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Outline of the lectures

1 Models of viscous incompressible fluid flow

▶ Mass conservation and momentum conservation
▶ Incompressible Euler equations for ideal fluids
▶ Incompressible Navier-Stokes equations

2 Projection methods for incompressible Navier-Stokes equations

▶ Helmholtz-Hodge decomposition
▶ Chorin’s first-order in time projection method
▶ Second-order in time projection methods

3 Direct-forcing IB projection methods for FSI problems with or
without prescribed solid velocity

▶ A primitive direct-forcing IB projection method
▶ A two-stage direct-forcing IB projection method
▶ Equations of motion for non-prescribed solid velocity
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Mass conservation

We consider a fluid of density ρ moving in a bounded region Ω ⊂ R3

with velocity u = (u1, u2, u3)
⊤. For a particular fixed, closed surface

∂D enclosing a volume D ⊆ Ω, with the unit outward normal vector
n to ∂D. Then we have

Mass conservation: The rate of change of mass in D equals the
amount of fluid flowing into D cross ∂D, i.e.,

d
dt

∫
D

ρ dV = −
∫

∂D
ρ(u · n) dS.

Divergence Theorem: For a smooth vector field u on a bounded
region D with a smooth boundary ∂D, we have∫

∂D
u · n dS =

∫
D
∇ · u dV.
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The incompressibility equation

According to the mass conservation, we have

d
dt

∫
D

ρ dV +
∫

∂D
(ρu) · n dS = 0.

Furthermore, from the Divergence Theorem, we can get

0 =
d
dt

∫
D

ρ dV +
∫

∂D
(ρu) · n dS =

∫
D

∂ρ

∂t
+∇ · (ρu) dV.

Since D is an arbitrary chosen region in Ω, we can conclude that

∂ρ

∂t
+∇ · (ρu) = 0 in Ω.

Moreover, for incompressible and homogeneous fluid, the density ρ is
constant with respect to both time and spatial coordinates, so we have

∇ · u :=
∂u1

∂x
+

∂u2

∂y
+

∂u3

∂z
= 0 in Ω.
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Velocity of the fluid flow

Let us consider a particular small volume of fluid at (x, t).

Velocity: If in a small interval of time δt, this small volume
moves to position x + δx, then the velocity at position x and time
t is given by

u = (u1, u2, u3)
⊤ := lim

δt→0

δx
δt

.

Taylor expansion: The velocity depends on both position and
time, so we write u = q(x, t) and u + δu = q(x + δx, t + δt). By
the Taylor Theorem, we have

q(x + δx, t + δt) = q(x, t + δt) + (δx · ∇)q(x, t + δt) + O(∥δx∥2),

q(x, t + δt) = q(x, t) + δt
∂

∂t
q(x, t) + O(δt2).
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Acceleration of the fluid flow

Since u = q(x, t) and u + δu = q(x + δx, t + δt), we have

δu = q(x + δx, t + δt)− q(x, t)
=

(
q(x + δx, t + δt)− q(x, t + δt)

)
+

(
q(x, t + δt)− q(x, t)

)
= (δx · ∇)q(x, t + δt) + δt

∂

∂t
q(x, t) +

(
O(∥δx∥2) + O(δt2)

)
.

Hence, the acceleration a(x, t) of the fluid flow is given by

a =
du
dt

= lim
δt→0

δu
δt

= lim
δt→0

{(
δx · ∇

)
q(x, t + δt) + δt ∂

∂t q(x, t)
δt

+
O(∥δx∥2) + O(δt2)

δt

}
=

∂u
∂t

+ (u · ∇)u,

where we have used ∥δx∥
δt → ∥u∥ and ∥δx∥ → 0 as δt→ 0.
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Momentum conservation of the fluid flow

Momentum = mass × velocity: P = m u, where m is the mass of
the small volume at (x, t).

Momentum conservation: If the external force F doesn’t act on
the system or the fluid, the momentum will not change by the
time,

dP
dt

= 0 if F = 0,
dP
dt
̸= 0 if F ̸= 0.

By Newton’s second law of motion, we know that the rate of
change of momentum equals the external force acting on the
fluid. We have

F(x, t) =
dP
dt

=
d(mu)

dt
= ma = m

(∂u
∂t

+ (u · ∇)u
)

.

Note that the acceleration a(x, t) = lim
δt→0

δu
δt

=
∂u
∂t

+ (u · ∇)u.
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The force on the ideal fluid

An ideal fluid is an incompressible and homogeneous fluid that
has no viscosity, so the only forces are due to the pressure (p) and
the external body force such as gravity (F). We define the density
of body force at the small volume of fluid at (x, t) as f (x, t) := F/m.

The total force acting on the fluid contained in D is the pressure
of the surrounding fluid plus the effect of the body force:

total force =
∫

∂D
p(−n) dS +

∫
D

ρf dV.

According to Newton’s second law of motion, we have∫
D

ρ
(∂u

∂t
+ (u · ∇)u

)
dV =

∫
∂D

p(−n) dS +
∫

D
ρf dV.

Moving all of the terms to the left hand side, we have∫
D

ρ
(∂u

∂t
+ (u · ∇)u

)
dV +

∫
∂D

pn dS−
∫

D
ρf dV = 0.
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Converting the pressure term by an identity

In 3-D, let ∇ = ( ∂
∂x , ∂

∂y , ∂
∂z )
⊤ and c = (c1, c2, c3)

⊤, then we have

∇ · (pc) =
∂(pc1)

∂x
+

∂(pc2)

∂y
+

∂(pc3)

∂z

=
(
c1

∂p
∂x

+ p
∂c1

∂x
)
+

(
c2

∂p
∂y

+ p
∂c2

∂y
)
+

(
c3

∂p
∂z

+ p
∂c3

∂z
)

=
(
c1

∂p
∂x

+ c2
∂p
∂y

+ c3
∂p
∂z

)
+

(
p

∂c1

∂x
+ p

∂c2

∂y
+ p

∂c3

∂z
)

= c · ∇p + p∇ · c.

Taking v = pc in the Divergence Theorem, with c being a constant
vector pointing in an arbitrary direction, we have∫

∂D
(pc) ·n dS =

∫
D
∇· (pc) dV =

∫
D
(c ·∇p+ p∇· c) dV =

∫
D

c ·∇p dV.

Since c is an arbitrary constant vector, so we can get∫
∂D

pn dS =
∫

D
∇p dV.
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Euler equations for an ideal incompressible fluid

Since ∫
∂D

pn dS =
∫

D
∇p dV,

we have ∫
D

ρ
(∂u

∂t
+ (u · ∇)u

)
+∇p− ρf dV = 0.

Note that D is an arbitrary chosen region in Ω. This leads to

ρ
(∂u

∂t
+ (u · ∇)u

)
+∇p− ρf = 0 in Ω.

Combining above equation with the mass conservation equation for
incompressible and homogeneous fluid which has no viscosity, we
obtain the system of Euler equations for ideal incompressible fluids:{

ρ
(∂u

∂t
+ (u · ∇)u

)
+∇p = ρf in Ω,

∇ · u = 0 in Ω.
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The normal stresses

For a real viscous fluid, each small volume of fluid is not only
acted on by pressure forces (normal stresses), but also by tangential
stresses (shear stresses), i.e., the fluid not only acted on by
pressure, but also by viscous stress.

Thus, as in the inviscid case, the normal stresses are due to
pressure giving rise to a force on the volume D of fluid,∫

∂D
−pIn dS =

∫
∂D
−pn dS =

∫
D
−∇p dV,

where the pressure term is converted into an integral over D,
exactly as we have done in the case of an ideal fluid.
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The strain rate tensor

The strain rate tensor (deformation tensor) is a physical quantity
that describes the rate of change of the deformation of a material
in the neighborhood of a certain point at a certain moment of
time. It can be defined as the derivative of the strain tensor w.r.t.
time, or as the symmetric part of the gradient (derivative w.r.t.
position) of the flow velocity. The strain rate tensor is given by

ϵ :=
1
2

([∂ui
∂xj

]
+

[∂uj

∂xi

])
=

1
2

(
∇u + (∇u)⊤

)
.

