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Sparse plus low rank matrix decomposition

Let M ∈ Rm×n be a given grayscale image. Suppose that M is the
superposition of a low-rank component L and a sparse component S,

M = L + S.
We are interested in finding the low-rank image L, which has high
repeatability along horizontal or vertical directions.

(schematic diagram)

The sparse plus low rank decomposition problem can be formulated as the
constrained minimization problem:

min
L,S

(
rank(L) + λ∥S∥0

)
subject to M = L + S,

where λ > 0 is a tuning parameter and ∥S∥0 denotes the number of
non-zero entries in S. The problem is not convex.
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The principal component pursuit problem

We approximate the sparse plus low rank decomposition problem by
the following principal component pursuit (PCP) problem:

min
L,S

(
∥L∥∗ + λ∥S∥1

)
subject to M = L + S,

where ∥L∥∗ is the nuclear (Ky Fan/樊“土畿”) norm of L defined as

∥L∥∗ :=
r

∑
i=1

σi,

and r ∈ N+ is the rank of L and σi are the singular values of L, and
∥S∥1 denotes the ℓ1-norm of S (seen as a long vector in Rmn),

∥S∥1 := ∑
i,j
|Sij|.

⋆ How about the existence of solution for the PCP problem?
(cf. Candès-Li-Ma-Wright, J. ACM, 2011)
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The penalty formulation and alternating direction method

Let µ > 0 be the penalty parameter. Then we consider the relaxation
using a penalty term to replace the constraint,

min
L,S

(
∥L∥∗ + λ∥S∥1 +

µ

2
∥M − L − S∥2

F

)
,

where ∥ · ∥F is the Frobenius norm. We set, for example, S(0) = 0. The
ADM for the penalty formulation is given as follows: for k ≥ 0, find

L(k+1) = arg min
L

(
∥L∥∗ + λ∥S(k)∥1 +

µ

2
∥M − L − S(k)∥2

F

)
,

S(k+1) = arg min
S

(
∥L(k+1)∥∗ + λ∥S∥1 +

µ

2
∥M − L(k+1) − S∥2

F

)
.

By further analysis given below (pp. 7-15), we can prove that

L(k+1) = SVT 1
µ

(
M − S(k)),

S(k+1) = sign(M − L(k+1))⊙ max
{
|M − L(k+1)| − (λ/µ), 0

}
,

where ⊙ is the Hadamard product (i.e., element-wise product).
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SVD and SVT

Singular value decomposition (SVD)
Let M ∈ Rm×n. The SVD of M is the factorization in the form

M = UΣV⊤,

where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices (UU⊤ = I
and VV⊤ = I) and Σ ∈ Rm×n is diagonal with all non-negative
entries called the singular values of M.

Singular value thresholding (SVT)

Let M ∈ Rm×n. Suppose that the SVD of M is given by M = UΣV⊤.
Then the singular value thresholding (SVT) of M with threshold τ > 0
is defined by

SVTτ(M) = UDτ(Σ)V⊤,

where
Dτ(Σ)ii = max

{
Σii − τ, 0

}
.
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Background recovering using the penalty method
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Von Neumann trace inequality

First, we state without proof the square matrix case.

Theorem: If A and B are complex n × n matrices with singular values

σ1(A) ≥ σ2(A) ≥ · · · ≥ σn(A) ≥ 0,
σ1(B) ≥ σ2(B) ≥ · · · ≥ σn(B) ≥ 0.

Then we have

|⟨A, B⟩F| := |trace(A∗B)| ≤
n

∑
i=1

σi(A)σi(B).

Moreover, the equality holds if A and B share the same singular vectors.

Notes:

If A = UΣV∗ then A∗ = VΣU∗, having the same singular values
σi(A∗) = σi(A), ∀ 1 ≤ i ≤ n. ∴ |trace(AB)| ≤ ∑n

i=1 σi(A)σi(B).

