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Part1

Sparse Representation and Dictionary
Learning
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Sparse representation problem

Terms: Sparse Representation (¥ #i#:¥1)/Sparse Coding (74 is)

SR problem: Given a signal vector x € IR™ and a dictionary matrix D €
R™*", we seek a sparse coefficient vector z* € R" such that

2!
z¥ = argmm(i |x — Dz|j3 + A HzHO),
z

where A > 0 is a penalty parameter and ||z||, counts the number of nonzero
components of z.
Remarks:

@ In the matrix-vector multiplication Dz, the components of z are
the coefficients with respect to columns (also called atoms) of D.

@ We call ||z||, the £% norm of z, even though ¢° is not really a
norm, since the homogeneity property fails, ||az||o # |«|||z||o-

@ It is inefficient to compute || z||, directly when 7 is large. In
practice, we will use the ¢! norm instead of the ¢° norm.
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Two dual /° minimization problems

In [Sharon-Wright-Ma 2007], they studied the following two dual ¢°
minimization problems:

@ Sparse error correction (SEC): Given 0 # y € R" and A € R"*P
withn > p and rank(A) = p, we seek w* € RP such that

w* = argmin ||y — Aw||o. (1)
w

@ Sparse signal reconstruction (SSR): Given D € R"™*" with m < n
and 0 # x € C(D) the column space of D, we seek z* € R" such that

z* = argmin ||z||p subjectto x = Dz. (2)
z
Note that (1) is a decoding problem, while (2) is a sparse representation

problem. These two problems are dual in the sense that we can convert
one problem to the other, see page 8 below.
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Existence and uniqueness of solution

@ Existence:

o Existence of w*: If 3w € R s.t. ||y — Aw||p = 0, then
w* = w. Otherwise, define

S:={keN:3JweRst ||y —Awlo = k}.

Then @ # S C IN. By the well-ordering principle, 3 kg € S the
minimum of S. i.e., 3 w* such that w* = argmin ||y — Aw||o.
w

o Existence of z*: It can be shown in a similar way!

© Uniqueness: It will generally be true that these two dual problems
have a unique solution if

e Jwy such that the error e := y — Awy is sparse enough, or

o I zq sparse enough such that x = Dz.
e.g., if any set of 2T columns of D are linearly independent,
then any zg € R" with ||zg||, < T such that Dz = x is the
unique solution to SSR problem (2).
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Why we require matrix A full rank p in the SEC problem?

Note that A is of size n X pand n > p.

Suppose that A is not full rank p. Then rank(A) < p.

Since dim N(A) + rank(A) = p, we have dimN(A) > 0.
Thus, nullspace N(A) # {0} and 3 w # 0 such that Aw = 0.
If w* is a solution of the SEC problem, then

ly — A(w” +@)lo = [ly — Aw"lo.

Hence, w* 4 w is also a solution of the SEC problem.

Therefore, in order to ensure the uniqueness, we require A full rank p.
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How to convert problem (2) to problem (1)?

@ The decoding problem (1) can be converted to the sparse representation
problem (2). [Candes et al. 2005, IEEE Symposium on FOCS]

@ Converting (2) to (1): Let p = n — rank(D) > 0 and A be a full-rank
n X p matrix whose columns span the nullspace of D, i.e., DA = 0.
Find any y € R" so that Dy = x and define f (w) = y — Aw. Then

argmin ||z][y = f (arg min |y — Aw])) . (3)
z & Dz=x w
z* fw*)

Proof: First, note that for all w € R”, we have
Df(w) = D(y — Aw) = Dy — DAw = Dy = x.
Claim: 3 @ € R such that f(w) =y — Aw = z*.
o Dz =xand D(y — Aw) =x, Vw — D(-z"+y—Aw) =0
. dwsuchthat Aw = —z*+y—Aw = z* =y—A(w+w) := f (W)
Claim: w = w* := argmin,_, ||y — Awl|o, and then f (w*) = z*.
L @)lo < (@) llo = lIz"[lo < [If (w)[lo = [lf (w*)llo = [lf (@) llo

By the uniqueness of w*, we obtain @w = w* and then f(w*) = z*.
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The ¢'-(° equivalence problem

@ In general, the /9 minimizations (1) and (2) are NP-hard problems:

w* = argmin |y — Aw]l,, 1)
w

z* = argmin ||z, subjectto x = Dz. (2)
z

@ The equivalence between ¢ and ¢! minimizations is conditional.

David L. Donoho, For most large underdetermined systems of linear
equations the minimal {1-norm solution is also the sparsest solution,
CPAM, 59 (2006), pp. 797-829.