We also define the vorticity tensor by

ξ :=
1
2

([∂ui
∂xj

]
−

[∂uj

∂xi

])
=

1
2

(
∇u− (∇u)⊤

)
.

gradient of the flow velocity = strain rate tensor + vorticity tensor

∇u = ϵ + ξ.
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The shear stress tensor

Fluid satisfying a linear stress-strain relationship is called a
Newtonian fluid; otherwise, the fluid is called a non-Newtonian
fluid. In Newtonian fluid, the shear stress tensor T is a linear
function of the strain rate tensor ϵ, defined by two coefficients,
one relating to the expansion rate (the bulk viscosity coefficient)
and one relating to the shear rate (the viscosity coefficient), i.e.,

T(ϵ) = 2µϵ + λ trace(ϵ)I,

µ and λ are parameters describing the “stickiness” of the fluid.

For an incompressible fluid, the parameter λ is not important
because

trace(ϵ) = ∇ · u = 0.

Hence, we have the shear stress tensor for incompressible fluid,

T = 2µϵ.
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An identity of ∇ · ϵ

∇ · ϵ = ∇ · 1
2


2 ∂u1

∂x
∂u1
∂y + ∂u2

∂x
∂u1
∂z + ∂u3

∂x
∂u2
∂x + ∂u1

∂y 2 ∂u2
∂y

∂u2
∂z + ∂u3

∂y
∂u3
∂x + ∂u1

∂z
∂u3
∂y + ∂u2

∂z 2 ∂u3
∂z



=


∂2u1
∂x2 + 1

2
∂2u2
∂y∂x + 1

2
∂2u1
∂y2 + 1

2
∂2u3
∂z∂x + 1

2
∂2u1
∂z2

1
2

∂2u1
∂x∂y + 1

2
∂2u2
∂x2 + ∂2u2

∂y2 + 1
2

∂2u3
∂z∂y + 1

2
∂2u2
∂z2

1
2

∂2u1
∂x∂z +

1
2

∂2u3
∂x2 + 1

2
∂2u2
∂y∂z +

1
2

∂2u3
∂y2 + ∂2u3

∂z2



=


1
2

∂2u1
∂x2 + 1

2
∂2u1
∂y2 + 1

2
∂2u1
∂z2 + 1

2
∂2u1
∂x2 + 1

2
∂2u2
∂y∂x + 1

2
∂2u3
∂z∂x

1
2

∂2u2
∂x2 + 1

2
∂2u2
∂y2 + 1

2
∂2u2
∂z2 + 1

2
∂2u1
∂x∂y + 1

2
∂2u2
∂y2 + 1

2
∂2u3
∂z∂y

1
2

∂2u3
∂x2 + 1

2
∂2u3
∂y2 + 1

2
∂2u3
∂z2 + 1

2
∂2u1
∂x∂z +

1
2

∂2u2
∂y∂z +

1
2

∂2u3
∂z2


=

1
2

∇2u1 +
∂

∂x (∇ · u)
∇2u2 +

∂
∂y (∇ · u)

∇2u3 +
∂
∂z (∇ · u)

 .
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Viscous shear forces

The molecular viscosity µ (the dynamic viscosity), which is a fluid
property measuring the resistance of the fluid to shearing, gives rise
to the viscous shear force∫

∂D
Tn dS =

∫
D
∇ · T dV,

where we have used the Divergence Theorem, and

∇ · T = 2µ∇ · ϵ = µ

 ∇2u1 +
∂
∂x (∇ · u)

∇2u2 +
∂
∂y (∇ · u)

∇2u3 +
∂
∂z (∇ · u)

 = µ

 ∇2u1
∇2u2
∇2u3


= µ∇2u,

by virtue of the incompressibility condition, ∇ · u = 0. Thus, the force
due to the shear stresses is given by∫

∂D
Tn dS =

∫
D
∇ · T dV =

∫
D

µ∇2u dV.
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Viscous fluid

Application of Newton’s second law of motion in the case of a
Newtonian fluid gives∫

D
ρ
(du

dt
+ (u · ∇)u

)
dV =

∫
∂D
(−pI + T(ϵ))n dS +

∫
D

ρf dV.

Substituting∫
∂D
−pIn dS =

∫
D
−∇p dV and

∫
∂D

T(ϵ)n dS =
∫

D
µ∇2u dV

into the above equation, we have∫
D

ρ
(∂u

∂t
+ (u · ∇)u

)
dV =

∫
D

(
−∇p + µ∇2u + ρf

)
dV.

Using the fact that D ⊆ Ω is an arbitrary region in the flow, we finally
obtain the incompressible Navier-Stokes equations.
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The incompressible Navier-Stokes equations

The non-steady incompressible Navier-Stokes equations can be posed as{
ρ
(∂u

∂t
+ (u · ∇)u

)
= −∇p + µ∇2u + ρf in Ω,

∇ · u = 0 in Ω,

which combined with boundary condition and initial data are the
basis of practical models of incompressible viscous fluid flow.

Let ν := µ/ρ, called kinematic viscosity, and p← p/ρ. The momentum
equation can be simplified as

∂u
∂t
− ν∇2u + (u · ∇)u +∇p = f in Ω.
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Time-dependent incompressible Navier-Stokes equations

Let Ω be an open bounded domain in Rd (d = 2, 3) and [0, T] be the
time interval. The time-dependent, incompressible Navier-Stokes
problem can be posed as: find u and p with

∫
Ω p dV = 0, so that

∂u
∂t
− ν∇2u + (u · ∇)u +∇p = f in Ω× (0, T],

∇ · u = 0 in Ω× (0, T],
u = ub on ∂Ω× [0, T],
u = u0 in Ω× {t = 0}.

u is the velocity field, p the pressure (divided by a constant
density ρ), ν the kinematic viscosity, and f the body force.

By the Divergence Theorem, boundary velocity ub must satisfy∫
∂Ω

ub · n dS =
∫

Ω
∇ · u dV = 0, ∀ t ∈ [0, T].
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Time-discretization of the incompressible N-S equations

First, we discretize the time variable of the Navier-Stokes problem,
with the spatial variable being left continuous. Consider the implicit
Euler time-discretization with explicit first-order approximation to
the nonlinear convection term:

un+1 − un

∆t
− ν∇2un+1 + (un · ∇)un +∇pn+1 = f n+1 in Ω,

∇ · un+1 = 0 in Ω,
un+1 = un+1

b on ∂Ω,

where ti := i∆t for i = 0, 1, · · · , ∆t > 0 is the time step length, and gn

denotes an approximate (or exact) value of g(tn) at the time level n.

It is highly inefficient in solving this coupled system of Stokes-like equations
directly. This is precisely the reason for proposing the projection approach to
decouple the computation of (un+1, pn+1).
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Idea of projection method

This approach solves the equations of time-discretization of the
incompressible Navier-Stokes equations.

The underlying idea of projection method, first introduced by
Chorin (1968, 1969) and Temam (1969), is based on applying the
Helmholtz-Hodge decomposition (HHD) to the time-discretized
incompressible Navier-Stokes equations.

The feature of projection method is to compute velocity and
pressure fields separately through the computation of an
intermediate velocity u∗, and then project it onto the space of
divergence-free vector fields.
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Helmholtz-Hodge decomposition (Chorin & Marsden’s book)

A smooth vector field w defined on Ω can be uniquely decomposed
orthogonally in the form:

w = u +∇φ,

where u has zero divergence, ∇ · u = 0 in Ω, and u · n = 0 on ∂Ω.

gradient fields


vector fields that are 
divergence free and 
parallel to the boundary


∇ϕ w


u


Remarks:
Orthogonality means

∫
Ω u · ∇φ dV = 0 (L2-inner product).

The HHD describes the decomposition of a flow field w into its
divergence-free component u and curl-free component ∇φ, since
∇ · u = 0 and ∇× (∇φ) = 0 in Ω.
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Proof of HHD Theorem

Orthogonality of u and ∇φ: First, note that

∇ · (φu) = (∇ · u)φ + u · ∇φ.