“Prove = if ...”: If A and B share the same singular vectors, say
A = UΣAV∗ and B = UΣBV∗, then we have
A∗B = V(ΣAΣB)V∗ = V(ΣBΣA)V∗ = B∗A = (A∗B)∗, Hermitian!
∴ trace(A∗B) = ∑n

i=1 λi(A∗B) = ∑n
i=1 σi(A)σi(B) ≥ 0.
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Von Neumann trace inequality for rectangular matrices

Corollary: Let A and B be complex m × n matrices with singular values

σ1(A) ≥ σ2(A) ≥ · · · ≥ σk(A) ≥ 0,
σ1(B) ≥ σ2(B) ≥ · · · ≥ σk(B) ≥ 0,

where k := min{m, n}. Then we have

|⟨A, B⟩F| := |trace(A∗B)| ≤
k

∑
i=1

σi(A)σi(B).

Moreover, the equality holds if A and B share the same singular vectors.

Proof: Assume that m > n. Then k := min{m, n} = n. We define two
m × m matrices X and Y by

X = [A | 0]m×m and Y = [B | 0]m×m.
Then we have

|⟨X, Y⟩F| = |trace(X∗Y)| = |trace(A∗B)| = |⟨A, B⟩F|.
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Proof of Von Neumann’s trace inequality (cont’d)

Claim: σi(X) = σi(A) and similarly, σi(Y) = σi(B), ∀ i = 1, 2, · · · , n.

Suppose that the SVD of A is given by Am×n = Um×mΣm×nV∗
n×n.

Define three m × m matrices,

UX = Um×m, ΣX = [Σm×n | 0]m×m, V∗
X =

[
V∗

n×n 0
0 I

]
m×m

.

Then

UXΣXV∗
X = Um×m[Σm×n | 0]

[
V∗

n×n 0
0 I

]
= [Um×mΣm×n | 0]

[
V∗

n×n 0
0 I

]
= [Um×mΣm×nV∗

n×n | 0] = [Am×n | 0] = X,

which implies that σi(X) = σi(A), ∀ i = 1, 2, · · · , n. Therefore,

|⟨A, B⟩F| = |⟨X, Y⟩F| ≤
n

∑
i=1

σi(X)σi(Y) =
n

∑
i=1

σi(A)σi(B). □
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SVTτ(Y) Theorem

Theorem: Given an m × n real matrix Y and τ > 0, we have

SVTτ(Y) = arg min
X∈Rm×n

(
τ∥X∥∗ +

1
2
∥X − Y∥2

F

)
.

Proof: Let k := min{m, n}. Then for any X ∈ Rm×n, we have

1
2
∥X − Y∥2

F =
1
2

tr((X − Y)⊤(X − Y))

=
1
2

tr(X⊤X)− tr(X⊤Y) +
1
2

tr(Y⊤Y)

=
1
2

n

∑
i=1

λi(X⊤X) +
1
2

n

∑
i=1

λi(Y⊤Y)− tr(X⊤Y)

≥ 1
2

k

∑
i=1

σ2
i (X) +

1
2

k

∑
i=1

σ2
i (Y)−

k

∑
i=1

σi(X)σi(Y)

=
1
2

k

∑
i=1

(
σi(X)− σi(Y)

)2.
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SVTτ(Y) Theorem (cont’d)

Therefore, we obtain for any X ∈ Rm×n,

F(X) := τ∥X∥∗+
1
2
∥X −Y∥2

F ≥ τ∥X∥∗+
1
2

k

∑
i=1

(
σi(X)−σi(Y)

)2
=: G(X).

It is already known that for a given τ > 0 and a fixed y ∈ R, the
minimizer of the real-valued function,

f (x) = τ|x|+ 1
2
(y − x)2, x ∈ R,

is given by the soft-thresholding operator Sτ ,

arg min
x∈R

f (x) = Sτ(y) := sign(y)max{|y| − τ, 0}.