If the error e := y — Aw" or the solution z* is sufficiently sparse, then
the solutions to (1) and (2) are the same as (4) and (5), respectively.

w" = argmin |y — Awl,, (4)
w

z* = argmin ||z||; subjectto x=Dz. (5)
z
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3-D ball in different /" norms and the constraint Dz = x

654

—norm — -norm — —norm — -norm

3-D ball in the different £" norms forr =2, 1.5, 1, 0.5

z* = argmin ||z||; subjectto x =D _z (5)
. ~ ~—
given many
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The sparse representation problem

@ We have introduced some ideas about the /!-(" equivalence. In
what follows, we don’t consider the original SR problem. We
consider the following ¢! minimization problem instead:

SR problem: Given a signal vector x € R™ and a dictionary matrix
D € R™", we seek a coefficient vector z* € R" such that

1
z*:argmin(ifoDz||§+/\HzH1), A >0, ()
z

The existence (and uniqueness) of solution of the SR problem
(%) can be ensured because matrix D" D is symmetric (+ positive
definite) and the second term A|| - ||1 is a convex function.

@ Problem () is also a regression analysis method in statistics and
machine learning. It is the so-called least absolute shrinkage and
selection operator (LASSO).

R. J. Tibshirani, The lasso problem and uniqueness, Electronic Journal of
Statistics, 7 (2013), pp. 1456-1490 © A. Ali, 13 (2019), pp. 2307-2347.
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Alternating direction method of multipliers (ADMM)

We will use the “Alternating Direction Method of Multipliers” to solve
the above ¢!-norm SR problem.

@ ADMM is an iterative scheme for solving the following equality
constrained convex optimization problems:

mzin f(z) subjectto Az =b.

@ ADMM consists of three steps:

1. adding an auxiliary variable y and a dual variable (multipliers) v
and then scaled as u

2. separating the new cost function into a sum of f(z) and g(y)

3. using an iterative method to solve the problem

@ Then the optimization problem can be re-posed as

rgiﬁ (f(z) +g(y)) subjectto Az+ By =-c.
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Derivation of the ADMM: augmented Lagrangian

First, we formulate the augmented Lagrangian

o T P 2
Lo(zy,0) :=f(z) +8(y) + @ _ (Az+By—c)+S[|Az+ By —cl2,

multipliers

penalty term

where p > 0 is the penalty parameter. Then the iterative scheme of
the augmented Lagrangian method (ALM) is given by

(20D, yH)) = argminLy(z,y,07),

ot = 50 —|—p(Az(i+l) + Byl 1) — c).

In ADMM,, z and y are updated in an alternating or sequential
fashion, which accounts for the term alternating direction.

y(”l) = argmian(z(Hl),y,U(i)),
oD = o) 4 p(Az““) + By(iH) — ).
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Scaled form of the augmented Lagrangian

The ADMM can be written in a slightly different form, which is often
more convenient, by combining the linear and quadratic terms in the
augmented Lagrangian and scaling the dual variable (multipliers) v.
Define the residual r := Az + By — c. Then

v' (Az+By —c¢) + gHAz +By — |3

P P L !
=ov'r+ EHTH% = EHH— EUH% - EHUH%-

Setu = %v. Then Ly(z,y,v) = Ly(z,y,u), and

Lo(z y,u) = f(z) +8(y) + 514z + By — -+ ull3 & ul3
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ADMM: scaled form

The ADMM in the scaled form is given by
20 = argmin(f(z) + (") + £llaz + By — e+ u 3L u3),
z
yl+h) — argmin(f(z(’+1))+g( )+ pHAZ (4D 4 By — e+ u|3- p” ® ||
(1+1) o u(l) +AZ( +1) +By(l+1) c,

where p > 0 is the penalty parameter which is related to the convergent
rate of the iterations.

Note that the terms in blue can be omitted in practical computations!

References:

@ S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein,
Distributed optimization and statistical learning via the ADMM,
Foundations and Trends in Machine Learning, 3 (2010), pp. 1-122.

o ADMMBIEJF LM :
https://zhuanlan.zhihu.com/p/448289351
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ADMM for the /!-norm SR problem

@ For the /-norm SR problem,
1
z* :argmin(fHx—Dz||§+)\||z||1), A >0, (%)
2 2
we set
1
f(z) =S llx = Dz|}3, 8(y) = Allylh, Az+ By =c = z—y =0.

@ The ADMM for the ¢!-norm SR problem is given by

L) — argmin(% |lx — Dz + g”z — ) 4 400 H%), (61)
y = argmin(Alyl+ 51270~y 3), (6)

y
u(i+1) _ u(i) + Z(Hl) _ y(iJfl), (63)

where p > 0 is penalty parameter related to the convergent rate of
the iterations.
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Solving minimization problem (6;)
Define ,
Fi(z) = 5l =Dzl + §llz =y + 3

Then F; is a quadratic function in variables z1,z, - - - ,z; and
Fi(z) > 0V z € R". To solve “min F;(z)”, first we compute
z

VFi(z) = —D'(x—Dz)+pI(z—y® +ul))
= (D'D+pl)z— (D"x+p(y" —u)).
Letting VF1(z) = 0, we have
(D'D+pl)z= (D x+py? —u)).
Therefore, we obtain the solution

2D = (DD 4 pD) 1 (D x + p(y) — u)).
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Solving minimization problem (6;,)

Using the soft-thresholding function S ;,, the solution of problem (6;)
has the closed form (see next few pages):

YD = 8y (241 4 ),

where
S /p(v) = sign(v) © max(0, |v| —A/p),

and sign(-), max(-,-), and | - | are all applied to the input vector v
component-wisely, and ® is the Hadamard product.

