

There is another index, structural similarity (*SSIM*). The maximum value of *SSIM* is 1.

ROF finite difference solutions of different λ 's (cameraman)

original

noisy (PSNR=23.3549)

denoised (PSNR=28.7006)

denoised (PSNR=29.2673)

denoised (PSNR=29.3919)

denoised (PSNR=29.4236)

Gaussian noise (0, 0.005), h = 1/256, $\tilde{\lambda} = h\lambda = 1/10, 1/20, 1/30, 1/40$, $\tilde{\Delta t} = \Delta t/h = 0.01$, at 1000-th step

ROF finite difference solutions of different λ 's (Einstein)

original

noisy (PSNR=23.0807)

denoised (PSNR=29.4614)

denoised (PSNR=30.5647)

denoised (PSNR=30.9154)

denoised (PSNR=31.0644)

Gaussian noise (0, 0.005), h = 1/340, $\tilde{\lambda} = h\lambda = 1/10, 1/20, 1/30, 1/40$, $\tilde{\Delta t} = \Delta t/h = 0.01$, at 1000-th step

Discretization of the ROF model using cell-centered grids

Using the cell-centered grids of $\overline{\Omega}$, we approximate the total variation term by

$$\|u\|_{TV(\Omega)} \approx h^2 \sum_{i=1}^N \sum_{j=1}^N |\nabla_h u_{ij}|.$$

Here we define the discrete gradient operator ∇_h by

 $\nabla_h u_{i,j} := (\nabla_x u_{i,j}, \nabla_y u_{i,j})^\top$

and recall that

$$\nabla_x u_{i,j} = \frac{u_{i+1,j} - u_{i-1,j}}{2h}, \quad \nabla_y u_{i,j} = \frac{u_{i,j+1} - u_{i,j-1}}{2h}, \quad 1 \le i,j \le N,$$
$$u_{0,j} = u_{1,j}, \ u_{N+1,j} = u_{N,j}, \ u_{i,0} = u_{i,1}, \ u_{i,N+1} = u_{i,N}, \quad 1 \le i,j \le N.$$

The constrained minimization of the ROF model

Introducing the new unknown vector function *d*, we have the constrained minimization problem:

$$\min_{u, d} \left(\int_{\Omega} |d| \, d\mathbf{x} + \frac{\lambda}{2} \int_{\Omega} \left(u(\mathbf{x}) - f(\mathbf{x}) \right)^2 d\mathbf{x} \right) \quad \text{subject to } d = \nabla u.$$

Therefore, the approximate constrained minimization of the ROF model can be posed as follows:

$$\min_{u,d} \left(\sum_{i,j=1}^N |d_{i,j}| + \frac{\lambda}{2} \sum_{i,j=1}^N (f_{i,j} - u_{i,j})^2 \right) \quad \text{subject to } d_{i,j} = \nabla_h u_{i,j},$$

where *u* and *d* denote all $u_{i,j}$ and $d_{i,j}$. Introducing a penalty parameter $\gamma > 0$, we obtain the unconstrained minimization problem:

$$\min_{u,d} \left(\sum_{i,j=1}^{N} |d_{i,j}| + \frac{\lambda}{2} \sum_{i,j=1}^{N} (f_{i,j} - u_{i,j})^2 + \frac{\gamma}{2} \sum_{i,j=1}^{N} |d_{i,j} - \nabla_h u_{i,j} - b_{i,j}|^2 \right),$$

where *b* (denotes all $b_{i,j}$) is an auxiliary variable, which can be expressed in terms of *u* and *d*, related to the Bregman iterations, and $|\cdot| := ||\cdot||_2$ in \mathbb{R}^2 .

An alternating direction approach: split Bregman method

Goldstein and Osher (2009) proposed to solve the above-mentioned problem by an alternating direction approach: (see Getreuer 2012) *u*-subproblem: With *d* and *b* fixed, we solve

$$u^{k+1} = \arg\min_{u} \left(\frac{\lambda}{2} \sum_{i,j} (f_{i,j} - u_{i,j})^2 + \frac{\gamma}{2} \sum_{i,j} |d_{i,j}^k - \nabla_h u_{i,j} - b_{i,j}^k|^2 \right),$$

where the superscript *k* denotes the values evaluated at *k*-iteration. It can be viewed as the approximation of the minimization problem:

$$\min_{u}\frac{\lambda}{2}\int_{\Omega}(f-u)^{2}\,dx+\frac{\gamma}{2}\int_{\Omega}|d^{k}-\nabla u-b^{k}|^{2}\,dx.$$

The associated Euler-Lagrange equation of the above minimization problem (also called the screened Poisson equation) is given by

$$\lambda u - \gamma \nabla \cdot \nabla u = \lambda f - \gamma \nabla \cdot (d^k - b^k),$$

where ∇u is the gradient of u, $\nabla \cdot v$ is the divergence of vector function v, and $\Delta u := \nabla^2 u := \nabla \cdot \nabla u$ is the Laplacian of u.