Also note that ∥X∥∗ = ∑k
i=1 σi(X). Therefore, we find the fact that

X̂ = arg min
X∈Rm×n

G(X) ⇔ σi(X̂) = Sτ(σi(Y))

= sign(σi(Y))max{|σi(Y)| − τ, 0}
= max{σi(Y)− τ, 0}, ∀ i = 1, 2, · · · , k.
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SVTτ(Y) Theorem (cont’d)

Based on the above observation, we are going to construct such a
matrix X̂ which has the same singular vectors with Y. Suppose that
the SVD of Y is given by Y = UΣV⊤. Define the diagonal matrix Σ̂ by

Σ̂ :=



. . .
max{σi(Y)− τ, 0}

. . .


m×n

and then define X̂ := UΣ̂V⊤ = SVTτ(Y). Therefore, the equality in
Von Neumann’s trace inequality holds, and we have

τ∥X̂∥∗+
1
2
∥X̂ −Y∥2

F = τ∥X̂∥∗+
1
2

k

∑
i=1

(
σi(X̂)−σi(Y)

)2
= min

X∈Rm×n
G(X).

That is, we attain a minimum of F(X) at X̂ = SVTτ(Y).

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan PCP and TILT – 12/32



F(X) is a strictly convex function in X ∈ Rm×n

Note that F(X) is a strictly convex function in X ∈ Rm×n, since

∥X − Y∥2
F is strictly convex in X ∈ Rm×n.

∥X∥∗ is convex in X ∈ Rm×n, since it is a norm.

“convex function + strictly convex function” is strictly convex.

Suppose that X̂1 and X̂2 are two different minimizers of the strictly
convex function F(X). Then

F(
1
2
(X̂1 + X̂2)) <

1
2

F(X̂1) +
1
2

F(X̂2) = F(X̂1), a contradiction!

Therefore, the minimizer of F(X) is unique! This completes the proof
of the theorem. □
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Another direct proof of the uniqueness of minimizer X̂

Claim: The minimizer of F(X) is unique, that is, X̂ = SVTτ(Y).
Proof: Suppose that X̂1 and X̂2 are two different minimizers of F(X).
By the triangle inequality, we have

τ∥ X̂1 + X̂2

2
∥∗ +

1
2
∥ X̂1 + X̂2

2
− Y∥2

F

≤ τ

2
∥X̂1∥∗ +

τ

2
∥X̂2∥∗ +

1
2
∥ X̂1 − Y

2
+

X̂2 − Y
2

∥2
F. (⋆)

Note that ( a
2
+

b
2

)2
=

a2

2
+

b2

2
−

(a − b
2

)2
, ∀ a, b ∈ R.

Therefore, we obtain

RHS(⋆) =
τ

2
∥X̂1∥∗ +

τ

2
∥X̂2∥∗ +

1
4
∥X̂1 − Y∥2

F +
1
4
∥X̂2 − Y∥2

F

−1
2
∥ X̂1 − X̂2

2
∥2

F = τ∥X̂1∥∗ +
1
2
∥X̂1 − Y∥2

F −
1
2
∥ X̂1 − X̂2

2
∥2

F︸ ︷︷ ︸
>0

,

a contradiction!
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Solution of the ADM for penalty formulation

By the SVTτ(Y) Theorem, we have

L(k+1) := arg min
L

(
∥L∥∗ +

µ

2
∥M − L − S(k)∥2

F

)
= SVT 1

µ

(
M − S(k)).

Using the soft-thresholding operator Sτ again, we have

S(k+1) := arg min
S

(
λ∥S∥1 +

µ

2
∥M − L(k+1) − S∥2

F

)
= sign(M − L(k+1))⊙ max

{
|M − L(k+1)| − (λ/µ), 0

}
,

where ⊙ is the Hadamard element-wise product.
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Another approach for solving the PCP problem

Recall the principal component pursuit problem:

min
L,S

(
∥L∥∗ + λ∥S∥1

)
subject to M = L + S.

The augmented Lagrangian function is defined as

L(L, S, Y)

:= ∥L∥∗ + λ∥S∥1 +
〈

Y︸︷︷︸
multiplier

, M − L − S
〉
+

µ

2
∥M − L − S∥2

F︸ ︷︷ ︸
penalty

= ∥L∥∗ + λ∥S∥1 +
µ

2
∥M − L − S + µ−1Y∥2

F −
1

2µ
∥Y∥2

F.