Then by ∇ · u = 0 in Ω, Divergence Theorem, and u · n = 0 on ∂Ω,∫
Ω

u · ∇φ dV =
∫

Ω
∇ · (φu) dV =

∫
∂Ω

φu · n dS = 0. (♣)

Uniqueness: Suppose w = ui +∇φi, ∇ · ui = 0 in Ω and ui · n = 0 on
∂Ω for i = 1, 2. Then

(u1 − u2) +∇(φ1 − φ2) = 0 in Ω.

Taking the inner product with u1 − u2, we have

0 =
∫

Ω(u1 − u2) · (u1 − u2) + (u1 − u2) · ∇(φ1 − φ2) dV
=

∫
Ω(u1 − u2) · (u1 − u2) + 0 dV. (using (♣) again)

It follows that u1 = u2 and ∇φ1 = ∇φ2.
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Proof of HHD Theorem (cont.)

Existence: Given a smooth vector field w, let φ be defined as the
solution to the Neumann problem{

∇2 φ = ∇ ·w in Ω,
∇φ · n = w · n on ∂Ω.

It is known that the solution φ of this problem exists and is defined
up to an arbitrary additive constant, see the Remark below. Define
u := w−∇φ, then it is obvious that ∇ · u = 0 and u · n = 0 on ∂Ω.

Remark Consider the Neumann problem on a smooth domain D,{
∇2ψ = f in D,
∇ψ · n = g on ∂D.

The problem has a unique solution up to a constant if and only if the
following compatibility condition holds:∫

D
f dV =

∫
D
∇ · ∇ψ dV =

∫
∂D
∇ψ · n dS =

∫
∂D

g dS.
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Chorin projection method (Math. Comput. 1968 & 1969)

Step 1 Solve for the intermediate velocity field u∗,
u∗ − un

∆t
− ν∇2u∗ + (un · ∇)un = f n+1 in Ω,

u∗ = un+1
b on ∂Ω.

Step 2 Determine un+1 and pn+1 by solving
un+1 − u∗

∆t
+∇pn+1 = 0 in Ω,

∇ · un+1 = 0 in Ω,
un+1 · n = un+1

b · n on ∂Ω.
Notice that Step 2 is equivalent to solving the following pressure-Poisson
equation with the homogeneous Neumann boundary condition:{

∇2pn+1 =
1

∆t
∇ · u∗ in Ω,

∇pn+1 · n = 0 on ∂Ω,

and then define the velocity field by un+1 = u∗ − ∆t∇pn+1.
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Remarks on Chorin’s first-order method

1 The second step is usually referred to as the projection step.

u∗ = un+1 + ∆t∇pn+1 = un+1 +∇(∆tpn+1).

This is indeed the standard HHD of u∗ when un+1
b = 0 on ∂Ω.

2 Summing all equations in Chorin’s projection method, we have

un+1 − un

∆t
− ν∇2u∗ + (un · ∇)un +∇pn+1 = f n+1 in Ω,

∇ · un+1 = 0 in Ω,
un+1 · n = un+1

b · n on ∂Ω,

different from the original semi-implicit discretization. Since

un+1 = u∗ − ∆t∇pn+1 ≈ u∗ in Ω as ∆t→ 0+,

it is not surprising that we should expect

∇2un+1 ≈ ∇2u∗ in Ω and un+1 ≈ un+1
b on ∂Ω as ∆t→ 0+.
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Error estimates of Chorin’s first-order method

The boundary condition ∇pn+1 · n = 0 on ∂Ω is enforce on pressure.
Rannacher (1991) showed that this artificial Neumann boundary
condition induces a numerical boundary layer on the pressure.

(Prohl 1997, Rannacher 1991, Shen 1992) Assuming that (ue, pe),
solving the Stokes equations, is sufficiently smooth. Then the
solution of above projection method satisfies the error estimates:

∥ue
∆t − u∆t∥ℓ∞([L2(Ω)]d) + ∥ue

∆t − u∗∆t∥ℓ∞([L2(Ω)]d) ≤ c(ue, pe, T)∆t,
∥pe

∆t − p∆t∥ℓ∞(L2(Ω)) + ∥ue
∆t − u∗∆t∥ℓ∞([H1(Ω)]d) ≤ c(ue, pe, T)

√
∆t,

where φ∆t = {φ0, φ1, · · · , φN} denotes some sequence of
functions in a Hilbert spaceH and define the discrete norm:

∥φ∆t∥ℓ2(H) :=
(

∆t
N

∑
k=1
∥φk∥2

H
)1/2

, ∥φ∆t∥ℓ∞(H) := max
0≤k≤N

∥φk∥H.
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Numerical boundary layer on the pressure

exact solution (u,p) as that given above, and we use a Fourier–Legendre spectral approximation with 48 · 49 modes guar-
anteeing that the spatial discretization errors are negligible compared with the time discretization errors.

In Fig. 2, we show the pressure error field at T = 1 for a typical time step. The main difference between the problem set in
the square domain and that set in the periodic channel is that the former has corner singularities while the latter does not.
Thus, it can be conjectured that the large errors occurring at the corners of the square domain are due to the lack of
smoothness of the domain. This conclusion is confirmed by the numerical experiments using mixed finite elements reported
in the next subsection.

3.7.2. Numerical results with P2=P1 finite elements

To further assess the influence of the smoothness of the domain boundary on the accuracy of the BDF2 rotational pres-
sure-correction method, we have performed convergence tests using P2=P1 finite elements. The tests are performed using
the following analytical solution

u ¼ ðsinðxþ tÞ sinðy þ tÞ; cosðxþ tÞ cosðy þ tÞÞ; p ¼ sinðx� y þ tÞ; ð3:31Þ
in the square domain ]0,1[2 and in the circular domain fðx; yÞ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
6 0:5g.

We show in Fig. 3 the error fields on the pressure at time T = 1 for the square and the circular domains. The mesh-size is
h = 1/40 and Dt = 0.00625. The two fields are represented using the same vertical scale. The pressure field on the circular
domain is free of numerical boundary layer, whereas large errors are still present at the corners of the domain for both
formulations.

In Fig. 4 we show the L1-norm of the error on the pressure as a function of Dt. The error is measured at T = 2. One
series of computation is made on the square and the other on the circle. The mesh-size in both computations is h = 1/80. It
is clear that the errors calculated on the circular domain are OðDt2Þ, whereas those calculated on the square are only
OðDt1:6Þ. This result, seems to confirm that the 3

2
convergence rate that we established for the pressure approximation in

Fig. 1. Pressure error field at time t = 1 in a square: (left) standard form; (right) rotational form.

Fig. 2. Error field on pressure at time t = 1 in a channel: (left) standard form; (right) rotational form.

J.L. Guermond et al. / Comput. Methods Appl. Mech. Engrg. 195 (2006) 6011–6045 6019

J. L. Guermond, P. Minev, and J. Shen, An overview of projection
methods for incompressible flows, Computer Methods in Applied
Mechanics and Engineering, 195 (2006), pp. 6011-6045.
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Second-order time-discretization

Using the implicit second-order Crank-Nicolson formula, we have

un+1 − un

∆t
− ν

2
∇2(un+1 + un)

+[(u · ∇)u]n+ 1
2 + [∇p]n+

1
2 = [f ]n+

1
2 in Ω,

∇ · un+1 = 0 in Ω,
un+1 = un+1

b on ∂Ω,

where [g]n+
1
2 denotes some explicit second-order approximation to

1
2 (g

n+1 + gn) or denotes the exact value. Two popular choices are:

1
2
(
gn+1 + gn) = 3

2 gn − 1
2 gn−1 + O(∆t2) (Adams-Bashforth),

1
2
(
gn+1 + gn) = gn+ 1

2 + O(∆t2) = 2gn− 1
2 − gn− 3

2 + O(∆t2).