Finally, the iterative scheme can be posed as follows:

Z(i+]) _ (DTD _i_pI)fl (DTx+p(y(7> — u(i))), (7])
Y = Sy 4 uld), (72)
Wit ) 4 541 _ y(is) (73)
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Details of the solution of problem (6;)

Recall the problem (6,),

ylitl) = argmin(/\HyHl + IgHz(i+1> —y+ul H%) (62)

Let v := z(t1) 4+ 4() € R". Then we have

(i+1)

— ; e — 112
" = argmin (A + G o~ yl5).

Define a real-valued function F;(y) as follows:

Bay) = Alylh+5lo-yl3

= (Al + 5@ —y)?) +--+ (Alyal + £ 00 = 3)?)
= i)+ +fulyn),

where we define

f]()—AIyIJr (0j—y)? Vj=12-n
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Analysis of functions f;

For simplicity of the presentation, we consider the function
f) = Alyl + S0 =2
Computing the derivative of f(y) for y # 0, we have

, A—p(v— Yy >0,
f(y)_{ _)\fp(vz)y) V]]j<0.

Letf'(y) = 0. Then we have
y—v—;fory>0 and y—v—i-p fory < 0.
Therefore, the all critical numbers of f are given by
c:v—&ifc>0, c:v+&ifc<0, c=0.
P P
In order to find the minimum of f, we consider the following three cases:
A A A

v>§, < ——, —— << —
0 0 4 p
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Case1: v > %

In this case,c = v — % > 0 is the only critical number and

)?
=£(0).

flO=fo-") = A(v—;)+§( (o~

- A<

For y > 0, since f is a quadratic polynomial in y with positive leading
coefficient, we can conclude that f(c) < f(y) forally > 0.

A
p
2

For y < 0, f(y) is monotone decreasing since

f'ly) = Asign(y) —p(v—y) = —A—pv+py
< —A-A+py=-21+py <0,

which implies f(y) > f(0) forall y < 0.

A

Therefore, f has a minimum at c = v — 0> 0.
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Case2: v < —%

In this case,c = v + % < 01is the only critical number and

_ AL A, p A2
f(c)_f(v+5) = —)t(zH—E)—l—E(v—(v—i-E))
_ P A p
= E(vz—(v+p))<202—f(0).

For y <0, since f is a quadratic polynomial in y with positive leading
coefficient, we can conclude that f(c) < f(y) forally < 0.

For y > 0, f(y) is monotone increasing since

f'ly) = Asign(y) —p(v—y) =A—pv+py
> A+A+py=21+py >0,

which implies f(y) > f(0) forall y > 0.

Therefore, f has a minimum at ¢ = v + > > 0.
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Case 3: —

o[>

<p< A
<v<3

In this case, we have no critical number except the non-differentiable
pointy = 0.

For y > 0, we have

f'(y)

A=p(o—y) =A—pv+py
A—A+py=py>0.

v

Thus, f(y) is monotone increasing and then f(y) > f(0) for all y > 0.
For y < 0, we have

fly) = —A-plv—y)=-A—pv+py
< —A+A+py=py <0

Thus, f(y) is monotone decreasing and then f(y) > f(0) for ally < 0.

Therefore, f has a minimum at 0.
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Solution of problem (6;)

By the above discussions, we have

v—i—%, ifv < —%, (case 2)

argminf(y) =< 0, if o] < %, (case 3)
Y U—%, ifo > % (case 1)

In other words, we have

argminf(y) = Sy/,(v) = sign(v) max(0, [o| — A/p).
Y

Therefore,

y(iﬂ) =argminF;(y) = S/\/p(v) = S/\/p(z(iﬂ) + u(i)).
Yy

where the soft-thresholding,
Sh/p(v) = sign(v) © max(0, [v| —A/p),

and sign(-), max(-,-), and | - | are all applied to the input vector v
component-wisely, and ® is the Hadamard product.

© Suh-Yuh Yang (#57fi#%), Math. Dept., NCU, Taiwan Sparse Dictionary Learning — 24/ 70



Application to signal denoising

@ First, we construct a random dictionary matrix D € R%12x2048
and a random sparse vector z € R?™8 with ||z = 32. We then
have the true signal x := Dz.

@ Define the noise signal x,, := x +n, wheren € R52 is a random
white Gaussian noise with noised powers P = 0.5, 1,5 (L))
). We consider A = 5,10, 20, 30 for the minimization problem.

@ Peak signal-to-noise ratio (PSNR > WE{EFMELY): We define the
mean squared error (MSE) and then the PSNR as follows:

512
. 2
MSE = 5Ei;(true(z)fapprox(z)) ,
2
max
PSNR = 10 logyy(Tror ).

where “max” is the maximum amplitude of the true signal x.