The discrete screened Poisson equation

The discrete screened Poisson equation is given by

$$\lambda u_{i,j} - \gamma \nabla_h^2 u_{i,j} = \lambda f_{i,j} - \gamma \nabla_h \cdot (d_{i,j}^k - b_{i,j}^k), \quad 1 \le i, j \le N_h$$

which should be supplemented with the BC:

 $u_{0,j} = u_{1,j}, \ u_{N+1,j} = u_{N,j}, \ u_{i,0} = u_{i,1}, \ u_{i,N+1} = u_{i,N}, \ 1 \le i,j \le N.$

• The term $\Delta_h u_{i,j} := \nabla_h^2 u_{i,j} := \nabla_h^- \cdot \nabla_h^+ u_{i,j}$

$$\begin{split} \nabla_h^- \cdot \nabla_h^+ u_{i,j} &= (\nabla_x^-, \nabla_y^-)^\top \cdot (\nabla_x^+ u_{i,j}, \nabla_y^+ u_{i,j})^\top \\ &= \nabla_x^- (\nabla_x^+ u_{i,j}) + \nabla_y^- (\nabla_y^+ u_{i,j}) \\ &= \frac{1}{h^2} \Big(\big(u_{i+1,j} - 2u_{i,j} + u_{i-1,j} \big) + \big(u_{i,j+1} - 2u_{i,j} + u_{i,j-1} \big) \Big) \\ &= \frac{1}{h^2} \Big(-4u_{i,j} + u_{i-1,j} + u_{i+1,j} + u_{i,j-1} + u_{i,j+1} \Big). \end{split}$$

• Let
$$g_{i,j}^k = (g_{1,i,j}^k, g_{2,i,j}^k)^\top := d_{i,j}^k - b_{i,j}^k$$
. Then
 $\nabla_h \cdot g_{i,j}^k = \nabla_x g_{1,i,j}^k + \nabla_y g_{2,i,j}^k = \frac{g_{1,i+1,j}^k - g_{1,i-1,j}^k}{2h} + \frac{g_{2,i,j+1}^k - g_{2,i,j-1}^k}{2h}.$

The resulting linear system: Au = r

Finally, the resulting linear system Au = r will be given by

$$\begin{split} & (\lambda + 4\frac{\gamma}{h^2})u_{i,j} - \frac{\gamma}{h^2} \Big(u_{i-1,j} + u_{i+1,j} + u_{i,j-1} + u_{i,j+1} \Big) \\ & = \lambda f_{i,j} - \frac{\gamma}{2h} \Big(g_{1,i+1,j}^k - g_{1,i-1,j}^k + g_{2,i,j+1}^k - g_{2,i,j-1}^k \Big), 1 \le i,j \le N. \end{split}$$

- Since λ > 0 and γ > 0, Au = r will be symmetric and diagonally dominant. It can be solved by many different methods such as the iterative techniques.
- For example, the Gauss-Seidel iterative method gives

$$\left(\lambda + 4\frac{\gamma}{h^2}\right)u_{i,j}^{k+1} = c_{i,j}^k + \frac{\gamma}{h^2}\left(u_{i-1,j}^{k+1} + u_{i+1,j}^k + u_{i,j-1}^{k+1} + u_{i,j+1}^k\right), \ k \ge 0,$$

where

$$c_{i,j}^{k} := \lambda f_{i,j} - \frac{\gamma}{2h} \Big(g_{1,i+1,j}^{k} - g_{1,i-1,j}^{k} + g_{2,i,j+1}^{k} - g_{2,i,j-1}^{k} \Big).$$

d-subproblem

d-subproblem: With *u* fixed, we solve

$$d^{k+1} = \arg\min_{d} \left(\sum_{i,j=1}^{N} |d_{i,j}| + \frac{\gamma}{2} \sum_{i,j=1}^{N} |d_{i,j} - \nabla_{h} u_{i,j}^{k+1} - b_{i,j}^{k}|^{2} \right),$$

which has a closed-form solution,

$$d_{i,j}^{k+1} = \frac{\nabla_h u_{i,j}^{k+1} + b_{i,j}^k}{|\nabla_h u_{i,j}^{k+1} + b_{i,j}^k|} \max\left\{ |\nabla_h u_{i,j}^{k+1} + b_{i,j}^k| - \frac{1}{\gamma}, 0 \right\}, \quad 1 \le i, j \le N.$$

How to find the closed-form solution?

The solution of *d*-subproblem can be found componentwisely. For each (i, j), we consider the following minimization problem:

$$\min_{\boldsymbol{x}=(x_1,x_2)^{\top}\in\mathbb{R}^2}\Big\{|\boldsymbol{x}|+\frac{\gamma}{2}|\boldsymbol{x}-\boldsymbol{y}|^2\Big\},\,$$

where $\gamma > 0$ and $\boldsymbol{y} = (y_1, y_2)^\top \in \mathbb{R}^2$ are given. Note that $|\cdot| := \|\cdot\|_2$ in \mathbb{R}^2 .