Again, it is inefficient to solve the semi-implicit equations directly. We will
solve it by using the projection approach.
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Explicit second-order approximations

Consider the smooth scalar function g. By Taylor’s expansion,

g(tn+1) = g(tn) + ∆tg′(tn) +
∆t2

2 g′′(tn) + · · · (1)
g(tn−1) = g(tn)− ∆tg′(tn) +

∆t2

2 g′′(tn)− · · · (2)
g(tn+ 1

2
) = g(tn) +

∆t
2 g′(tn) +

∆t2

8 g′′(tn) + · · · (3)

Adding (1) to (2) and 2× (3)− (1), we obtain

g(tn+1) + g(tn−1) = 2g(tn) + ∆t2g′′(tn) + · · · (⋆)

2g(tn+ 1
2
)− g(tn+1) = g(tn)− ∆t2

4 g′′(tn) + · · · (⋆⋆)

For example, by (⋆) and combining (⋆) with (⋆⋆), we have
1
2
{
((u · ∇)u)n+1 + ((u · ∇)u)n}
= 1

2
{

2((u · ∇)u)n − ((u · ∇)u)n−1 + O(∆t2) + ((u · ∇)u)n}
= 3

2 ((u · ∇)u)n − 1
2 ((u · ∇)u)n−1 + O(∆t2),

1
2
(
∇pn+1 +∇pn) = ∇pn+ 1

2 + O(∆t2) = 2∇pn− 1
2 −∇pn− 3

2 + O(∆t2).
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Bell-Colella-Glaz projection method (JCP 1989)

Step 1 Solve for the intermediate velocity field u∗,
u∗ − un

∆t
− ν

2
∇2(u∗ + un) + [(u · ∇)u]n+ 1

2 +∇pn− 1
2 = [f ]n+

1
2 in Ω,

u∗ = un+1
b on ∂Ω.

Step 2 Determine un+1 and φn+1 by solving
un+1 − u∗

∆t
+∇φn+1 = 0 in Ω,

∇ · un+1 = 0 in Ω,
un+1 · n = un+1

b · n on ∂Ω.

It is equivalent to solving the φn+1-Neumann Poisson problem:{
∇2 φn+1 =

1
∆t
∇ · u∗ in Ω,

∇φn+1 · n = 0 on ∂Ω,
and then set un+1 = u∗ − ∆t∇φn+1.

Step 3 Update the pressure, pn+ 1
2 = pn− 1

2 + φn+1.
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Brown-Cortez-Minion projection method (JCP 2001)

The Bell-Colella-Glaz projection method produces solutions that
converge at a second-order rate for the velocity, but the pressure
converges at only a first-order rate.

Brown-Cortez-Minion suggest that pressure correction equation
in Step 3 should be modified as

————————————————————————–
Step 3 Update the pressure,

pn+ 1
2 = pn− 1

2 + φn+1 − ν∆t
2
∇2 φn+1

————————————————————————–
that recovers second-order accuracy in the pressure. Moreover,
they suggest the following general procedure to generate
second-order accurate projection methods, see next two slides.

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Direct-forcing IB projection methods 31/83



A general second-order projection method

Brown-Cortez-Minion (JCP 2001) suggested the general procedure:

Step 1 Solve for the intermediate velocity field u∗,{ u∗ − un

∆t
− ν

2
∇2(u∗ + un) + [(u · ∇)u]n+ 1

2 +∇q = [f ]n+
1
2 in Ω,

Bu∗ = 0 on ∂Ω,
where ∇q is a prediction of ∇pn+ 1

2 and Bu∗ = 0 is some appropriate
boundary condition.

Step 2 Determine un+1 and φn+1 by solving un+1 − u∗

∆t
+∇φn+1 = 0 in Ω,

∇ · un+1 = 0 in Ω,

with some boundary condition of un+1, consistent with Bu∗ = 0 and
the expectation un+1|∂Ω = un+1

b , and φn+1 is an auxiliary function
whose main purpose is to project u∗.

Step 3 Update the pressure, pn+ 1
2 = q + Lφn+1, L is some operator

needed to be determined.
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Remarks on the general method

1 Three parts need to be made in the design of such a method:

− the prediction ∇q of ∇pn+ 1
2

− the boundary condition Bu∗ = 0 on ∂Ω
− the operator L in the pressure-update equation

2 Combining the Step 1 and Step 2 and eliminating u∗, we have

un+1 − un

∆t
− ν

2
∇2(un+1 + un) + [(u · ∇)u]n+ 1

2

+∇
(
q + φn+1 − ν∆t

2
∇2 φn+1) = [f ]n+

1
2 .

Comparing the equation with original second-order
semi-implicit time-discretization equation, we obtain

pn+ 1
2 = q + φn+1 − ν∆t

2
∇2 φn+1 (

= q + φn+1 − ν

2
∇ · u∗

)
.

This means that the operator L should be defined as

Lφn+1 := φn+1 − ν∆t
2
∇2 φn+1 (

= φn+1 − ν

2
∇ · u∗

)
.
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Kim-Moin projection method (JCP 1985)

Step 1 Solve for the intermediate velocity field u∗,
u∗ − un

∆t
− ν

2
∇2(u∗ + un) + [(u · ∇)u]n+ 1

2 = [f ]n+
1
2 in Ω,

u∗ · n = un+1
b · n & u∗ · τ = (un+1

b + ∆t∇φn) · τ on ∂Ω.

Step 2 Determine un+1 and pn+ 1
2 by solving

un+1 − u∗

∆t
+∇φn+1 = 0 in Ω,

∇ · un+1 = 0 in Ω,
un+1 · n = un+1

b · n on ∂Ω.
It is equivalent to solving the φn+1-Neumann Poisson problem:{

∇2 φn+1 =
1

∆t
∇ · u∗ in Ω,

∇φn+1 · n = 0 on ∂Ω,

and set un+1 = u∗ − ∆t∇φn+1. Moreover, we have un+1 · n = un+1
b · n

and un+1 · τ = un+1
b · τ − ∆t∇(φn+1 − φn) · τ.

Step 3 Update the pressure, pn+ 1
2 = φn+1 − ν∆t

2
∇2 φn+1.

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Direct-forcing IB projection methods 34/83



Kim-Moin and Brown-Cortez-Minion are “equivalent”!

Staring with the Kim-Moin method and changing the variables,

ũ = u∗ − ∆t∇φn, ψn+1 = φn+1 − φn,

pn+ 1
2 = φn+1 − ν∆t

2
∇2 φn+1, pn− 1

2 = φn − ν∆t
2
∇2 φn,

we can find that solution (un+1, pn+ 1
2 ) of the Kim-Moin method also

solves the Brown-Cortez-Minion projection equations and vice versa:
ũ− un

∆t
− ν

2
∇2(ũ + un) + [(u · ∇)u]n+ 1

2 +∇pn− 1
2 = [f ]n+

1
2 in Ω,

ũ = un+1
b on ∂Ω;

un+1 − ũ
∆t

+∇ψn+1 = 0 in Ω,

∇ · un+1 = 0 in Ω,
un+1 · n = un+1

b · n on ∂Ω;

pn+ 1
2 = pn− 1

2 + ψn+1 − ν∆t
2
∇2ψn+1.
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Choi-Moin projection method (JCP 1994)

Step 1 Solve for the intermediate velocity field u∗,
ũ− un

∆t
− ν

2
∇2(ũ + un) + [(u · ∇)u]n+ 1

2 +∇pn− 1
2 = [f ]n+

1
2 in Ω,

ũ = un+1
b on ∂Ω;u∗ − ũ

∆t
−∇pn− 1

2 = 0 in Ω.

Step 2 Determine un+1 and pn+ 1
2 by solving

un+1 − u∗

∆t
+∇pn+ 1

2 = 0 in Ω,

∇ · un+1 = 0 in Ω,
un+1 · n = u∗ · n on ∂Ω.

It is equivalent to solving the pn+ 1
2 -Neumann Poisson problem: ∇2pn+ 1

2 =
1

∆t
∇ · u∗ in Ω,

∇pn+ 1
2 · n = 0 on ∂Ω,

and then set un+1 = u∗ − ∆t∇pn+ 1
2 . Moreover, we have

un+1 = ũ− ∆t(∇pn+ 1
2 −∇pn− 1

2 ) = un+1
b + O(∆t2) on ∂Ω.
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Remark on the error estimates

1 Brown-Cortez-Minion have showed that the pressure
approximation is second-order accurate, but the numerical
experiments reported show that this result is valid in a periodic
channel only, and that convergence rate of 3/2 for the pressure is
likely to be the best possible for general domain.

