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3Université Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France

(Received 3 May 2019; revised manuscript received 26 July 2019; published 3 December 2019)

The swimming of a rigid phoretic particle in an isotropic fluid is studied numerically as a function of the
dimensionless solute emission rate (or Péclet number Pe). The particle sets into motion at a critical Pe.
Whereas the particle trajectory is straight at a small enough Pe, it is found that it loses its stability at a
critical Pe in favor of a meandering motion. When Pe is increased further, the particle meanders at a short
scale but its trajectory wraps into a circle at a larger scale. Increasing even further, Pe causes the swimmer to
escape momentarily the circular trajectory in favor of chaotic motion, which lasts for a certain time, before
regaining a circular trajectory, and so on. The chaotic bursts become more and more frequent as Pe
increases, until the trajectory becomes fully chaotic, via the intermittency scenario. The statistics of the
trajectory is found to be of the run-and-tumble-like nature at a short enough time and of diffusive nature at a
long time without any source of noise.
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Introduction.—Today, the field of microswimmers cov-
ers an extremely wide panel of systems ranging from
prokaryotic and eukaryotic cells (such as bacteria, algae,
leukocytes, and so on) to artificial microswimmers [1,2].
A prototypical example of the latter is a Janus-like particle,
named after the two-faced Roman god; their motion
originates from the asymmetry of their surface properties.
Other popular designs of artificial swimmers consist of
active droplets [3–7], involving a chemical reaction, with a
local source or sink of a solute. In these circumstances a
spontaneous symmetry breaking of the solute distribution
field on the surface (or in the bulk) may emerge in the form
of a solute polarity giving rise to hydrodynamical flow (of
Marangoni type) leading to self-propulsion.
Several studies have been devoted to the elucidation of the

mechanisms of such Marangoni driven propulsion [8,9].
In particular, the onset of self-propulsion has been described
in terms of a coupling between a chemical reaction that
produces a surface tension gradient at the surface of the
droplet and a mechanism of advection that can sustain this
gradient against diffusion. The description of the surface
activity of the droplet involves in general advection-
diffusion-reaction contributions for each species involved
in the system (for a recent review, see [10]). Combined
theoretical and numerical efforts have allowed elucidating
the basic elements at the origin of the occurrence of
spontaneous locomotion [3,4,6,9]. The outcome is that,
beyond a critical value of a dimensionless solute emission
compared to diffusion (the Péclet number Pe), the droplet
sets into a spontaneous unidirectional motion. However, not
only straight propulsion but also meandering trajectories
have been observed in different experiments [11–14].

So far, the explanation of complex motions, such as
circular and helical trajectories, relies on the complexity of
the swimming particle (e.g., chiral shape) [12] or that of the
suspending medium, such as viscoelasticty [14]. These
various rich behaviors raise naturally the question of whether
or not this complexity may already be hidden in purely
isotropic media due to the intrinsic nonlinearities of the
problem. This is the main objective of this Letter. We show
that circular trajectories appear in the full model without any
restriction on the model symmetry. Moreover, a transition to
chaos via an intermittency scenario is observed and quanti-
fied. The chaotic behavior can lead to a run-and-tumble-like
dynamics of purely deterministic origin.
The model.—We consider a two-dimensional circular

shaped particle of radius a immersed in a fluid of dynamic
viscosity η. The fluid is assumed to obey the Stokes
equations. Surrounding solute particles are emitted from,
or adsorbed on, the particle with an isotropic emission rate
A. The solute interacts with the particle through a short-
range potential with a characteristic length λ that is much
smaller than a. In the so-called sharp interface limit, this
amounts to a slip tangential velocity [6] on the particle
surface (see below). The concentration of the solute,
denoted by c, diffuses with diffusivity D and is advected
by the fluid flow.
As in [6], the length, fluid velocity, the concentration,