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Variational Image Processing - 35/65

Updating b and selecting γ

• **Updating** *b*: The auxiliary variable *b* is initialized to zero and updated as

$$b_{i,j}^{k+1} = b_{i,j}^k + \nabla_h u_{i,j}^{k+1} - d_{i,j}^{k+1}, \quad 1 \le i, j \le N.$$

- Selecting γ: A good choice of γ is one for which both u and d subproblems converge quickly and are numerically well-conditioned.
 - − In *u* subproblem, the effect of $\nabla \cdot \nabla$ and $\nabla \cdot$ increase when *γ* gets larger. It is also ill-conditioned in the limit *γ* → ∞.
 - In *d* subproblem, the shrinking effect is more dramatic when γ is small.
 - $-\gamma$ should be neither extremely large nor small for good convergence.

In our simulations, we take $\gamma/h = 0.1$.

Implementation details of split Bregman iterations

u-subproblem: We multiply the following identity with *h*,

$$\begin{aligned} &(\lambda+4\frac{\gamma}{h^2})u_{i,j}-\frac{\gamma}{h^2}\Big(u_{i-1,j}+u_{i+1,j}+u_{i,j-1}+u_{i,j+1}\Big)\\ &=\lambda f_{i,j}-\frac{\gamma}{2h}\Big(g_{1,i+1,j}^k-g_{1,i-1,j}^k+g_{2,i,j+1}^k-g_{2,i,j-1}^k\Big), 1\leq i,j\leq N.\end{aligned}$$

Then we have

$$(\lambda h + 4\frac{\gamma}{h})u_{i,j} - \frac{\gamma}{h} \left(u_{i-1,j} + u_{i+1,j} + u_{i,j-1} + u_{i,j+1} \right)$$

= $\lambda h f_{i,j} - \frac{\gamma}{2h} \left(h g_{1,i+1,j}^k - h g_{1,i-1,j}^k + h g_{2,i,j+1}^k - h g_{2,i,j-1}^k \right), 1 \le i, j \le N.$

Notice that $g_{i,j}^{k} = (g_{1,i,j}^{k}, g_{2,i,j}^{k})^{\top} := d_{i,j}^{k} - b_{i,j}^{k}$. Define $\widetilde{\lambda} = \lambda h, \widetilde{\gamma} = \frac{\gamma}{h}$, $\widetilde{g}_{i,j}^{k} = (\widetilde{g}_{1,i,j}^{k}, \widetilde{g}_{2,i,j}^{k})^{\top} := hd_{i,j}^{k} - hb_{i,j}^{k} := \widetilde{d}_{i,j}^{k} - \widetilde{b}_{i,j}^{k}$. Then we have $(\widetilde{\lambda} + 4\widetilde{\gamma})u_{i,j} - \widetilde{\gamma}\left(u_{i-1,j} + u_{i+1,j} + u_{i,j-1} + u_{i,j+1}\right)$ $= \widetilde{\lambda}f_{i,j} - \frac{\widetilde{\gamma}}{2}\left(\widetilde{g}_{1,i+1,j}^{k} - \widetilde{g}_{1,i-1,j}^{k} + \widetilde{g}_{2,i,j+1}^{k} - \widetilde{g}_{2,i,j-1}^{k}\right), 1 \le i, j \le N.$ (*1)

Implementation details of split Bregman iterations (cont'd)

d-subproblem: If we define

$$\widetilde{\nabla} u_{i,j} := (\delta_x u_{i,j}, \delta_y u_{i,j})^\top := (\frac{u_{i+1,j} - u_{i-1,j}}{2}, \frac{u_{i,j+1} - u_{i,j-1}}{2})^\top,$$

then since

$$d_{i,j}^{k+1} = \frac{\nabla_h u_{i,j}^{k+1} + b_{i,j}^k}{|\nabla_h u_{i,j}^{k+1} + b_{i,j}^k|} \max\Big\{|\nabla_h u_{i,j}^{k+1} + b_{i,j}^k| - \frac{1}{\gamma}, 0\Big\},\$$

we have

$$\begin{split} \widetilde{d}_{ij}^{k+1} &= h d_{ij}^{k+1} = \frac{h \nabla_h u_{ij}^{k+1} + h b_{ij}^k}{|h \nabla_h u_{ij}^{k+1} + h b_{ij}^k|} h \max\left\{ |\nabla_h u_{ij}^{k+1} + b_{ij}^k| - \frac{1}{\gamma}, 0 \right\} \\ &= \frac{\widetilde{\nabla} u_{ij}^{k+1} + \widetilde{b}_{ij}^k}{|\widetilde{\nabla} u_{ij}^{k+1} + \widetilde{b}_{ij}^k|} \max\left\{ |\widetilde{\nabla} u_{ij}^{k+1} + \widetilde{b}_{ij}^k| - \frac{1}{\widetilde{\gamma}}, 0 \right\}. \quad (\star_2) \end{split}$$

Implementation details of split Bregman iterations (cont'd)

Updating *b*: First, we have

$$b_{i,j}^{k+1} = b_{i,j}^k + \nabla_h u_{i,j}^{k+1} - d_{i,j}^{k+1}.$$

By multiplying the identity with *h*, we obtain

$$hb_{i,j}^{k+1} = hb_{i,j}^k + h\nabla_h u_{i,j}^{k+1} - hd_{i,j}^{k+1}.$$

In other words,

$$\widetilde{b}_{i,j}^{k+1} = \widetilde{b}_{i,j}^k + \widetilde{\nabla} u_{i,j}^{k+1} - \widetilde{d}_{i,j}^{k+1}. \quad (\star_3)$$

A summary

To sum up, we have the following remarks:

- By change of variables, the split Bregman iterations can be reformulated as $(\star_1), (\star_2), (\star_3)$, where the grid size h can be absorbed by other variables!
- Most engineering-oriented papers usually take the spatial grid size h = 1 in the finite differences. It is irrational from the approximation viewpoint because the error terms in Taylor's theorem may not be small if we take h = 1.
- However, if the grid size *h* has been absorbed by other variables as discussed above, then it is reasonable for us to say that, in some sense, the grid size *h* = 1.