2 J. L. Guermond, P. Minev, and J. Shen, An overview of projection
methods for incompressible flows, Computer Methods in Applied
Mechanics and Engineering, 195 (2006), pp. 6011-6045.
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Fluid-structure interaction problem (流構耦合問題)

A fluid-structure interaction (FSI) problem describes the coupled
dynamics of fluid mechanics and structure mechanics. The
study of FSI problems is of great importance in many sciences
and engineering applications

It usually requires the modeling of complex geometric structure
and moving boundaries. It is very challenging for conventional
body-fitted approach.

In what follows, we adopt a Cartesian grid based non-boundary
conforming method, the direct-forcing immersed boundary (IB)
projection method.
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A fluid-solid interaction problem

Let Ω be the fluid domain which encloses a rigid body positioned at
Ωs(t) with a prescribed velocity us(t, x). A typical problem is flow over
a stationary or moving solid ball with prescribed velocity. The
governing equations of the fluid-solid interaction problem with
initial value and no-slip boundary condition can be posed as follows:

∂u
∂t
− ν∇2u + (u · ∇)u +∇p = f in (Ω \Ωs)× (0, T],

∇ · u = 0 in (Ω \Ωs)× (0, T],
u = ub on ∂Ω× [0, T],
u = us on ∂Ωs × [0, T],
u = u0 in (Ω \Ωs)× {t = 0}.

Ω

Ωs(t) • us(t,x)
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The body-fitted approach

The body-fitted approach is a conventional method for solving the
time-dependent, incompressible Navier-Stokes equations on a
domain enclosing a rigid body. For example, using the implicit Euler
time-discretization at time tn+1, we solve the linearization in the
spatial domain Ω \Ωn+1

s ,

un+1 − un

∆t
− ν∇2un+1 + (un · ∇)un +∇pn+1 = f n+1 in Ω \Ωn+1

s ,

∇ · un+1 = 0 in Ω \Ωn+1
s ,

un+1 = un+1
b on ∂Ω,

un+1 = un+1
s on ∂Ωn+1

s .

Again, it is highly inefficient in solving these equations directly. Below, we
consider the direct-forcing immersed boundary approach.
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A direct-forcing approach: virtual force F

A virtual force term F is added to the momentum equation to
accommodate interaction between the solid and the fluid, and we
expect the problem can be solved on the whole domain Ω and do not
need to set the interior boundary condition us on the interface ∂Ωs:

∂u
∂t
− ν∇2u + (u · ∇)u +∇p = f + F in Ω× (0, T],

∇ · u = 0 in Ω× (0, T],
u = ub on ∂Ω× [0, T],
u = u0 in Ω× {t = 0}.

The virtual force F exists in the rigid body Ωs(t) which is treated as a
portion of the fluid but the virtual force enforces it to act like a solid body.

The virtual force will be specified in the time-discrete equations when we
apply the projection methods to solve the time-discretization problem. We
first consider the first-order projection method of Chorin.
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A primitive direct-forcing IB projection method (Chorin)

The main idea was proposed by Noor-Chern-Horng (CM 2009).

Step 1 Solve the intermediate velocity field u∗,
u∗ − un

∆t
− ν∇2u∗ + (un · ∇)un = f n+1 in Ω,

u∗ = un+1
b on ∂Ω.

Step 2 Determine u∗∗ and pn+1 by solving
u∗∗ − u∗

∆t
+∇pn+1 = 0 in Ω,

∇ · u∗∗ = 0 in Ω,
u∗∗ · n = un+1

b · n on ∂Ω.

It is equivalent to solving the pn+1-Neumann Poisson problem:{
∇2pn+1 =

1
∆t
∇ · u∗ in Ω,

∇pn+1 · n = 0 on ∂Ω,

and set u∗∗ = u∗ − ∆t∇pn+1 =⇒ ∇ · u∗∗ = 0, u∗∗ · n = un+1
b · n
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A primitive direct-forcing IB projection method (Chorin)

Step 3 Define the virtual force Fn+1 and then determine the velocity

field un+1 by setting

un+1 − u∗∗

∆t
= Fn+1 := η

us − u∗∗

∆t
in Ω,

where η(x, tn+1) is defined by

η(x, tn+1) =

{
1 x ∈ Ωn+1

s ,
0 x ̸∈ Ωn+1

s .
The virtual force Fn+1 exists on the whole solid body and zero
elsewhere. In other words, in this step, we simply set

un+1 =

{
u∗∗ in Ω \Ωn+1

s ,
us in Ωn+1

s .

We remark that η can be taken fractional on the boundary cells.
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A primitive direct-forcing IB projection method (Brown et al.)

Step 1 Solve for the intermediate velocity field u∗,
u∗ − un

∆t
− ν

2
∇2(u∗ + un) + [(u · ∇)u]n+ 1

2 +∇pn− 1
2 = [f ]n+

1
2 in Ω,

u∗ = un+1
b on ∂Ω.

Step 2 Determine u∗∗ and φn+1 by solving
u∗∗ − u∗

∆t
+∇φn+1 = 0 in Ω,

∇ · u∗∗ = 0 in Ω,
u∗∗ · n = un+1

b · n on ∂Ω.

Step 3 Define the virtual force Fn+ 1
2 and then determine the velocity

field un+1 by setting

un+1 − u∗∗

∆t
= Fn+ 1

2 := η
us − u∗∗

∆t
in Ω.

Step 4 Update the pressure, pn+ 1
2 = pn− 1

2 + φn+1 − ν∆t
2
∇2 φn+1.
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Remarks on the direct-forcing IB projection method

1 Conventionally, Step 2 would be the end of projection method
for velocity field and actually un+1 = u∗∗. However, in order to
satisfy the no-slip boundary condition at the interface ∂Ωn+1

s , we
need Step 3 to reset the velocity to be the same as that of the
solid’s velocity us.

2 Summing all equations in the direct-forcing IB method based on,
e.g., the Chorin projection method, we obtain

un+1 − un

∆t
− ν∇2u∗ + (un · ∇)un +∇pn+1 = f n+1 + Fn+1 in Ω,

∇ · u∗∗ = 0 in Ω, u∗∗ · n = un+1
b · n on ∂Ω,

u∗∗ = u∗ − ∆t∇pn+1 in Ω, un+1 =

{
u∗∗ in Ω \Ωn+1

s ,
us in Ωn+1

s .

Is the above system “a good approximation” to the system of the
body-fitted approach?
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What’s wrong with the direct-forcing IB projection method?

1 Although the direct-forcing IB projection method seems to
produce reasonable results for many fluid-solid interaction
problems, it violates our physical intuition!

2 It is not always stable when the direct-forcing IB approach
combined with an arbitrary chosen projection method.
The reason for this is because the velocity and pressure used in solving
the intermediate velocity field u∗ may be not consistent!

In what follows, we will propose a simple remedy to retrieve the
direct-forcing IB projection method proposed by Noor-Chern-Horng.

We will use the idea of the prediction-correction approach to fit the
physical intuition and carefully choose a “good” projection method!
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A two-stage direct-forcing IB projection method (Chorin)

Prediction –

Step 1.1 Solve for the intermediate velocity field u∗,
u∗ − un

∆t
− ν∇2u∗ + (un · ∇)un = f n+1 in Ω,

u∗ = un+1
b on ∂Ω.

Step 1.2 Determine u∗∗ and pn+1 by solving
u∗∗ − u∗

∆t
+∇pn+1 = 0 in Ω,

∇ · u∗∗ = 0 in Ω,
u∗∗ · n = un+1

b · n on ∂Ω.

Step 1.3 Predict the virtual force F̃
n+1

that exits on the solid body
and zero elsewhere by setting

un+1 − u∗∗

∆t
= F̃

n+1
:= η

us − u∗∗

∆t
in Ω, η(x, tn+1) =

{
1 x ∈ Ωn+1

s ,
0 x ̸∈ Ωn+1

s ,

which implies that the velocity un+1 in the solid Ωn+1
s is equal to us.
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A two-stage direct-forcing IB projection method (Chorin)

Correction –

Step 2.1 Solve the intermediate velocity field u∗,
u∗ − un

∆t
− ν∇2u∗ + (un · ∇)un = f n+1 + F̃

n+1
in Ω,

u∗ = un+1
b on ∂Ω.