and the pressure are scaled by the characteristic values a,
jAMj=D, ajAj=D, and ηjAMj=aD, respectively. Here
M ¼ �kBTλ2=η is the signed mobility defined with the
Boltzmann constant kB and the temperature T. The mobil-
ity can be related to the interaction potential between the
solute and the swimmer, and it can be both positive or
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negative depending on whether that interaction is repulsive
or attractive (see [15]). The model equations in dimension-
less form are described in the following: in a comoving
frame attached to the particle center, the tangential slip
velocity on the particle surface is given, in a polar
coordinate system by uð1; θÞ ¼ M∇sc, where uðr; θÞ is
the fluid velocity, ∇s ¼ ð∂=∂θÞτ (where τ is the unit
tangent vector) is the surface gradient operator, and M ¼
M=jMj ¼ �1 is the dimensionless mobility. In the far
field (r → ∞), the velocity field converges to the transla-
tional phoretic velocity −U. The advection-diffusion equa-
tion for the solute concentration cðr; θ; tÞ and the Stokes
equation read

∂c
∂tþu ·∇c¼ 1

Pe
Δc; Δu−∇p¼0; ∇ ·u¼0; ð1Þ

where the Péclet number is defined by Pe ¼ jAMja=D2.
The associated boundary condition of surface activity reads
ð∂c=∂rÞð1; θ; tÞ ¼ −A, where A ¼ A=jAj ¼ �1 is the
dimensionless emission rate (A > 0: emission, A < 0:
adsorption). One should note that, in most previous studies
that considered the three-dimensional cases, the fluid
domain is unbounded and the concentration is assumed
to attenuate in the far-field limit (c → 0 as r → ∞).
However, such an assumption is not appropriate in 2D.
Indeed, it is known that, in 2D, the solute transport Eq. (1)
for Pe ¼ 0 with the far-field attenuation condition does not
support steady-state solutions due to the logarithm diver-
gence [16]. In order to cure this problem, we assume
that the size of the fluid domain is a finite number R
and the attenuation condition is thus replaced by the outer
Dirichlet boundary condition cðR; θ; tÞ ¼ 0. A preliminary
3D study recovers the occurrence of complex motion,
presented below.
The force-free constraint on the solid particle (using the

reciprocal theorem) allows us to relate the phoretic velocity
UðtÞ to the slip velocity (and thus to concentration from the
above slip condition) [17]:

UðtÞ ¼ −
1

2π

Z
2π

0

M∇scð1; θ; tÞdθ: ð2Þ

Since the concentration c is periodic in the θ direction, it
can be expressed by Fourier series as

cðr; θ; tÞ ¼
X∞
k¼−∞

ĉkðr; tÞeikθ;

where ĉk are the Fourier modes. Substituting this repre-
sentation into Eq. (2), one finds (in Cartesian components):

UðtÞ ¼ Mf−Re½ĉ1ð1; tÞ�; Im½ĉ1ð1; tÞ�g; ð3Þ
where Re and Im denote real and imaginary parts,
respectively. The velocity field can be expressed as

u ¼ ½ð1=rÞð∂ψ=∂θÞ;−ð∂ψ=∂rÞ� (in polar components),
where ψ is the stream function and has the following
analytical form [18,19]

ψðr; θ; tÞ ¼
X∞
k¼−∞

1 − r2

2rjkj
ikMĉkð1; tÞeikθ; ð4Þ

where we have used the boundary condition uð1; θÞ ¼
M∇sc to express the series coefficients in terms of c. Thus,
the velocity u (as well as U) is given in terms of c, and,
when substituted into Eq. (1), yields a closed nonlinear
equation for c. Solution (4) is valid for an infinite system,
but one can derive that the velocity field decays as 1=r in an
r component and 1=r2 in a θ component [the system size is
taken large enough so that the solution (4) remains a very
good approximation]. In the following we will see how the
full model, not restricted to symmetric solutions, leads to
the emergence of rich dynamics, turning into chaos at large
Péclet numbers.
Stationary solution and linear stability analysis.—A