Numerical experiments (Einstein)

original

noisy (PSNR=23.0999)

denoised (PSNR=30.907)

denoised (PSNR=30.7523)

denoised (PSNR=25.3093)

Gaussian noise (0,0.005), h = 1/340, $\tilde{\lambda} = h\lambda = 0.1, 0.05, 0.025, 0.01$, $\tilde{\gamma} = \gamma/h = 0.1$

A smaller value of λ implies stronger denoising. When λ is very small, the image becomes cartoon-like with sharp jumps between nearly flat regions.

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Variational Image Processing - 41/65

Numerical experiments (Cameraman)

noisy (PSNR=23.3436)

denoised (PSNR=29.3308)

denoised (PSNR=27.9462)

denoised (PSNR=22.2792)

Gaussian noise (0,0.005), h = 1/256, $\tilde{\lambda} = h\lambda = 0.1, 0.05, 0.025, 0.01$, $\tilde{\gamma} = \gamma/h = 0.1$

Numerical experiments (Lena)

original

noisy (PSNR=23.0184)

denoised (PSNR=30.8091)

denoised (PSNR=30.9172)

denoised (PSNR=28.5751)

denoised (PSNR=25.475)

Gaussian noise (0,0.005), h = 1/512, $\tilde{\lambda} = h\lambda = 0.1, 0.05, 0.025, 0.01$, $\tilde{\gamma} = \gamma/h = 0.1$

Numerical experiments (square)

Lecture 2: Variational method for image segmentation

The content of this lecture is mainly based on

- T. F. Chan and L. A. Vese, An active contour model without edges, *Lecture Notes in Computer Science*, 1682 (1999), pp. 141-151.
- T. F. Chan and L. A. Vese, Active contours without edges, *IEEE Transactions on Image Processing*, 10 (2001), pp. 266-277.
- P. Getreuer, Chan-Vese segmentation, *Image Processing On Line*, 2 (2012), pp. 214-224.

Image segmentation in medical imaging

f & *initialization* C segmented *image*

bias field b corrected image I Bias field model: f = bI + n, where n is the noise

In what follows, Ω denotes an open bounded subset in \mathbb{R}^2 and $f : \overline{\Omega} \to \mathbb{R}$ denotes the given grayscale image to be segmented.

Mumford-Shah model (CPAM 1989)

Mumford-Shah model: it finds a piecewise smooth function u and a curve set C, which separates the image domain into disjoint regions, minimizing the energy functional:

$$\min_{u,\mathcal{C}} \left(\mu |\mathcal{C}| + \lambda \int_{\Omega} (f(\mathbf{x}) - u(\mathbf{x}))^2 d\mathbf{x} + \int_{\Omega \setminus \mathcal{C}} |\nabla u(\mathbf{x})|^2 d\mathbf{x} \right),$$

where $|\mathcal{C}|$ denotes the total length of the curves in \mathcal{C} .

- The first term plays the regularization role, which ensures the target objects can tightly be wrapped by *C*.
- The second term is the data fidelity term, which forces *u* to be close to the input image *f*.
- The third term is the smoothing term, which forces the target function *u* to be piecewise smooth within each of the regions separated by the curves in *C*.
- $\mu > 0$, $\lambda > 0$ are tuning parameters to modulate these three terms.

Simplified Mumford-Shah model

- *The non-convexity of energy functional in the Mumford-Shah model* makes the minimization problem difficult to analyze and the computational cost is much considerable.
- The piecewise smooth model suffers for its *sensitivity to the initialization of C*.
- **Simplified Mumford-Shah model:** it finds *a piecewise constant function u* and a curve set *C* to minimize the energy functional:

$$\min_{u,\mathcal{C}} \Big(\mu \left| \mathcal{C} \right| + \int_{\Omega} \big(f(\mathbf{x}) - u(\mathbf{x}) \big)^2 \, d\mathbf{x} \Big).$$

Note that *u* is constant on each connected component of $\Omega \setminus C$. *The minimization problem is still non-convex.*