Step 2.2 Determine u∗∗ and pn+1 by solving
u∗∗ − u∗

∆t
+∇pn+1 = 0 in Ω,

∇ · u∗∗ = 0 in Ω,
u∗∗ · n = un+1

b · n on ∂Ω.

Step 2.3 Correct the velocity field un+1 and virtual force Fn+1,

un+1 =

{
u∗∗ in Ω \Ωn+1

s

us in Ωn+1
s

and Fn+1 = F̃
n+1

+ η
us − u∗∗

∆t
in Ωn+1

s .
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A two-stage direct-forcing IB projection method (Choi-Moin)

Prediction –

Step 1.1 Solve for the intermediate velocity field u∗,
ũ− un

∆t
− ν

2
∇2(ũ + un) + [(u · ∇)u]n+ 1

2 +∇pn− 1
2 = [f ]n+

1
2 in Ω,

ũ = un+1
b on ∂Ω;u∗ − ũ

∆t
−∇pn− 1

2 = 0 in Ω.

Step 1.2 Determine u∗∗ and φn+1 by solving
u∗∗ − u∗

∆t
+∇φn+1 = 0 in Ω,

∇ · u∗∗ = 0 in Ω,
u∗∗ · n = u∗ · n on ∂Ω.

Step 1.3 Predict the virtual force F̃
n+ 1

2 by setting

un+1 − u∗∗

∆t
= F̃

n+ 1
2 := η

us − u∗∗

∆t
in Ω.
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A two-stage direct-forcing IB projection method (Choi-Moin)

Correction –
Step 2.1 Solve for the intermediate velocity field u∗,

ũ− un

∆t
− ν

2
∇2(ũ + un) + [(u · ∇)u]n+ 1

2 +∇pn− 1
2 = [f ]n+

1
2 + F̃

n+ 1
2 in Ω,

ũ = un+1
b on ∂Ω;u∗ − ũ

∆t
−∇pn− 1

2 = 0 in Ω.

Step 2.2 Determine u∗∗ and correct φn+1 by solving
u∗∗ − u∗

∆t
+∇φn+1 = 0 in Ω,

∇ · u∗∗ = 0 in Ω,
u∗∗ · n = u∗ · n on ∂Ω.

Step 2.3 Correct the velocity un+1 and virtual force Fn+ 1
2 ,

un+1 =

{
u∗∗ in Ω \Ωn+1

s

us in Ωn+1
s

and Fn+ 1
2 = F̃

n+ 1
2 + η

us − u∗∗

∆t
in Ωn+1

s .

Step 2.4 Update the pressure as pn+ 1
2 = φn+1 − ν

2
∇ · ũ.
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Space-discretization on a staggered grid

In following numerical experiments, we employ the two-stage
direct-forcing IB projection method (based on Choi-Moin scheme).

We apply the second-order centered differences over a staggered
grid for space-discretization:

Diagram of the computational domain Ω with staggered grid,
where the unknowns u, v and p are approximated at the

grid points marked by→, ↑ and •, respectively

In all examples, the body force f are zero. The volume-of-solid
function η is fractional on the boundary cells.
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Example 1: rotating solid disk

Problem setting –

▶ The computational domain is Ω = (0, 1)× (0, 1), within which
there is a rotating solid disk centered at (0.5, 0.5) with radius
0.25. The disk rotates counterclockwise by a constant angular
velocity ω = 4.

▶ The Reynolds number is Re := 1/ν = 100, time step length is
∆t = 0.1h (CFL number is 0.1), and T = 4.

u = 0 v = 0 ∂p
∂y = 0

u = 0 v = 0 ∂p
∂y = 0

u = 0

v = 0
∂p
∂x = 0

u = 0

v = 0
∂p
∂x = 0

The homogeneous boundary conditions on ∂Ω
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Example 1: error behavior

Error behavior of the numerical solutions uh, vh, and ph at T = 4 using
the solution of h = 1/1620 as the reference solution

1/h L1 norm order L2 norm order Max. norm order
20 2.0820e-02 − 3.9742e-02 − 1.7573e-01 −

uh 60 8.4854e-03 0.82 1.7044e-02 0.77 8.2900e-02 0.68
180 2.5123e-03 1.11 5.0608e-03 1.11 2.8370e-02 0.98
540 6.5240e-04 1.23 1.3207e-03 1.22 8.1061e-03 1.14

20 2.5334e-02 − 4.2845e-02 − 1.7573e-01 −
vh 60 1.0199e-02 0.83 1.8496e-02 0.76 8.2900e-02 0.68

180 3.0741e-03 1.09 5.5503e-03 1.10 2.8554e-02 0.97
540 7.9659e-04 1.23 1.4500e-03 1.22 8.1061e-03 1.15

20 6.8326e-03 − 1.3968e-02 − 8.4475e-02 −
ph 60 3.0749e-03 0.73 6.2523e-03 0.73 4.8072e-02 0.51

180 9.8066e-04 1.04 2.1771e-03 0.96 3.8831e-02 0.19
540 2.6861e-04 1.18 7.5445e-04 0.96 2.5701e-02 0.38
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Example 2: flow past a stationary cylinder

Problem setting –

▶ Ω = (−13.4D, 16.5D)× (−8.35D, 8.35D), where D is the
diameter of the cylinder and we take D = 0.2.

▶ A non-uniform grid 250× 160 is adopted to discretize the
computational domain, within which a uniform grid 60× 60 is
employed in the region [−D, D]× [−D, D].

▶ The small uniform mesh size is h = 2D/60 and time step length
is ∆t = 0.4h (CFL number is 0.4).
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Example 2: flow past a stationary cylinder

▶ The drag coefficient Cd and the lift coefficient Cℓ are respectively
defined as

Cd =
Fd

U2
∞D/2

and Cℓ =
Fℓ

U2
∞D/2

,

where the drag force Fd and the lift force Fℓ are respectively
calculated by

Fd = −
∫

Ω
F1 dx ≈ −∑

xij

F1h2 and Fℓ = −
∫

Ω
F2 dx ≈ −∑

xij

F2h2.

▶ The dimensionless vortex shedding frequency is called the
Strouhal number and it is defined as St = fs

U∞D .
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Example 2: numerical results at Re = 40

The comparison of experimental and numerical results of steady state
wake dimensions and maximum drag coefficient for Re = 40

Re = 40
Methods Cd Lw/D a/D b/D θ

Calhoun 1.62 2.18 − 　− 54.2
Coutanceau-Bouard∗ − 2.13 0.76 0.59 53.8
Linnick-Fasel 1.54 2.28 0.72 0.60 53.6
Su et al. 1.63 − − − −
Taira-Colonius (B) 1.54 2.30 0.73 0.60 53.7
Tritton∗ 1.48 − − − −
Ye et al. 1.52 2.27 − − −
Present method-P 1.59 2.20 0.71 0.60 51.2
Present method-PC 1.56 2.18 0.72 0.60 53.3

 !

"

 
#
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Example 2: drag and lift coefficients at Re = 100

20 25 30 35 40 45 50

time

-0.5

0

0.5

1

1.5
drag and lift coefficients

drag

lift

present method-P

20 25 30 35 40 45 50

time

-0.5

0

0.5

1

1.5
drag and lift coefficients

drag

lift

20 25 30 35 40 45 50

time

-0.5

0

0.5

1

1.5
drag and lift coefficients

drag

lift

(left) present method-PC; (right) present method-PCC
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Example 2: numerical results at Re = 100

The comparison of maximum drag and lift coefficients
and Strouhal number for Re = 100

Re = 100
Methods Cd Cℓ St
Calhoun 1.36 0.30 0.175
Chiu et at. 1.36 0.30 0.167
Lai-Peskin 1.45 0.33 0.165
Liu et al. 1.36 0.34 0.164
Russell-Wang 1.39 0.32 0.170
Su et al. 1.40 0.34 0.168
Present method-P 1.43 0.37 0.171
Present method-PC 1.40 0.36 0.170
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Instantaneous vorticity contours

t = 16.0000

-0.5 0 0.5 1 1.5 2 2.5 3

-1

-0.5

0

0.5

1
t = 21.3333

-0.5 0 0.5 1 1.5 2 2.5 3

-1

-0.5

0

0.5

1

t = 26.6667

-0.5 0 0.5 1 1.5 2 2.5 3

-1

-0.5

0

0.5

1
t = 32.0000

-0.5 0 0.5 1 1.5 2 2.5 3

-1

-0.5

0

0.5

1

The direct-forcing IB projection method with PC based on
the Choi-Moin scheme
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Instantaneous pressure contours

The direct-forcing IB projection method with PC based on
the Choi-Moin scheme
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Instantaneous virtual force F

The direct-forcing IB projection method with PC based on
the Choi-Moin scheme
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Instantaneous sink-source distribution

The direct-forcing IB projection method with PC based on
the Choi-Moin scheme
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Example 3: two cylinders moving towards each other

Problem setting–

▶ A uniform grid 640× 320 is adopted to discretize the
computational domain is Ω = (−8, 24)× (−8, 8).