stationary solution where there is no net flow and zero
phoretic velocity UðtÞ≡ 0 exists at all Péclet numbers with
the solute concentration c0ðrÞ ¼ A lnðR=rÞ. We perform a
linear stability analysis of this solution by introducing an
infinitesimal perturbation ϕðr; θ; tÞ ¼ P∞

k¼−∞ ϕ̂kðr; tÞeikθ
with ϕ ≪ c0. Neglecting higher-order terms, the following
relation for the Fourier mode ϕ̂k is obtained:

∂ϕ̂k

∂t ¼ −AMk2
1 − r2

2rjkjþ2
ϕ̂kð1; tÞ þ

1

Pe

� ∂2

∂r2 þ
1

r
∂
∂r −

k2

r2

�
ϕ̂k:

ð5Þ

Since r > 1, the coefficient of the first term on the right-
hand side of the equation is positive (negative) when A
andM have the same (opposite) sign. That is, the first term
may be stabilizing or destabilizing, while the second term
represents diffusion that is always stabilizing. Whether or
not a small perturbation of the concentration is able to
trigger the spontaneous symmetry-breaking swimming
motion depends on the competition between these two
mechanisms. In the case when A and M have opposite
signs, any fluctuation acting on the stationary solution
should die out and hence for any Péclet number there is
only one observable solution that is stationary. Henceforth,
we will concentrate on the nontrivial case where A and M
have the same sign. For definiteness we set A ¼ M ¼ 1.
We first perform the linear stability of the stationary

solution. The eigenvalue problem reads Lkϕ̂k ¼ σkϕ̂k,
where σk is the eigenvalue (we look for perturbations in
the form eσkt) and Lk is the linear operator on the right-
hand side of Eq. (5). The eigenvalue problem is solved
numerically using a Chebyshev-spectral method. In all
simulations, we set the size of the outer domain R ¼ 200. It
is found that, for k ¼ 1, one of the eigenvalues becomes
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positive at Pe ≈ 0.466 so that the stationary solution loses
its stability at this Pe value. This marks the transition
between a nonmotile to motile particle. The mode k ¼ 1
corresponds to polarity of the concentration field.
Spontaneous symmetry-breaking autophoretic motion,

Pe > Pe1.—Once the instability threshold is reached
[Pe1 ∼ 2= lnðRÞ meaning that this critical value goes to
zero when R → ∞; see the full expression in [20] ] non-
linear terms are necessary in order to fix the amplitude
of the swimming speed. This task is handled numerically.
We employ the second-order Runge-Kutta time-marching
scheme while spatial derivatives in the r direction are
performed either by a second-order finite difference method
or by a Chebyshev spectral differentiation, derivatives in
the θ direction are achieved through Fourier spectral
differentiation. In the present time stepping method, the
nonlinear advection term is treated in an explicit manner
while the diffusion term is solved implicitly (see [21] for
more detail about the fast solver of the present scheme).
A symmetry-breaking solution occurs when Pe > Pe1≃

0.466. We find that in the range 0.466≲ Pe≲ 4.65 the
particle swims in a given direction (fixed by initial
conditions) with constant velocity. The concentration dis-
tribution is at Pe ¼ 3, exhibiting a cometlike pattern. In this
case, there exists a nonzero concentration gradient on the
particle surface and the particle propels itself in a straight
direction with the constant phoretic velocity kUk ≈ 0.148.
Figure 1 shows the phoretic velocity as a function of the