Chan (陳繁昌)-Vese two-phase model

In 1999, Chan and Vese proposed a two-phase segmentation model based on the level set formulation ("active contours without edges", LNCS 1999):

$$\min_{c_1,c_2,\mathcal{C}} \left(\mu |\mathcal{C}| + \nu |\Omega_{\rm in}| + \lambda_1 \int_{\Omega_{\rm in}} (f(\mathbf{x}) - c_1)^2 d\mathbf{x} + \lambda_2 \int_{\Omega_{\rm out}} (f(\mathbf{x}) - c_2)^2 d\mathbf{x} \right),$$

where

- Ω_{in} denotes the region enclosed by the curves in C with area $|\Omega_{in}|$, and $\Omega_{out} := \Omega \setminus \Omega_{in}$.
- μ > 0, ν ≥ 0, λ₁ > 0, and λ₂ > 0 are tuning parameters (actually, one of them can be fixed as 1).
- Chan-Vese model finds a piecewise constant function *u* and a curve set *C* to minimize the energy functional, where *u* has only two constant values,

$$u(\mathbf{x}) = \begin{cases} c_1, \ \mathbf{x} \text{ is inside } \mathcal{C}, \\ c_2, \ \mathbf{x} \text{ is outside } \mathcal{C}. \end{cases}$$

Topological changes of C

To solve the minimization problem of Chan-Vese model, we evolve C and find c_1 , c_2 to minimize the energy functional. However, it is generally hard to handle topological changes of the curves in C.

(quoted from wikipedia)

Level set function

Therefore, we represent C implicitly by the zero level contour of a level set function $\phi : \overline{\Omega} \to \mathbb{R}$, i.e.,

 $\mathcal{C} = \{ \mathbf{x} \in \overline{\Omega} : \phi(\mathbf{x}) = 0 \}.$

The zero level contour C partitions the image domain into two disjoint regions Ω_{in} and Ω_{out} such that

 $\phi(x) \ge 0$ for $x \in \Omega_{in}$ and $\phi(x) < 0$ for $x \in \Omega_{out}$.

For example, given r > 0, we define a level set function

$$\phi(\mathbf{x}) = \phi(\mathbf{x}, \mathbf{y}) = r - \sqrt{x^2 + y^2},$$

whose zero level contour is the circle of radius r > 0.

Chan-Vese model

• Let *H* denote the Heaviside function and δ the Dirac delta function. Then

$$H(s) = \begin{cases} 1 & s \ge 0, \\ 0 & s < 0, \end{cases} \text{ and } \frac{d}{ds}H(s) = \delta(s).$$

In terms of *H*, δ, and the level set function φ, the Chan-Vese model has the form

$$\begin{split} \min_{c_1, c_2, \phi} \Big(\mu \int_{\Omega} \delta(\phi(\mathbf{x})) |\nabla \phi(\mathbf{x})| \, d\mathbf{x} + \nu \int_{\Omega} H(\phi(\mathbf{x})) \, d\mathbf{x} \\ + \lambda_1 \int_{\Omega} (f(\mathbf{x}) - c_1)^2 H(\phi(\mathbf{x})) \, d\mathbf{x} \\ + \lambda_2 \int_{\Omega} (f(\mathbf{x}) - c_2)^2 (1 - H(\phi(\mathbf{x}))) \, d\mathbf{x} \Big). \end{split}$$

Original formulation:

$$\min_{c_1,c_2,\mathcal{C}} \left(\mu |\mathcal{C}| + \nu |\Omega_{\rm in}| + \lambda_1 \int_{\Omega_{\rm in}} (f(\boldsymbol{x}) - c_1)^2 + \lambda_2 \int_{\Omega_{\rm out}} (f(\boldsymbol{x}) - c_2)^2 \right).$$

The regularized Heaviside and delta functions

The Heaviside function *H* and the Dirac delta function δ can be approximately regularized as follows: for a sufficiently small $\epsilon > 0$,

$$H_{\epsilon}(t) := \frac{1}{2} \left(1 + \frac{2}{\pi} \tan^{-1}(\frac{t}{\epsilon}) \right),$$

$$\delta_{\epsilon}(t) := \frac{d}{dt} H_{\epsilon}(t) = \frac{\epsilon}{\pi(\epsilon^{2} + t^{2})},$$

$$\int_{-\infty}^{\infty} \delta_{\epsilon}(t) dt = \int_{-\infty}^{\infty} \frac{\epsilon}{\pi(\epsilon^{2} + t^{2})} dt = \dots = 1.$$

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan

Variational Image Processing - 53/65

Total length of ${\mathcal C}$

The first term of the energy functional is the length of C, which can be expressed as the total variation of $H(\phi)$ and then informally

$$\big|\mathcal{C}\big| = \int_{\Omega} |\nabla H(\phi(\mathbf{x}))| = \int_{\Omega} \big|\frac{dH}{d\phi}(\phi(\mathbf{x}))\big| \big|\nabla \phi(\mathbf{x})\big| = \int_{\Omega} \delta(\phi(\mathbf{x}))\big|\nabla \phi(\mathbf{x})\big|.$$

A rough idea of the proof:

We partition Ω into very small subdomains, $\Omega = \bigcup_{i,j} \Omega_{i,j}$, and define $C_{i,j} := C \cap \Omega_{i,j}$. Then $C = \bigcup_{i,j} C_{i,j}$. We consider the approximation $H_{\epsilon}(\phi)$ of $H(\phi)$ for $0 < \epsilon \ll 1$. On $\Omega_{i,j}$, we have

$$\begin{aligned} |\mathcal{C}_{i,j}| &= |\mathcal{C}_{i,j}| \int_{-\infty}^{\infty} \delta_{\epsilon}(t) dt \approx \int_{\Omega_{i,j}} \delta_{\epsilon}(\phi(\mathbf{x})) |\nabla \phi(\mathbf{x})| &= \int_{\Omega_{i,j}} \left| \frac{dH_{\epsilon}}{d\phi}(\phi(\mathbf{x})) \right| |\nabla \phi(\mathbf{x})| \\ &= \int_{\Omega_{i,j}} |\nabla H_{\epsilon}(\phi(\mathbf{x}))|. \end{aligned}$$