▶ ∆t = 1/200 (CFL number is 0.1).

▶ The Reynolds number is Re = 40.
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Example 3: two cylinders moving towards each other

▶ The motion of the lower and upper cylinders are governed by
setting the dynamics of their centers (xlc, ylc) and (xuc, yuc) to

xlc =

{ 4
π

sin
(πt

4

)
, 0 ≤ t ≤ 16,

t− 16, 16 ≤ t ≤ 32
and ylc = 0,

and

xuc =

{
16− 4

π
sin

(πt
4

)
, 0 ≤ t ≤ 16,

32− t, 16 ≤ t ≤ 32
and yuc = 1.5.
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Example 3: two cylinders moving towards each other

18 20 22 24 26 28 30 32

time

0.5

1

1.5

2

2.5

3
drag coefficients

present

Xu and Wang

18 20 22 24 26 28 30 32

time

-1

-0.5

0

0.5

1

1.5
lift coefficients

present

Xu and Wang

The time evolution of drag and lift coefficients, Cd and Cℓ,
for the upper cylinder in the flow around two cylinders

compared with the results of Xu-Wang (JCP 2006)
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Example 3: two cylinders moving towards each other

t = 4

-5 0 5 10 15 20

-5

0

5

t = 4

-5 0 5 10 15 20

-5

0

5

t = 16

-5 0 5 10 15 20

-5

0

5

t = 16

-5 0 5 10 15 20

-5

0

5

The flow around two cylinders moving towards each other for
Re = 40 at different times: (left) contours of vorticity;

(right) contours of pressure.
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Example 3: two cylinders moving towards each other

t = 24

-5 0 5 10 15 20

-5

0

5

t = 24

-5 0 5 10 15 20

-5

0

5

t = 32

-5 0 5 10 15 20

-5

0

5

t = 32

-5 0 5 10 15 20

-5

0

5

The flow around two cylinders moving towards each other for
Re = 40 at different times: (left) contours of vorticity;

(right) contours of pressure.
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Concluding remarks

1 We have developed a successful direct-forcing IB projection
method with prediction-correction for simulating the fluid-solid
interaction problems. This approach gives a significant
improvement of the original direct-forcing IB projection method.
proposed by Noor-Chern-Horng (CM 2009).

2 Further works are needed, including the improvements of the
order of convergence, the extensions of the method to FSI
problems without prescribed solid’s velocity and the
fluid-elastic body interaction problems.

3 Details of this approach can be found in

T.-L. Horng, P.-W. Hsieh, S.-Y. Yang*, and C.-S. You,
A simple direct-forcing immersed boundary projection method
with prediction-correction for fluid-solid interaction problems,
submitted for publication, 2017.
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Governing equations of freely falling solid body

Consider a 2-D solid object of constant density ρs positioned at Ωs
with centroid Xc, translational velocity uc and angular velocity ω.
The velocity of the solid object is given by

us(t, x) = uc(t) + ω(t)× r(t, x), r := x−Xc, ∀ x ∈ Ωs(t).

From Newton’s second law, we have

duc

dt

∫
Ωs

ρf dV =
∫

∂Ωs
τ · n dS +

∫
Ωs

ρf F dV +
∫

Ωs
ρf g dV,

If
dω

dt
=

∫
∂Ωs

r× (τ · n) dS +
∫

Ωs
ρf r× F dV,

where τ is the stress tensor, n is the outward unit normal vector, ρf is
the density of fluid, g is the gravity, If is the fluid replacement, and F
is the virtual force, which is chosen to ensure u = us on Ωs.
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From the viewpoint of solid body

The motion of solid object can also be described by translational and
angular momentum of the solid body. Thus, we have

duc

dt

∫
Ωs

ρs dV =
∫

∂Ωs
τ · ndS +

∫
Ωs

ρsg dV,

Is
dω

dt
=

∫
∂Ωs

r× (τ · n) dS,

where Is is the moment of inertia for the solid object. Since the virtual
force F is chosen to make these two systems are equivalent, so we
have the following equations of motion:

duc

dt

∫
Ωs

ρs dV =
∫

Ωs
(ρs − ρf )gdV−

∫
Ωs

ρf F dV +
duc

dt

∫
Ωs

ρf dV,

Is
dω

dt
= −

∫
Ωs

ρf r× F dV + If
dω

dt
.
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Remarks on the equations of motion

1 The first term and second term in the right hand side of the first
equation represent the difference of gravity and buoyant force
and the drag, respectively.

2 The second equation can be further expressed as

Ms
duc

dt
= (Ms −Mf )g−

∫
Ωs

ρf FdV + Mf
duc

dt
,

where

Ms :=
∫

Ωs
ρs dV =

∫
Ω

ηρs dV, Mf :=
∫

Ωs
ρf dV =

∫
Ω

ηρf dV,

and

η(t, x) =
{

1 x ∈ Ωs(t),
0 x ̸∈ Ωs(t).
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The two-way fluid-solid interaction problem

The fluid-solid interaction of the freely falling solid body with a
virtual force can be formulated as the following initial-boundary
value problem: find u, p, F, uc and ω such that

∂u
∂t
− ν∇2u + (u · ∇)u +∇p = f + F t ∈ (0, T], x ∈ Ω,

∇ · u = 0 t ∈ (0, T], x ∈ Ω,
u = ub t ∈ (0, T], x ∈ ∂Ω,

u = u0 t = 0, x ∈ Ω,
u = us := uc + ωr in Ωs,

Ms
duc

dt
= (Ms −Mf )g−

∫
Ωs

ρf FdV + Mf
duc

dt
, uc(0) = uc0,

Is
dω

dt
= −

∫
Ωs

ρf r× FdV + If
dω

dt
, ω(0) = ω0.
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Time-discretization of the equations of motion

Let un, pn− 1
2 , Fn− 1

2 , un
c , ωn, Xn

c and θn be given. At the time level tn+1,
we first predict the translational velocity and the angular velocity,
denoted by un+1,p

c and ωn+1,p, by considering

Ms
un+1,p

c − un
c

∆t
= (Ms −Mf )g−

∫
Ωs

ρf Fn− 1
2 dV + Mf

un
c − un−1

c
∆t

,

Is
ωn+1,p −ωn

∆t
= −

∫
Ωs

ρf rn × Fn− 1
2 dV + If

ωn −ωn−1

∆t
.

Once un+1,p
c and ωn+1,p are obtained, we compute the predicted solid

center and rotational angle by taking

Xn+1,p
c −Xn

c
∆t

=
un

c + un+1,p
c

2
,

θn+1,p − θn

∆t
=

ωn + ωn+1,p

2
,

update the solid domain Ωn+1
s , and set the predicted solid velocity by

un+1,p
s = un+1,p

c + ωn+1,prn+1,p with rn+1,p = X −Xn+1,p
c .
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A two-stage direct-forcing IB projection method

Based on the time-discretization of the equations of motion, we
can devise a two-stage direct-forcing IB projection method for
FSI problems without prescribed solid velocity.