@ Source of matlab code:
http://brendt.wohlberg.net/software/SPORCO/
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Numerical results for P = 0.5 and A = 30

P=05,)=30
20 :
—noised
—true
0 i B
20 ‘ ‘ ‘ ‘ ‘
0 100 200 300 400 500 600
20
—recovered
—tru
0 l T 1
20 ‘ ‘ ‘ ‘ ‘
0 100 200 300 400 500 600
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Coefficients for P = 05and A = 30

coefficients

—noised||
—true

1000 1500

2000 2500

—recovered||
—true
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Numerical results for P =1 and A = 30

P=1,1=30
20 .
—noised
—true
0 i \ J]
-20 L 1 I I I
0 100 200 300 400 500 600
20
—recovered
—true
0 l TV 4
20 . . . . .
0 100 200 300 400 500 600
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Coefficients for P = 1and A = 30

4 coefficients
ol —noised||
—true

O |
-2 -
4 s s s s

0 500 1000 1500 2000 2500
4
ol —recovered||

I | \ L1 | —true

O ] l I 'I [ T T l !
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0 500 1000 1500 2000 2500
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Numerical result for P = 5and A = 30

20
—noised
| " ‘ ‘ —true
L1 | ]
20 ‘ ‘ ‘ ‘ ‘
0 100 200 300 400 500 600
20
—recovered
| ‘ ’ - N—true
0 ‘ \ / A (4 I ‘ ¢ W 1
20 ‘ ‘ ‘ ‘ ‘
0 100 200 300 400 500 600
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Coefficients for P = 5and A = 30

coefficients

—noised||
—true

1000 1500

2000 2500

—recovered||
—true

© Suh-Yuh Yang (15

), Math. Dept., NC Sparse Di

2000 2500

Learning - 31/ 70



PSNR values and iteration numbers

In general, the higher the value of PSNR the better the quality of the
recovered signals.
PSNR values

T 05 ] 05 | 1T | 1T | 5 | 5 |
| noised [ rcvered | noised [ rcvered | noised | revered |
29.51 30.36 29.71 30.41 25.57 26.11
29.51 31.16 29.71 31.10 25.57 26.63
29.51 32.55 29.71 32.23 25.57 27.62
29.51 33.45 29.71 32.77 25.57 28.50

W[ N =
S| S|o|9| ==

Iteration numbers of ADMM

[A\PJO5[] 1] 5 |
5 550 | 664 | 569
10 || 301 | 303 | 320
20 172 | 169 | 186
30 129 | 130 | 154
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Sparse dictionary learning problem

In the SR problem, the solution of interest z* is the coefficient vector of a
linear combination of over-complete basis elements (columns) from a given
dictionary D under some sparsity constraint. Therefore, it is typically
accompanied by a dictionary learning mechanism.

We are going to study a more general problem. The dictionary D is
unknown and needed to be sought together with the sparse solution.

SDL problem: Let {x;}} | C R be a given dataset of signals. We seek a
dictionary matrix D = [d1,d2,- -+, dy| € R™ " together with the sparse
coefficient vectors {z;}X.; C R" that solve the minimization problem:

N
mm( anz Dz[3+A Y |zilh)

Dz} i=1
sub]ect to || dill2 <1, V1<k<n,

where A > 0 is a penalty parameter.
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Problem formulation in a more compact form

To simplify the formulation of the SDL problem, we define

X = [xlleI e /xN] S Rm><]\l/
zZ = [21,22,' e ,ZN] S ]RnXN.

Then the SDL problem can be posed as follows: Given a training data
matrix X, find a dictionary matrix D and a coefficient matrix Z such that

/1 )
min (51X~ DZ[} + A|1Z]|1, ) (%)
subject to ||di|, <1, V1 <k <m,
where || - || denotes the Frobenius norm and ||Z||1 1 is the Ly 1-norm which
is defined as

N
1Z]11,1 =) |1zl
i=1
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An iterative approach for solving the SDL problem

In the SDL problem (xx), we have two unknown matrices D and Z.
We will use a simple iterative approach together with the ADMM to
solve (x«), though it is more complicated.

Given an initial guess D ), forj = 0,1, - -, we solve the following
two sub-problems alternatingly:

/1
ZG = argémn(il\X—D@ZH%+AHZII1,1), (8)

!
Diory = argmin(31X = DZg [ + A1) 1)

subject to ||dy|, <1, V1 <k <n. (9)

We iterate (8) and (9) until convergence is achieved. As we have
introduced previously, problems (8) and (9) will be solved by ADMM.
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ADMM for solving problem (8)

@ Adding an auxiliary variable Y and a dual variable U, we define
1
f(2) = 5IX-DyZ|t, g(Y):=A|Y[h1, Z=Y.