Taking summation over all *i* and *j*, we have

$$\left|\mathcal{C}\right| = \sum_{i,j} \left|\mathcal{C}_{i,j}\right| \approx \sum_{i,j} \int_{\Omega_{i,j}} \left|\nabla H_{\epsilon}(\phi(\mathbf{x}))\right| = \int_{\Omega} \left|\nabla H_{\epsilon}(\phi(\mathbf{x}))\right| \approx \int_{\Omega} \left|\nabla H(\phi(\mathbf{x}))\right|.$$

An alternating iterative scheme

The minimization is solved by *an alternating iterative scheme*, i.e., alternatingly updating c_1 , c_2 and ϕ .

(S1) Fixed ϕ , the optimal values of c_1 and c_2 are the region averages,

$$c_1 = \frac{\int_{\Omega} f(\mathbf{x}) H(\phi(\mathbf{x})) \, d\mathbf{x}}{\int_{\Omega} H(\phi(\mathbf{x})) \, d\mathbf{x}}, \quad c_2 = \frac{\int_{\Omega} f(\mathbf{x}) \left(1 - H(\phi(\mathbf{x}))\right) \, d\mathbf{x}}{\int_{\Omega} \left(1 - H(\phi(\mathbf{x}))\right) \, d\mathbf{x}}$$

(S2) Fixed c_1 , c_2 , we solve the initial-boundary value problem (IBVP) to reach a steady-state:

$$\begin{split} \frac{\partial \phi}{\partial t} &= \delta_{\epsilon}(\phi) \left(\mu \nabla \cdot \frac{\nabla \phi}{|\nabla \phi|} - \nu - \lambda_1 (f - c_1)^2 + \lambda_2 (f - c_2)^2 \right), \\ & \text{for } t > 0, x \in \Omega, \\ \phi(0, x) &= \phi_0(x), x \in \Omega, \\ \frac{\partial \phi}{\partial n} &= 0 \text{ on } \partial\Omega, t \ge 0. \end{split}$$

Euler-Lagrange equation

Fixed c_1 and c_2 , the energy functional becomes

$$E[\phi] = \int_{\Omega} F(x, y, \phi, \phi_x, \phi_y) \, dx,$$

where the integrand is given by

$$F(x, y, \phi, \phi_x, \phi_y) = \mu \delta_{\epsilon}(\phi) |\nabla \phi| + \nu H_{\epsilon}(\phi) + \lambda_1 (f - c_1)^2 H_{\epsilon}(\phi) + \lambda_2 (f - c_2)^2 (1 - H_{\epsilon}(\phi)).$$

By direct computations, we have

$$\begin{aligned} \frac{\partial F}{\partial \phi} &= \mu \delta_{\epsilon}'(\phi) \left| \nabla \phi \right| + \nu \delta_{\epsilon}(\phi) + \lambda_1 (f - c_1)^2 \delta_{\epsilon}(\phi) - \lambda_2 (f - c_2)^2 \delta_{\epsilon}(\phi), \\ \frac{\partial F}{\partial \phi_x} &= \mu \delta_{\epsilon}(\phi) \frac{\phi_x}{\left| \nabla \phi \right|}, \qquad \frac{\partial F}{\partial \phi_y} = \mu \delta_{\epsilon}(\phi) \frac{\phi_y}{\left| \nabla \phi \right|}. \end{aligned}$$

The Euler-Lagrange equation with the Neumann BC are given by

$$\frac{\partial F}{\partial \phi} - \nabla \cdot (\frac{\partial F}{\partial \phi_x}, \frac{\partial F}{\partial \phi_y})^\top = 0 \quad \text{in } \Omega, \quad (\frac{\partial F}{\partial \phi_x}, \frac{\partial F}{\partial \phi_y})^\top \cdot \boldsymbol{n} = 0 \quad \text{on } \partial \Omega.$$

Neumann boundary condition

It leads to the equation

$$\frac{\partial \phi}{\partial t} = \delta_{\epsilon}(\phi) \left\{ \mu \nabla \cdot \left(\frac{\nabla \phi}{|\nabla \phi|} \right) - \nu - \lambda_1 (f - c_1)^2 + \lambda_2 (f - c_2)^2) \right\},\,$$

which has to be supplemented with an initial condition,

 $\phi(0, x) = \phi_0(x), \ \forall \ x \in \Omega,$

and the homogeneous Neumann boundary condition,

$$0 = \frac{\partial F}{\partial \phi_x} n_1 + \frac{\partial F}{\partial \phi_y} n_2 = \left(\frac{\partial F}{\partial \phi_x}, \frac{\partial F}{\partial \phi_y}\right)^\top \cdot \boldsymbol{n} = \delta_{\epsilon}(\phi) \frac{\nabla \phi}{|\nabla \phi|} \cdot \boldsymbol{n}.$$