Please see some animations of the numerical simulations of
freely falling solid bodies in the viscous, incompressible fluid.
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Fluid-elastic body interaction problems

Let Ω be an open bounded domain in Rd (d = 2, 3) containing an
elastic body immersed in the incompressible viscous fluid flow for
t ∈ [0, T]. The fluid domain is denoted by Ωf (t) and the structure
domain is denoted by Ωs(t). That is, Ωf (t) = Ω \Ωs(t).

The governing equations of the fluid part of the fluid-elastic body
interaction problem are given by

∂u
∂t
− ν∇2u + (u · ∇)u +∇p = f in (Ω \Ωs)× (0, T],

∇ · u = 0 in (Ω \Ωs)× (0, T],
u = ub on ∂Ω× [0, T],
u = us on ∂ΩsN × [0, T],
u = u0 in (Ω \Ωs)× {t = 0}.

1 Introduction

In most problems it cannot be decided if the problem is one-way or two-way. Regarding the
interaction of a very slow driving car with the surrounding air, the influence of the air on
the car can be neglected. At a certain speed however, the aerodynamic resistance plays an
important role.

1.1 Fluid-Structure Interaction

For the following, we introduce a prototypical fluid-structure interaction problem: Figure 1.1
shows a flow domain with an obstacle. We call the common domain Ω, the flow domain Ωf

and the structure domain Ωs:

Ωf

Ωs

Figure 1.1: Fluid-structure interaction domain.

Now assume, that the fluid domain Ωf is filled with air, and Ωs is a rigid moving body of
steel. This movement will set the fluid into motion. The air however will not significantly
act on the obstacle:

Ωs

Ωf

Ωs

Ωf

Ωf

Ωs

Figure 1.2: Fluid motion imposed by moving structure.

This problem is a one-way fluid-structure interaction problem. The movement of the struc-
ture controls the motion of the fluid but the fluid’s motion does not impair the movement
of the structure.

Next assume, that the flow is driven by an inflow condition and the obstacle is an elas-
tic structure. The evolving flow will act on the surface of the structure and will cause a
deformation. This deformation changes the flow domain:

8

us : boundary velocity of the elastic body
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Fluid-elastic body interaction problems

We assume that the elastic structure is quasi-static, isotropic and
homogeneous which undergoes small deformations. Thus, we can
use the linear elasticity to model the elastic body immersed in the
fluid. The governing equations of the structure can be posed as
follows:  −∇ · σs(vs) = f s in Ωs,

vs = 0 on ∂ΩsD,
σs(vs)ns = −σ(u, p)n on ∂ΩsN,

vs is the displacement of the body; f s is a given body force and
we consider f s = 0 for simplicity; σs(vs) and σ(u, p) are the
stress tensors of the elastic body part and the fluid part, resp.

ns is the outward unit normal vector to ∂ΩsN from the elastic
body part and n is the outward unit normal vector to ∂ΩsN from
the fluid part. That is, ns = −n on ∂ΩsN.

The boundary ∂ΩsD of the elastic body is fixed on the global
boundary ∂Ω. This portion has no displacement for all time.
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Linear elasticity

1 The strain tensor is defined as

ε(w) :=
1
2
(∇w +∇w⊤), w could be vs or u.

2 The Cauchy stress tensor of the elastic body is defined as

σs(vs) := 2µsε(vs) + λs(∇ · vs)I,

µs :=
E

2(1 + νs)
and λs :=

Eνs

(1 + νs)(1− 2νs)

are the Lamé parameters, E is the Young’s modulus and νs with
0 < νs < 1/2 is the Poisson ratio. The upper limit of the Poisson
ratio, νs → (1/2)−, corresponds to an incompressible material.

3 The stress tensor of the fluid is defined as

σ(u, p) := 2µε(u)− pI,

where µ is the dynamic viscosity of the fluid, which is defined as
µ = ρν and ρ is the fluid density and ν is the kinematic viscosity.
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Strain and stress tensors

1 For 3-D case, the strain tensor can be expressed as

ε(w) =
∇w +∇w⊤

2
=

1
2

 2w1x w1y + w2x w1z + w3x
w1y + w2x 2w2y w2z + w3y
w1z + w3x w2z + w3y 2w3z

 .

2 For 2-D case, the stress tensor of the elastic body is given by

σs(vs) = 2µsε(vs) + λs(∇ · vs)I

=

 2µs
∂v1s
∂x + λs

(
∂v1s
∂x + ∂v2s

∂y

)
µs

(
∂v1s
∂y + ∂v2s

∂x

)
µs

(
∂v1s
∂y + ∂v2s

∂x

)
2µs

∂v2s
∂y + λs

(
∂v1s
∂x + ∂v2s

∂y

) 
and the stress tensor of the fluid is given by

σ(u, p) = 2µε(u)− pI =

 2µ ∂u1
∂x − p µ

(
∂u1
∂y + ∂u2

∂x

)
µ
(

∂u1
∂y + ∂u2

∂x

)
2µ ∂u2

∂y − p

 .
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A direct-forcing IB method

Step 1: Predict the virtual force Fn+1. Letting

F = ∇ · σs(vs)

=

 (λs + 2µs)
∂2v1s
∂x2 + µs

∂2v1s
∂y2 + (λs + µs)

∂2v2s
∂x∂y

(λs + 2µs)
∂2v2s
∂y2 + µs

∂2v2s
∂x2 + (λs + µs)

∂2v1s
∂x∂y

 in Ωs(t)

and taking time derivative, we have

d
dt

F =
d
dt

(
∇ · σs(vs)

)
= ∇ · σs(

d
dt

vs) = ∇ · σs(us) in Ωs(t).

Applying forward Euler scheme to discretize time variable, we obtain
an approximation to the virtual force at time level n + 1,

Fn+1 = Fn + ∆t∇ · σs(un
s ) in Ωn

s .
Step 2: Solve for the intermediate velocity field u∗,

u∗ − un

∆t
− ν∇2u∗ + (un · ∇)un = Fn+1 in Ω,

u∗ = un+1
b on ∂Ω.
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A direct-forcing IB method (cont.)

Step 3: Determine un+1 and pn+1 by solving
un+1 − u∗

∆t
+∇pn+1 = 0 in Ω,

∇ · un+1 = 0 in Ω,
un+1 · n = un+1

b · n on ∂Ω.

Step 4: Find the displacement by letting

vn+1
s = vn

s + ∆tun+1
s in Ωn

s ,

and shift the elastic body to the new position by the displacement.
Correct the virtual force by using the backward Euler scheme to

d
dt

F =
d
dt

(
∇ · σs(vs)

)
= ∇ · σs(

d
dt

vs) = ∇ · σs(us) in Ωs(t),

we obtain
Fn+1 := Fn + ∆t∇ · σs(un+1

s ) in Ωn+1
s .
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A two-stage direct-forcing IB method

First stage –

Step 1.1: Solve for the intermediate velocity field u∗,
u∗ − un

∆t
− ν∇2u∗ + (un · ∇)un = 0 in Ω,

u∗ = un+1
b on ∂Ω.

Step 1.2: Determine u∗∗ and pn+1 by solving
u∗∗ − u∗

∆t
+∇pn+1 = 0 in Ω,

∇ · u∗∗ = 0 in Ω,
u∗∗ · n = un+1

b · n on ∂Ω.

Step 1.3: Predict the virtual force F̃
n+1

by setting

F̃
n+1

= Fn + ∆t∇ · σs(u∗∗s ) in Ωn
s .
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A two-stage direct-forcing IB method (cont.)

Second stage –

Step 2.1: Solve for the intermediate velocity field u∗,
u∗ − un

∆t
− ν∇2u∗ + (un · ∇)un = F̃

n+1
in Ω,

u∗ = un+1
b on ∂Ω.

Step 2.2: Determine un+1 and pn+1 by solving
un+1 − u∗

∆t
+∇pn+1 = 0 in Ω,

∇ · un+1 = 0 in Ω,
un+1 · n = un+1

b · n on ∂Ω.

Step 2.3: Find the displacement

vn+1
s = vn

s + ∆tun+1
s in Ωn

s ,

and then shift the elastic body to the new position. Correct the virtual

force F̃
n+1

as

Fn+1 := Fn + ∆t∇ · σs(un+1
s ) in Ωn+1

s .
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