Péclet number, in qualitative agreement with that found in
[6] for three-dimensional axisymmetric phoretic particles.
The particle sets into a directed motion in the form of a
supercritical bifurcation. Note that a nonmonotonic varia-
tion of the phoretic velocity is observed in the range
0.466≲ Pe≲ 4.65 and the particle attains the highest
swimming speed at the optimal value of Pe ≈ 2.1.
Meandering motion, Pe > Pe2.—The directed swim-

ming solution loses its stability (a secondary instability)
at Pe2 ≈ 4.65 in favor of a meandering motion. In this
regime the swimming velocity is no longer a constant but

periodically oscillates in time. As an example, we show
in Fig. 2 the time-periodic concentration distribution at
Pe ¼ 6 and the particle follows a meandering path as seen
in Fig. 3(a). These solutions are shown as the red solid line
in Fig. 1. For such a time-periodic solution the swimming
speed is defined by kUk ¼ T−1 R T

0 kUðtÞkdt, which is
measured over one time period, T. This transverse insta-
bility is the first initial stage for more complex dynamics,
as discussed below. The meandering period scales as
aD=jAMj, which is a compromise between diffusion,
flow mobility along the surface, and the emission rate. An
interesting feature has emerged: the meandering swimmer
exhibits a higher velocity than the directed one. Although
the directed motion is unstable, we can still follow this
branch by solving the steady-state problem (a steady
directed motion always exist, though it becomes unstable)
by imposing to the particle to set at the same rectilinear
direction. In this manner, we could determine its velocity.
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FIG. 1. The bifurcation diagram of the phoretic velocity kUk as
a function of Pe. The empty circle indicates the bifurcation point
Pe1 ≈ 0.466 and the filled-square indicates the bifurcation point
Pe2 ≈ 4.65. The dashed line corresponds to a steady-state but
unstable straight motion and the red line to nonstraight motions
(see below).

FIG. 2. Snapshots of the bead and distribution of the solute
concentration for Pe ¼ 6 undergoing meandering motion in a
single period, white arrow showing the direction of the motion.
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FIG. 3. Different trajectories: meander, circular motion with
short scale meander, intermittency, and chaos.
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The dashed line shown in Fig. 1 indicates the unstable
equilibrium solution corresponding to a directional move-
ment. The meandering solution swims faster than the
directed one, presumably due to subtle nonlinear effects.
For Pe ≃ Pe2 the period of meandering diverges as
ðPe − Pe2Þ−1=2, which is symptomatic of a supercritical
bifurcation (see [20]).
Circular motion, Pe > Pe3.—For Pe3 ≃ 12.5145 the

meandering solution becomes unstable in a somewhat
remarkable way. Figure 2 shows the bead with an asym-
metric concentration field leading to trajectory deviation.
As seen in Fig. 3(b) for the case of Pe ¼ 12.862 91,
although the local movement is again zigzaglike (or
meander) at short scale, the trajectory converges to a circle
(while the radius value is insensitive to system size [20]).
Note that here the studied system is fully isotropic in a
marked contrast with the observed complex trajectories
(like meander, circles, and so on) for chiral particles [12].
Here, the present complex motion emerges from the
inherent nonlinear advection-diffusion coupling. This cou-
pling leads to an axial symmetry-breaking bifurcation of
the comet (Fig. 1), so that in the bead frame the comet drifts
sideways along the bead surface leading to a circular
trajectory. The radius of the circle diverges at Pe3 (and
so does the period of revolution) like ðPe − Pe3Þ−α, with
α ¼ 1=5, acting as a macroscopic length scale (a coher-
encelike length) much larger than the swimmer size.
Further development would be needed in order to explain
the numerical exponent (see Fig. S1 in [20]).
Chaotic swimming motion, Pe > Pe4 ≃ 12.86293.—For

a higher Pe the particle quits the circular trajectory and
enters into an apparently chaotic regime, where it exhibits a
few runs and tumbles during some time before it regains a
circular trajectory [Fig. 3(c)]. This type of chaotic burst
appears in a nonregular manner, as also shown in Fig. 4,
which represents the swimming speed of the particle close
to the transition towards chaos. This nonregularity is due to