We then apply the alternating direction method to minimize the
augmented Lagrangian function L(L, S, Y). The resulting method is
called the augmented Lagrange multiplier (ALM) method.
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The augmented Lagrange multiplier method

The ALM method is given by

L(k+1) := arg min
L

(
∥L∥∗+λ∥S(k)∥1 +

µ

2
∥M − L − S(k) + µ−1Y(k)∥2

F

− 1
2µ

∥Y(k)∥2
F

)
,

S(k+1) := arg min
S

(
∥L(k+1)∥∗ + λ∥S∥1 +

µ

2
∥M − L(k+1) − S + µ−1Y(k)∥2

F

− 1
2µ

∥Y(k)∥2
F

)
,

Y(k+1) := Y(k) + µ
(
M − L(k+1) − S(k+1)).

The explicit form of the iterative solution (L(k+1), S(k+1), Y(k+1)) of
ALM method is presented on the next page, which can be proved by
using the SVTτ(Y) Theorem and the soft-thresholding operator Sτ .

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan PCP and TILT – 17/32



Iterative solutions of the ALM method

The iterative solution (L(k+1), S(k+1), Y(k+1)) of the ALM method is
given by

L(k+1) := arg min
L

(
∥L∥∗ +

µ

2
∥L − (M − S(k) + µ−1Y(k))∥2

F

)
= arg min

L

( 1
µ
∥L∥∗ +

1
2
∥L − (M − S(k) + µ−1Y(k))∥2

F

)
= SVT 1

µ

(
M − S(k) + µ−1Y(k)),

S(k+1) := arg min
S

(
λ∥S∥1 +

µ

2
∥S − (M − L(k+1) + µ−1Y(k))∥2

F

)
= arg min

S

(λ

µ
∥S∥1 +

1
2
∥S − (M − L(k+1) + µ−1Y(k))∥2

F

)
= sign(M − L(k+1) + µ−1Y(k))

⊙max
{
|M − L(k+1) + µ−1Y(k)| − (λ/µ), 0

}
,

Y(k+1) := Y(k) + µ
(
M − L(k+1) − S(k+1)).
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Background recovering using the ALM method

(λ, µ) = (0.0007, 0.5) (λ, µ) = (0.006, 5)

(λ, µ) = (0.007525, 0.04) (λ, µ) = (0.0025, 1.5)
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Low-rank textures

Consider a 2D texture as a matrix L ∈ Rp×q. It is called a low-rank
texture if r := rank (L) ≪ min{p, q}.

A real texture image is hardly an ideal low-rank texture, mainly
due to two factors

(1) It undergoes a deformation, e.g., a perspective transform from 3D
scene to 2D image;

(2) It may be subject to many types of corruption, such as noise and
occlusion.

Suppose that a larger low-rank texture L lies on a planar surface
in the scene. The smaller m × n image M that we observe from a
certain viewpoint is a portion of the transformed version of L.
Then there exists an invertible function τ−1 : N2 → N2 such that

M(i, j) = (L ◦ τ−1)(i, j) = L(τ−1(i, j)), ∀ (i, j) ∈ K,

where K := {(i, j) ∈ N2 : 1 ≤ i ≤ m, 1 ≤ j ≤ n}.
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Transform invariant low-rank textures (TILT)

In addition to domain transformations, the observed image of the
texture might be corrupted by noise and occlusions, denoted as S.

Then we have

M(i, j) = ((L + S) ◦ τ−1)(i, j), ∀ (i, j) ∈ K.