@ Then the ADMM for solving (8) is given by

. 1 j '
ZU*)  —  argmin 7X—D-ZZ—|-BZ—Y(l)“'u(l)2 ;8
gmin (51X D, ZI + 5 I£). )
Y1) arg;nin(/\HYHl,l + §||z(i+1) —y+u® II%), (82)
ulty) = y 4 z+1) _yi+1), (83).

@ Similar to the SR problem, we will use the same methods to
solve the sub-problems (8;) and (8,).
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Solving minimization problem (8;)

Define
1 i i
F1(2) = 5 IX - D Z|} + S|z - Y+ u 2.

To solve ”rrgn F1(Z)”, first we compute

VFi(Z) = -D(X-Dg2z)+pl(Z— Y +u)

= (D{,Dj +pDZ - (DX +p(Y) —u)).
Letting VF;(Z) = 0, we have
(DD +pDZ = (DX +p(y? —u)).

Therefore, we obtain the solution

Z0 = (D[D ) + o) (DL X +p (Y —u)).
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Solving minimization problem (8,)

Using the component-wise soft-thresholding function, the solution of
problem (8;) has the closed form:

Y(i+1) _ S/\/p(z(i+1) 4 u(l)),

where

S1/p(V) = sign(V) & max(0, [V| — A/p),
with sign(V) and | V| are element-wisely applied to the matrix V and
© is the Hadamard product.

Therefore, the iterative scheme can be posed as follows:

Z(i+1) (D%Dm + pl)fl(D(Tj)XJr p(Y® — u(i))), (107)
YU = 85y, +ul),  (10y)
ut = gl 4z _y+) - (105)
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Solving minimization problem (9)

Recall that
. 1
Diery = argmin(31X = DZg) [ + A1) 1)
subject to ||di|2 <1, V1 <k <n. (9)

Since the term A||Z;)||1,1 is a fixed number when Z ; is given, problem (9)
can be replaced by

1
Dy = argmin 1|X - DZ( |}
subject to ||di|[» <1, V1 <k <n. (9"

Next, we introduce an auxiliary variable G and a dual variable H in
ADMM for solving (9”).
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ADMM for solving problem (9')

Define
8(G) = {lddy,- - dn]: |ldifl2 <1, V1 <k<n},
G = D.
The ADMM for solving problem (9’) is given by
, 1 . .
DY = argmin(5 X -DZ;) |} + LD -6V +HOIF), (o))
D
G = projo) {DUV}, (92)

gD — gO L pli+h) _ gli+D), (95)
For solving problem (9 ), we define

1 . :
F2(D) = 5| X —DZ; |} + £ ID - 6 + HO .
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Solving minimization problem (9;)

Computing VF;(D), we have

VE(D) = (X—DZ)(~Z) +pIn(D - G + HY)

= D(ol+ZyZ ;) + XZ — p(GY) —HY).
Letting VF,(D) = 0, we have
D(Z(j\Z(;) + pln) = X2 — p(GY) — HY).
Therefore, we obtain the solution
DY = (xz;, " — p(GY) —HY))(Z(2(;) " + pL,) .

Finally, the ADMM for problem (9’) is given by

DY = (xZ;T — (G ~HI))(ZZy, T +pL) !, (1)
Gt  — Projg () {D(Hl)}/ (11)
HHY = HO 4 pHD — g+ (115)
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Convergence and stopping criterion

@ In [Boyd et al. 2010], there are more details about convergence
results of the ADMM.

@ In the iterative scheme (107), (10;), (103), we define
R, = YUt _y(0) g — yl+) gy,

If R, and S; less than the tolerances e, and g, then we say that

the iteration of coefficients Z(*1) converges.

In the iterative scheme (117), (113), (113), we define
R;=GHY g0 g, =g D g0,

If R; and S; less than the tolerances ¢g, and ¢g,, then we say that

(i+1)

the iteration of dictionary D converges.
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Part 11

Convolutional Sparse Representation and
Dictionary Learning
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Convolution of two functions

Let f and g be two integrable functions with compact supports in R.
Then the convolution of f and g is defined as a function in variable ¢,

(fxg)(t) :== /j:of(T)g(t—T)dT, teR.
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Convolution of two vectors

Definition: Let u = [uy, - ,uy]" € R"andv = [vy,- -+ ,0,] " € R™.
The convolution of u and v, denoted by u * v, is defined as follows:

U101
U0y + Uy
U103 + U0y + U309
UKD = : e Rl

Up—20m + Up—10p—1 + UnUp—2
Uy 10m + UnUy—1
UnOm

More specifically, for i = 1,2,-- -, (m +n — 1), the i-th component of u * v
is given by
min(i,n)
(uxv); = 2 Ujvi—j+1-
j=max(1,i—m+1)

Remark: Convolutional operator * is commutative, i.e., u xv = v *x u.