That is, the BC for $t \ge 0$,

$$\frac{\delta_{\epsilon}(\phi)}{|\nabla \phi|} \frac{\partial \phi}{\partial n} = 0 \quad \text{on } \partial \Omega \implies \frac{\partial \phi}{\partial n} = 0 \quad \text{on } \partial \Omega.$$

Numerical implementation

- Assume that the image domain $\overline{\Omega}$ is the unit square $[0,1] \times [0,1]$.
- Let Ω_D := {(x_i, y_j)| i, j = 0, 1, · · · , M} be the set of grid points of a uniform partition of Ω with size h = 1/M.
- Then $x_i = ih$ and $y_j = jh$, $i, j = 0, 1, \dots, M$. Let $\phi_{i,j}(t)$ be the spatial difference approximation to $\phi(t, x_i, y_j)$.
- Let $t_n = n\Delta t$, $n \ge 0$, and $\Delta t > 0$ be the time step, and let $\phi_{i,j}^n$ be the full difference approximation to $\phi(t_n, x_i, y_j)$.

Discrete differential operators and BC

• Define the discrete differential operators: for $1 \le i, j \le M - 1$,

$$\begin{aligned} \nabla_x^+ \phi_{i,j} &= \frac{\phi_{i+1,j} - \phi_{i,j}}{h}, \text{ (forward difference)} \\ \nabla_x^- \phi_{i,j} &= \frac{\phi_{i,j} - \phi_{i-1,j}}{h}, \text{ (backward difference)} \\ \nabla_y^+ \phi_{i,j} &= \frac{\phi_{i,j+1} - \phi_{i,j}}{h}, \text{ (forward difference)} \\ \nabla_y^- \phi_{i,j} &= \frac{\phi_{i,j} - \phi_{i,j-1}}{h}, \text{ (backward difference)} \\ \nabla_x^0 \phi_{i,j} &:= \left(\frac{\nabla_x^+ + \nabla_x^-}{2}\right) \phi_{i,j}, \quad \nabla_y^0 \phi_{i,j} := \left(\frac{\nabla_y^+ + \nabla_y^-}{2}\right) \phi_{i,j}. \\ \text{ (central differences)} \end{aligned}$$

• Discretize the homogeneous Neumann BC: $\frac{\partial \phi}{\partial n} = 0$ on $\partial \Omega$

$$\phi_{0,j} = \phi_{1,j}, \quad \phi_{M,j} = \phi_{M-1,j}, \quad \phi_{i,0} = \phi_{i,1}, \quad \phi_{i,M} = \phi_{i,M-1},$$

Finite difference discretization: spatial variables

Performing the spatial discretization [Getreuer-2012], we have

$$\begin{aligned} \frac{\partial \phi_{i,j}}{\partial t} &= \delta_{\epsilon}(\phi_{i,j}) \bigg\{ \mu \Big(\nabla_x^- \frac{\nabla_x^+ \phi_{i,j}}{\sqrt{\eta^2 + (\nabla_x^+ \phi_{i,j})^2 + (\nabla_y^0 \phi_{i,j})^2}} \\ &+ \nabla_y^- \frac{\nabla_y^+ \phi_{i,j}}{\sqrt{\eta^2 + (\nabla_x^0 \phi_{i,j})^2 + (\nabla_y^+ \phi_{i,j})^2}} \Big) \\ &- \nu - \lambda_1 (f_{i,j} - c_1)^2 + \lambda_2 (f_{i,j} - c_2)^2 \bigg\}, \end{aligned}$$

where $i, j = 1, 2, \dots, M - 1$.

The purpose of small positive parameter η *in the denominators prevents division by zero.*

Spatial discretization

Define

$$A_{i,j} = \frac{\mu}{\sqrt{\eta^2 + (\nabla_x^+ \phi_{i,j})^2 + (\nabla_y^0 \phi_{i,j})^2}},$$

$$B_{i,j} = \frac{\mu}{\sqrt{\eta^2 + (\nabla_x^0 \phi_{i,j})^2 + (\nabla_y^+ \phi_{i,j})^2}}.$$

Using the fact $\nabla_x^+ \phi_{i,j} = \frac{\phi_{i+1,j} - \phi_{i,j}}{h}$, $\nabla_y^+ \phi_{i,j} = \frac{\phi_{i,j+1} - \phi_{i,j}}{h}$ and taking the backward difference at $A_{i,j}(\phi_{i+1,j} - \phi_{i,j})$ and $B_{i,j}(\phi_{i,j+1} - \phi_{i,j})$, then the discretization can be written as

$$\begin{aligned} \frac{\partial \phi_{i,j}}{\partial t} &= \delta_{\epsilon}(\phi_{i,j}) \bigg\{ \frac{1}{h^2} \Big(A_{i,j}(\phi_{i+1,j} - \phi_{i,j}) - A_{i-1,j}(\phi_{i,j} - \phi_{i-1,j}) \Big) \\ &+ \frac{1}{h^2} \Big(B_{i,j}(\phi_{i,j+1} - \phi_{i,j}) - B_{i,j-1}(\phi_{i,j} - \phi_{i,j-1}) \Big) \\ &- \nu - \lambda_1 (f_{i,j} - c_1)^2 + \lambda_2 (f_{i,j} - c_2)^2 \bigg\}. \end{aligned}$$