That is,

(M ◦ τ)(i, j) = L(i, j) + S(i, j), ∀ (i, j) ∈ K,

A typical perspective transform from 3D scene to 2D image is
the affine transformation, i.e.,

τ(x) = Ax + b, x ∈ R2,

where A ∈ R2×2 is an invertible matrix and b ∈ R2 is a constant
vector.
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The mathematical model for TILT

So, if we could rectify a deformed texture M with a proper inverse
transform τ and then remove the corruptions S, the resulting texture
L will be low rank. The mathematical model for TILT is given by

min
L,S,τ

(
rank(L) + λ∥S∥0

)
subject to M ◦ τ = L + S.

In practice, the rank and the ℓ0-norm could be replaced by the
nuclear norm and ℓ1-norm, respectively:

min
L,S,τ

(
∥L∥∗ + λ∥S∥1

)
subject to M ◦ τ = L + S,

where the constraint is non-convex. Therefore, we have to consider the
linearization of M ◦ τ.
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Numerical examples of TILT

⇒ ⇒
A: (λ, µ) = (1/257, 3.1672e-5) H: (λ, µ) = (1/387, 5.0743e-5)

⇒ ⇒
H: (λ, µ) = (1/505, 3.7585e-5) A: (λ, µ) = (1/186, 2.8748e-5)
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A class of convex minimization problems

We consider the following convex minimization problems where the
objective function is separable:

min
x,y

f (x) + g(y) subject to A(x) + B(y) = c,

where f and g are convex real-valued functions, x, y and c could be
either vectors or matrices, and A and B are linear mappings.

Define the augmented Lagrangian function

L(x, y, λ) := f (x) + g(y) + ⟨λ,A(x) + B(y)− c⟩

+
β

2
∥A(x) + B(y)− c∥2

F

= f (x) + g(y) +
β

2
∥A(x) + B(y)− c +

1
β

λ∥2
F −

1
2β

∥λ∥2
F,

where λ is the Lagrange multiplier, ⟨·, ·⟩ is the inner product, and
β > 0 is the penalty parameter.
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The augmented Lagrange multiplier method

We apply the alternating direction method to minimize the
function L(x, y, λ). The resulting ALM method decomposes the
minimization of L(x, y, λ) w.r.t. (x, y) into two subproblems:

x(k+1) = arg min
x

L(x, y(k), λ(k)),

y(k+1) = arg min
y

L(x(k+1), y, λ(k)),

λ(k+1) = λ(k) + β
(
A(x(k+1)) + B(y(k+1))− c

)
.

In compressive sensing and sparse representation, as f and g are
usually matrix or vector norms, the first two subproblems
usually have closed form solutions when A and B are identities.
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Linearized alternating direction method

However, in many problems A and B are not identities, we consider
a linearization technique. First, we focus on the first subproblem
which can be rewritten as

x(k+1) = arg min
x

f (x) + g(y(k)) + ⟨λ(k),A(x) + B(y(k))− c⟩

+
β

2
∥A(x) + B(y(k))− c∥2

F

= arg min
x

f (x) + g(y(k))

+
β

2
∥A(x) + B(y(k))− c +

1
β

λ(k)∥2
F−

1
2β

∥λ(k)∥2
F

= arg min
x

f (x) +
β

2
∥A(x) + B(y(k))− c +

1
β

λ(k)∥2
F.
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Linearized alternating direction method (cont’d)

Now, we have

x(k+1) = arg min
x

f (x) +
β

2
∥A(x) + B(y(k))− c +

1
β

λ(k)∥2
F.

Define H(x) as the quadratic function,

H(x) = ∥A(x) + B(y(k))− c +
1
β

λ(k)∥2
F.

By the Taylor expansion at x(k), we have

H(x) ≈ H(x(k)) +∇H(x(k)) · (x − x(k)).

Then the minimization problem approximately becomes

x(k+1) = arg min
x

f (x) +
β

2
H(x(k)) +

β

2
∇H(x(k)) · (x − x(k)).
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Linearized alternating direction method (cont’d)

In what follows, we assume that A and B are real matrices. Assume that
A = [aij]m×n ∈ Rm×n and b = (b1, b2, · · · , bm)⊤ ∈ Rm. Then

∇x⟨Ax, b⟩ = ∇
(

b1(a11x1 + a12x2 + · · ·+ a1nxn) +

b2(a21x1 + a22x2 + · · ·+ a2nxn) + · · ·+

bm(am1x1 + am2x2 + · · ·+ amnxn)
)

= (A· 1 · b,A· 2 · b, · · · ,A· n · b)⊤ = A⊤b.