© Suh-Yuh Yang (157 /&), Math. Dept., NCU, Taiw Sparse Dicti rning — 46/ 70



Convolutional sparse representation (CSR) problem

CSR problem: Given a signal x € R™ and a dictionary D = [dy, - - -, d,]
€ R we seek a sparse matrix Z = [z1,- -+ ,zy] € RF>" =0+ k—1,
which solves the following minimization problem:

' 1 n n
mZm(EHx — 201]' * Z]‘||% +A 21 sz||1)/
= =

where A > 0 is a penalty parameter.
Remarks:

@ In SR, we use Dz to recover the signal x,

n
x~Dz=dyz1 +dozp+---+dyz, = Zdjzj.
=1
In CSR, we use Z}Ll d; x zj instead, J
n
xx~dixz1+dyxzo+ - +dyxz, = Zd]*z]
j=1
@ Convolution is a way to regulate d, * z; such that x ~ 2]7‘1:1 d; * z;.

It is more flexible than x ~ Z;-Ll d;z;, but indeed more expensive!
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Toeplitz matrix

We define an (m +n — 1) x m matrix U in terms of u;, which is called
a Toeplitz matrix, as follows:

u 0 0 0
Uy uq 0 0
Up 0 0
Uy 0
u:.— Up—1 uz uq
Up  Up—1 U
0 Uy
0 0 Uy
: : Uy Uy
L 0 0 0 Unl (min—1)xm
Then one can check that u * v = Uv, where u = [uy, -+ ,uy] € R"

andv = [v1,- - ,v,] " € R™
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CSR problem using Toeplitz matrices

With the help of Toeplitz matrix, we can rewrite the CSR problem as
.1 ~ |1 -
min(|x— Dz +AIZl,),  (12)
with

PO B i T 8
z= [Zl 122,00 2y }nkxl and D = [D1,D2,~ o rDVl}(k#kfl)xnk/

where D is a Toeplitz (¢ + k — 1) x k matrix associated with the column
vector d]- eRand 0 +k—1=m.

Remarks:

@ We can use the same way for SR problem to solve the CSR
problem (12). We can employ the ADMM, but it is too expensive
since the matrix size of D is too large.

@ The discrete Fourier transform F : CN — CN can help us to address
this computational issue.
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Discrete Fourier transform (DFT) and its inverse (IDFT)

@ ¥ = F(x) : The DFT F : CN — CN transforms a finite vector
x = [x1,Xp,- -+ ,xy] | into another vector ¥ = [X1,X2,- -+ ,Xn] |,
which is defined by

e 127 k 1 1
B = an Jn=1)

n=1
Then DFT is an invertible linear transformation.
@ x = F (%) : The inverse discrete Fourier transform (IDFT)

F1:CN - CN,x — x,is givenby

% B2 (k1) (n—1)
W n—

@ Euler’s formula: ¢ = cos 6 + isin 0,voeR.

https://en.wikipedia.org/wiki/Discrete_Fourier_transform
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Hadamard product

o letue R"and v € R™. Then u v € R™"T"~1 and
Fluxv)=FW)o F@),

where F denotes the DFT, #’ and v’ are respectively the zero
padding of u and v with the same size of u x v, i.e,,

u = [uT/O, . ’O]T/ o = [UT,O/' . ,O]T c 1Rm+;471,
and © is the Hadamard product.

@ The Hadamard product © of two vectors is a component-wise
product. Let u = [uy,up, - - - Jun) T, 0 = [v1,00, -, 04T €R",

o T
U O = (U, Uy, - -+ , Uy .

We can define a diagonal matrix U such that # © v = Uv, where

upy 0 -+ 0

0 Uup - 0
u:=

0o 0 -+ uy
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Recalling the CSR problem

CSR problem: Given x € R" and D = [d,,- - - ,d,] € R™", we seek
Z=1z1, -,z € R withm = 0 +k —1 solving

. (1 g 2 -
rnzm(iﬂx - X;dj *zjl[3 + A 21 sz”l)-
= =

To solve the above minimization problem, we first use the ADMM
algorithm to split it into three subproblems:

(i+1) (1 - 2, P v (i) (i) 2
Z = argzmm(EHx—Z%dj*Zsz—i-EZ%sz—yj + u; Hz)/
= =
. n n . .
YO = argmin(A Yyl + § Y2 g3
Y = ] 2],:] ] ) ]
uit = g 4 z>+1) _ y+1),
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Using discrete Fourier transform for Z

We will use the discrete Fourier transform and Hadamard product to
solve the subproblem of Z. We can rewrite these subproblems as

(i1 V2 UL NN 1 ~ ()2
i) _ argfnm(iux_Zd;@z;|\§+§z||z;—y] +u"3),
= =

. L _1,5(+1) '

yl+l)  — arglr/mn()\2||y]||1+§ZH]-' 1(21’- )*y]-+u](l)|\§),
j=1

ity — oyl 4 - ((z+1)) y(i+1)
where
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Why can we use the discrete Fourier transform?