Temporal discretization

Define

$$\begin{split} \widetilde{A}_{i,j} &= \frac{1}{h^2} A_{i,j}, \quad \widetilde{A}_{i-1,j} &= \frac{1}{h^2} A_{i,j}, \\ \widetilde{B}_{i,j} &= \frac{1}{h^2} B_{i,j}, \quad \widetilde{B}_{i,j-1} &= \frac{1}{h^2} B_{i,j-1}, \end{split}$$

Time is discretized with a semi-implicit Gauss-Seidel method, values $\phi_{i,j}$, $\phi_{i-1,j}$, $\phi_{i,j-1}$ are evaluated at time t_{n+1} and all others at time t_n .

$$\frac{\phi_{i,j}^{n+1} - \phi_{i,j}^{n}}{\Delta t} = \delta_{\varepsilon}(\phi_{i,j}^{n}) \left\{ \widetilde{A}_{i,j}\phi_{i+1,j}^{n} + \widetilde{A}_{i-1,j}\phi_{i-1,j}^{n+1} + \widetilde{B}_{i,j}\phi_{i,j+1}^{n} + \widetilde{B}_{i,j-1}\phi_{i,j-1}^{n+1} - \left(\widetilde{A}_{i,j} + \widetilde{A}_{i-1,j} + \widetilde{B}_{i,j} + \widetilde{B}_{i,j-1}\right)\phi_{i,j}^{n+1} - \nu - \lambda_{1}(f_{i,j} - c_{1})^{2} + \lambda_{2}(f_{i,j} - c_{2})^{2} \right\}.$$

Gauss-Seidel scheme

This allows ϕ at time t_{n+1} to be solved by one Gauss-Seidel *sweep from left to right, bottom to top:*

$$\begin{split} \phi_{i,j}^{n+1} &= \left\{ \phi_{i,j}^n + \Delta t \delta_{\epsilon}(\phi_{i,j}^n) \left(\widetilde{A}_{i,j} \phi_{i+1,j}^n + \widetilde{A}_{i-1,j} \phi_{i-1,j}^{n+1} + \widetilde{B}_{i,j} \phi_{i,j+1}^n \right. \\ &+ \widetilde{B}_{i,j-1} \phi_{i,j-1}^{n+1} - \nu - \lambda_1 (f_{i,j} - c_1)^2 + \lambda_2 (f_{i,j} - c_2)^2 \right) \right\} \\ &\times \left\{ 1 + \Delta t \delta_{\epsilon}(\phi_{i,j}) \left(\widetilde{A}_{i,j} + \widetilde{A}_{i-1,j} + \widetilde{B}_{i,j} + \widetilde{B}_{i,j-1} \right) \right\}^{-1}, \end{split}$$

where

$$\begin{split} \widetilde{A}_{i,j} &= \frac{\mu}{h^2 \sqrt{\eta^2 + \left((\phi_{i+1,j}^n - \phi_{i,j}^n)/h\right)^2 + \left((\phi_{i,j+1}^n - \phi_{i,j-1}^{n+1})/(2h)\right)^2}}, \\ \widetilde{B}_{i,j} &= \frac{\mu}{h^2 \sqrt{\eta^2 + \left((\phi_{i+1,j}^n - \phi_{i-1,j}^{n+1})/(2h)\right)^2 + \left((\phi_{i,j}^n - \phi_{i+1,j}^n)/h\right)^2}}. \end{split}$$

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Variational Image Processing - 63/65

Gauss-Seidel scheme

We can rewrite $\widetilde{A}_{i,j}$ and $\widetilde{B}_{i,j}$ as follows:

$$\begin{split} \widetilde{A}_{ij} &= \frac{\mu}{h^2 \sqrt{\eta^2 + \left((\phi_{i+1,j}^n - \phi_{i,j}^n)/h\right)^2 + \left((\phi_{i,j+1}^n - \phi_{i,j-1}^{n+1})/(2h)\right)^2}}, \\ &= \frac{(\mu/h)}{\sqrt{(h\eta)^2 + (\phi_{i+1,j}^n - \phi_{i,j}^n)^2 + \left((\phi_{i,j+1}^n - \phi_{i,j-1}^{n+1})/2\right)^2}}, \\ \widetilde{B}_{ij} &= \frac{\mu}{h^2 \sqrt{\eta^2 + \left((\phi_{i+1,j}^n - \phi_{i-1,j}^{n+1})/(2h)\right)^2 + \left((\phi_{i,j}^n - \phi_{i+1,j}^n)/h\right)^2}}} \\ &= \frac{(\mu/h)}{\sqrt{(h\eta)^2 + \left((\phi_{i+1,j}^n - \phi_{i-1,j}^{n+1})/2\right)^2 + (\phi_{i,j}^n - \phi_{i+1,j}^n)^2}}. \end{split}$$

In numerical implementation, we take $(h\eta) = 10^{-8}$.

Numerical experiments

initial contour

initial contour

initial contour