Therefore, we have

∇H(x) = ∇x⟨Ax + By(k) − c +
1
β

λ(k), Ax + By(k) − c +
1
β

λ(k)⟩

= 2A⊤(Ax + By(k) − c +
1
β

λ(k)).
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Linearized alternating direction method (cont’d)

Using the linearization of H(x) at x(k) and adding a proximal term,
which ensures the Taylor approximation reasonable since x close to
x(k), we have the following approximation:

x(k+1) = arg min
x

f (x) + β⟨A⊤(Ax(k) + By(k) − c +
1
β

λ(k)), x − x(k)⟩+ βηA
2

∥x − x(k)∥2
F

= arg min
x

f (x) + ⟨A⊤λ(k) + βA⊤(Ax(k) + By(k) − c
)
, x − x(k)⟩+ βηA

2
∥x − x(k)∥2

F

= arg min
x

f (x) +
βηA

2
∥(x − x(k)) +A⊤(λ(k) + β

(
Ax(k) + By(k) − c

))
/(βηA)∥2

F

− 1
2βηA

∥A⊤(λ(k) + β
(
Ax(k) + By(k) − c

))
∥2

F,

where ηA > ∥A∥2
F > 0 is a parameter in the proximal term. Similarly,

the second subproblem can be approximated by

y(k+1) = arg min
y

g(y) +
βηB

2
∥(y− y(k)) +B⊤(λ(k) + β

(
Ax(k+1) +By(k) − c

))
/(βηB)∥2

F,

where ηB > ∥B∥2
F > 0 is a parameter in the proximal term.
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Linearized alternating direction method (cont’d)

To sum up, the linearized alternating direction method is given by

x(k+1) = arg min
x

f (x) +
βηA

2
∥(x − x(k)) +A⊤(λ(k) + β

(
Ax(k) + By(k) − c

))
/(βηA)∥2

F,

y(k+1) = arg min
y

g(y) +
βηB

2
∥(y − y(k)) + B⊤(λ(k) + β

(
Ax(k+1) + By(k) − c

))
/(βηB)∥2

F,

λ(k+1) = λ(k) + β
(
Ax(k+1) + By(k+1) − c

)
,

with one of the stopping criteria or both:

First stopping criterion:

∥Ax(k+1) + By(k+1) − c∥F < ϵ1∥c∥F.

Second stopping criterion:

β max
(√

ηA∥x(k+1) − x(k)∥F,
√

ηB∥y(k+1) − y(k)∥F

)
< ϵ2∥c∥F.
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Linearized ADM with adaptive penalty (LADMAP)

To further accelerate the convergence of the algorithm, we also
consider an adaptive rule for updating β. Consider the following
adaptive updating strategy for the penalty parameter:

βk+1 = min(βmax, ρβk),

where βmax is an upper bound of {βk} and ρ is defined as

ρ =

{
ρ0, if βk

∥c∥F
max

(√
ηA∥x(k+1) − x(k)∥F,

√
ηB∥y(k+1) − y(k)∥F

)
< ϵ2,

1, otherwise,

and ρ0 > 1 is a constant. The LADMAP is defined as

x(k+1) = arg min
x

f (x) +
βkηA

2
∥(x − x(k)) +A⊤(λ(k) + βk

(
Ax(k) + By(k) − c

))
/(βkηA)∥2

F,

y(k+1) = arg min
y

g(y) +
βkηB

2
∥(y − y(k)) + B⊤(λ(k) + βk

(
Ax(k+1) + By(k) − c

))
/(βkηB)∥2

F,

λ(k+1) = λ(k) + βk
(
Ax(k+1) + By(k+1) − c

)
,

βk+1 = min(βmax, ρβk).
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