Note that the discrete Fourier transform F is linear. Thus, we have

1 n 5 1 n )
in—];dj*szz = %H}"(x—;dj*zj)ﬂz (Plancherel theorem)

= H]'" Zd *zj) 13
1. 2 . VT2
= %\|x*27(dj*zj)||2:%|\X*X%d/@zj\|z-
= =

Similarly, the second term of subproblem Z can be rewritten as
Py ( /) 2 O ) )2
E};HZj* +u H = iZHZj*yj +u; |2

=0 o0 50
- ;jn]g 12 -9 +ul” |3

Note: x € R", d; € RY, zj € R, dixzj€ RTK1 = R™, d]’,z c R™.
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The subproblem of Z

We first define
i)\j = diag(v?]'-). (m x m disgonal matrix)

Then the subproblem in the Fourier domain can be posed as:
(i NS PSS o~ A, A
z0+1) = argmm(iﬂx —-Dz|3 + gHz — g al H%),
z

where
~ ~ —~ ~T ~T ~T
) ! / T
D= [D1/D2/‘ te an]mxmn; z = [zl 122 AN ,Z;,l }mn)(ll
and

~T ~T —~T ~T ~T —~T
=~ __ [,/ / ;1T =~ __ T[4,/ / ;T
y= [y1 Yo oo Yy ]mnxl/ u= [ul Uy e Uy ]mnxl'

Note that we drop the scalar factor 1/m in the subproblem.
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Rewriting the subproblems of ADMM

Using the above definitions, we can rewrite the subproblems of
ADMM as:

~(1 : 1 > N> ~ (i U
S+ _ m}n(,nx_DZH%JrB||Z_y<z>+u<z>||g), (131)

g0 = min(Alylh+ 5 517 ), (13)

j=
u(i+1) _ u(z)+]:— (/Z\(Hl))—y(l-ﬂ), (133)
where
T T T 47T T
y=[ s Y s w= [
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Solving minimization problem (13;)

First we define

= 1 R ~ N7 N7
F(z) = 5k - D3+ £z -3 +al 3.

To solve min F(Z), we compute
z
VEEZ) = -D' 3-Dz)+pIz— 5% +at)
= (D' D+pnz— (D'z+p@G" —aly).
Letting VF(Z) = 0, we have
(D' D+ pl)ynsemnZ = D' %+ p(G? —a)).
Therefore, we obtain the solution

2D — (D' D+ p) (D 2+ p@? — ).
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Solving minimization problem (13;)

The way to solve minimization problem (13;) is similar to that for
solving problem (6;).

Finally, we obtain the ADMM iterative scheme as follows:

/Z\(i+1) — (ﬁTﬁ =+ p1)71 (ﬁTf + p(i/\(l) - ﬁ(l)))/ (141)
) = S (FET) +ul), (14
w D = 0 4 FEED) 4D (14)

Next, we will introduce the Sherman-Morrison formula which can be
applied to solve 20+ in a more efficient way.
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The Sherman-Morrison formula: a special case

Let A and B be two 1 x n matrices. In general, (A + B) is not
invertible, even though A is invertible. However, if A is invertible
and B has some certain structure, then (A + B) —1 exists.

A special case of the Sherman-Morrison formula: Let I be the n x n
identity matrix and u, v be two given vectors in C". If 1 +v " u # 0, then
I+uv' is invertible and

.
uv
1 Dl ——_,
(I+uo) 1+0Tu
Proof: We check that
T T T, T
T uv B uv T  uv'uv
(4w )<I_ 1—|—vTu) =I- 1+vTu tuw - 1+0Tu
I+ —uwo! +uv’ + o uuo’ B wo'uo!
- 1+0Tu 1+0Tu
T, T T, T
—r4+ 2 wo I. (v'u:scalar) O

140 1+0'u
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How to derive the inverse?

Given b € C", we consider the linear system (I +uv ' )x = b. Assume
thatI +uv ' is invertible. Then the unique solution x exists.
Letk=v'x€C.Thenx+ku=b = v'x+ko'u=0v"b

= k+k(v"u) = v'b, which implies

-
(9 b . T
k:m, ifl+o'u#0.

Therefore, we know that )

inverse of I+uv "
T T T
v'b uo uo

x=b-ku=b— "7 y—p— b_( 7)
1+0Tu 1+0'u 1+0Tu

The Sherman-Morrison formula: Suppose that A € C"*" is an
invertible matrix and u, v € C". Then A +uv' is invertible if and only if
1+0 A Yu # 0. In this case, we have

. AluwTAl

A+uvT 1A~ —_—
( ) 14+0TA 1
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How to compute (14,)?

Recall that
(D'D+p)z0*) = (D% +p(a" — ), (141)

where matrix D has the following structure:

ﬁ - [ﬁl,ﬁz,"‘,ﬁn]mxmn
d/ll,\l o --- 0 d/IZ\l o --- 0
B L
: 0 DTt 0
0 0 dll,m o --- 0 dé/m
where

f); = diag(:;]’-) (m x m diagonal matrix).
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The structure of matrix D' D + ol

Note that
oy
~T
~T ~ D2 ~ ~ ~
D D+pl = “ | [D1,Dy,- -+ ,Dy] + pI
D,
FT ~ ~T ~ AT~
Dl Dl + pIm Dl D2 cee Dl Di’l
E= E= T ~
L IS
. D, D D, D, -+« D, Dy + ply .