the subcritical nature of the bifurcation towards chaos.
Indeed, during a certain time the motion is regular, and the
degree of natural intrinsic fluctuations can cause the system
to jump from the regular solution to the apparently chaotic
one. As the Péclet number is increased further and further
the chaotic bursts become more and more frequent, until at
Pe ≃ 13where the whole trajectory becomes erratic in time.
In Fig. 1 we show the magnitude of the averaged velocity as
a function of Pe. This is symptomatic of the intermittency
scenario [22]. Its particularity is that the limit cycle (in our
case the meandering-circular regular solution) loses its
stability at a given critical value of Pe in a subcritical
fashion (the analog of a first-order transition for systems at
equilibrium). That is, the regular solution may coexist with
new solutions and the particle can jump back and forth from
one solution to the other, when higher modes (k > 1)
approach the instability conditions. This manifests itself in
temporary chaotic bursts until coexisting solutions (the
analog of metastability in equilibrium systems) is fully lost
and the regime becomes fully chaotic.
The particle exhibits an apparently random motion (of

purely deterministic origin), see Fig. 3(d). To quantify this,
we measure the mean square displacement

MSDðτÞ ¼ hkrðtþ τÞ − rðtÞk2i;

where rðtÞ is the location of the particle at time t and h·i
denotes the average along the entire trajectory. Figure 5
reports the mean square displacement (msd) corresponding
to the trajectory at Pe ¼ 13. At short times the particle
produces a persistent swimming motion and msd is then
quadratic in time. At longer times, a decorrelation process
due to chaotic turns takes place with msd proportional to t,
typical of a classical random walk. Actually, it is not
obvious that a chaotic motion is equivalent (at long time) to
normal diffusion. There are several chaotic maps yielding
anomalous diffusion [23]. This is attributed to the topology
of the Poincaré map, in which the trajectory may spend
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FIG. 4. The swimming speed kUðtÞk from regular meander to
chaos. Chaotic bursts are more and more frequent as Pe increases.
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FIG. 5. Mean square displacement of a particle in the chaotic
regime at Pe ¼ 13.
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long time periods in some regions of phase space. Despite
the fact that chaos via intermittency favors a long period
stay in specific regions of phase space [22], a diffusionlike
behavior still persists here.
Discussion.—Complex dynamics for a rigid particle in a

purely isotropic fluid medium is revealed (chaos is also
found in our preliminary 3D study [20]. This highlights the
robustness of the 2D result). The chaotic regime can be
quantified as run-and-tumble-like events [20]. The first
unstable mode is k ¼ 1, which provides directed swim-
ming. As Pe increases higher harmonics become unstable,
first k ¼ 2 and k ¼ 3, and so on. The activity of these three
modes is sufficient to generate chaos. Interestingly,
Pekðk > 1Þ are independent of system size R.
The time over which the diffusionlike behavior is

reached (as well as the duration of the circulation trajec-
tory) is much larger than the typical time for the growth of
the linear modes ∼1=σ1. This feature may be attributed to
the very nature of chaos via intermittency. Indeed, in this
regime it is known that trajectory in phase space alternates
intermittently between slow regular motion close to the
marginally stable fixed point (the regular solution), and
chaotic bursts. As a consequence, the correlation decay
may exhibit long range behavior. From a physical point of
view, the longtime behavior may be related to the persist-
ence of circular orbits (albeit transients) having a radius
much larger than the particle radius.
Nontrivial motions have been observed so far with

complex shapes or in complex media [12,14], albeit recti-
linear oscillating and arrested particle solutions are
observed in simpler systems [8]. The main message of
this Letter is the demonstration that, using only minimal
ingredients, complex nonrectilinear motions are possible in
an isotropic, nonviscoelastic, phoretic system. Experiments
on noncolloidal systems (autophoretic drops) [7] have
provided some evidence of complex trajectories that might
be a hint of chaotic behaviors. The present results may
serve as a guide for future systematic analyses.
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