By re-ordering the equations, the mn x mn system (lA)TlA) + pI)E(iH) =R
can be replaced by m independent linear systems of size n x n, each of which
consists of a rank one component plus a diagonal component, then solved by
the Sherman-Morrison formula, see [Wohlberg 2016, Appendix A].
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Convolutional sparse dictionary learning problem

We now consider the convolutional sparse dictionary learning
problem, where the dictionary D is unknown and needed to be
sought together with the convolutional sparse solution.

Convolutional SDL problem: Let {x;}} | C R be a given dataset of
signals. We seek a dictionary matrix D = [dy,da, - - -, dpg) € ROM and
the coefficient matrices {Z; }N] CROM with Z; = (215,201, -, 2]
and m = { +k — 1 such that D and {Z;}}Y | solve the following
minimization problem:

min ( Z||x, Zd *z]1\|2+)\22 |Z/1H1)

{d}] 1/{2]1}] 1,i=1 i=1 i= 1] 1
subject to || sz <1 Vj=12---,M,

where A > 0 is a given penalty parameter.
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Toeplitz matrix
@ DefineD= [D; D, --- Dy witheach D; is the Toeplitz
matrix defined with respect to d; as before.

T
Define z; = [ZL z;l- z]—\r/“] fori=1,2,---,N, where
each z; is the coefficient vector with respect to the data x;.
DefineZ=[z; z --- zyJandX=1[x; x --- an].

@ The convolutional SDL problem can be simplified as
(1 =2
min (31X — DZ[[} + AZ]1, )
subject to [|d[» <1 Vj=12,--- M,

where || Z||1 ; is defined as before.
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How to solve the convolutional SDL problem?

Though we can still use the ADMM iterative scheme to solve

(1 ~
min (51X ~ DZ| + A[1Z]11)
D,z
subjectto [|difo <1 Vj=1,2,---,M,

the sizes of the involved matrices are too large. Thus, we will use the
DFT and the Sherman-Morrison formula to deal with this problem.
The steps are similar to the CSR problem, but more complicated.

Recall the convolutional SDL problem:

s Zd 53+ ALY )

{dj}?il,{z/;i}j[\iﬁ:] i=1 i=1j=1
subject to ||d]-||2 <1 Vj=1,2---,M.

For solving this problem, we split it into two parts.
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Step 1: Solving the coefficient Z

For solving the convolutional SDL problem, we first give an initial
dictionary D = [dy,dy, - - - , d)] to solve coefficient Z and then further
use ADMM algorithm to split this problem into three subproblems:

. M i
~(i+1 @) 50
AR argmm( Z % — ):d/ QZI M3+ X ): Z 12, z; ~ Yt |2/

=1

» N M p N M y
y(it+1) — arg;nin()\ ) 1yl + 5 YN IF — Y+ u]1||2)
i=1j=1 i—1j=1

u) —u 4 712 (l+1)> y(i+),

with
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Rewritten in a compact form

For convenience, we can rewrite these subproblems as follows:

ZU argmin 5|1 X — D2} + £ - v oot I12),
V4
YU = argmin(A V[0 + E1F @) — v+ T)R),
Y
7 (GRS (O }-71(2(#1)) _ ylit),
with R R o -
X: [fl/@/"'/x/l\\]]/ D: [D1/D2/"'/DM]/
and
/ / /
Y11 Yim 1 UM
Y = . , u =
/ / / /
Yni 0 Ynm Uni 0 UM

Using the similar ways as that for solving CSR problem, we can solve
the above subproblems.
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Step 2: Solving the dictionary D

Recall the convolutional SDL problem:

min (znxl zd*zﬂwzznzﬂul)

{dj}jl\il’{ 1}/ 1,i=1 = ]]
subject to de||2 <1 Vj=1,2---,M

When the coefficient Z is obtained, the blue term is a given number.
Solving the dictionary D is equivalent to solve

M
min = Z [l — Zdj*zj,iH% subject to ||djl[» <1, Vj=12,---,M.
{dj}} j=1
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Using ADMM algorithm to solve Step 2

We use the ADMM algorithm to solve the above problem:
D+ _ argmin( 2 Ix; — 2 dz3+ P 2 Id; -0+ 1D 3),
b .

G(l-’rl) — prO]g(G){ (1+1)},

g+ — g 4 pli) _ gli+)
and then use the Fourier transform and similar ways as before,
A (i41) oty M Mo~ i) A0
D" = argmm(iZ||x,'—Zd]'-@z]’-H%—i-gZHd/'-—gj’» + 1 ||%),
D i=1 j=1 =1
i . (i+1)
G(H—l) — PTOJg {]_- 1( ! )}’
where

FUD) = [F N, F N dy), -, F N (dyy)).
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