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Electrohydrodynamics of a viscous drop with inertia
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Most of the existing numerical and theoretical investigations on the electrohydrodynamics of a viscous drop
have focused on the creeping Stokes flow regime, where nonlinear inertia effects are neglected. In this work
we study the inertia effects on the electrodeformation of a viscous drop under a DC electric field using a novel
second-order immersed interface method. The inertia effects are quantified by the Ohnesorge number Oh, and
the electric field is characterized by an electric capillary number CaE . Below the critical CaE , small to moderate
electric field strength gives rise to steady equilibrium drop shapes. We found that, at a fixed CaE , inertia effects
induce larger deformation for an oblate drop than a prolate drop, consistent with previous results in the literature.
Moreover, our simulations results indicate that inertia effects on the equilibrium drop deformation are dictated by
the direction of normal electric stress on the drop interface: Larger drop deformation is found when the normal
electric stress points outward, and smaller drop deformation is found otherwise. To our knowledge, such inertia
effects on the equilibrium drop deformation has not been reported in the literature. Above the critical CaE , no
steady equilibrium drop deformation can be found, and often the drop breaks up into a number of daughter
droplets. In particular, our Navier-Stokes simulations show that, for the parameters we use, (1) daughter droplets
are larger in the presence of inertia, (2) the drop deformation evolves more rapidly compared to creeping flow,
and (3) complex distribution of electric stresses for drops with inertia effects. Our results suggest that normal
electric pressure may be a useful tool in predicting drop pinch-off in oblate deformations.
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I. INTRODUCTION

The wide application and relevance of the electrohy-
drodynamics of a viscous drop in a uniform electric field
have attracted extensive theoretical studies [1–5], numerical
investigations [6–8], and physical experiments [9–14]. For a
leaky dielectric drop in a leaky dielectric fluid, the deformation
depends on the ratios of conductivities and permittivities
between the drop and the surrounding fluid. The drop can
deform into a prolate or oblate spheroid, and the degree of
deformation depends on the strength of the electric field.
Furthermore, the electrohydrodynamics of a surfactant-laden
viscous drop exhibits rich dependence on surfactant coverage
and elasticity [15].

In a comparative numerical study of drop electrohydrody-
namics that contrasted results in creeping flow with those with
inertia, Feng and Scott [16] showed that Navier-Stokes flow
resulted in larger drop deformation. Their results suggest a
positive correlation between drop size and Reynolds number
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that lead to a reduction in the critical threshold for equilibrium
deformation. When the electric field strength (characterized by
the electric capillary number CaE) is increased beyond a criti-
cal threshold, steady equilibrium deformation no longer exists
and the drop exhibits a wide variety of dynamics. Experimental
studies [9–14] have illustrated the electrohydrodynamics of
a viscous drop above critical electric capillary values. Two
modes of breakup have been observed. In one mode, the drop
forms pointed ends known as Taylor cones along the direction
of the field, before releasing droplets in a jet-like manner. In
the other mode, the drop undergoes pinch-off, in which the
original drop splits in half at its center with bulbous ends.
Numerical studies have been able to capture some of these
dynamics [17,18].

In a comprehensive numerical study of drop electrohy-
drodynamics above critical electric capillary number, Lac
and Homsy [7] showed that in addition to breaking up as
described above, the drop can also deform indefinitely, taking
increasingly more slender, elongated shapes. The authors
employ the widely used boundary integral method, based
on the working assumption of creeping flow. Other groups
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resolved the flow field using the full incompressible Navier-
Stokes equations, also capturing breakup [8,19,20]. However,
they did not explore the effects of inertia in a systematic
manner. In addition, their numerical approaches were either too
computationally expensive [8] or only first-order accurate [19].

Lanauze et al. [21] developed an analytical model that
described the effect of inertia (captured by the Ohnesorge
number) on drop deformation. They show the magnitude
of the Ohnesorge number determines the presence or ab-
sence of an overshoot in the transient deformation profile;
i.e., the magnitude of the deformation number exceeds its
steady-state value. Moreover, the model is only valid for
small deviations from the drop’s initially spherical shape
(in the regime of small electric capillary number). Previous
computational studies have investigated the inertia effects on
drop electrohydrodynamics [8]. A systematic numerical study
of inertia effects on steady equilibrium drop shape is provided
in Feng and Scott [16], where the equilibrium drop shapes
under an electric field are obtained by solving the steady
Navier-Stokes equations. In this paper we conduct a systematic
numerical investigation of the inertia effects on both the steady
equilibrium drop shape and the electrohydrodynamic of a leaky
dielectric drop suspended in a leaky dielectric fluid, subject to
a uniform DC electric field. In addition we also focus on the
distribution of both electric and viscous stresses on the drop
interface. Moreover, our numerical simulations extend to drop
dynamics at the onset of drop pinch-off under a strong electric
field. The results are presented to illustrate the effects of both
electric capillary number, CaE , and inertia (characterized by
the Ohnesorge number, Oh) on the deformation and electric
stresses acting on the drop.

The paper is organized as follows. In Sec. II, we describe the
physical problem and introduce the equations governing
the electrohydrodynamics of a viscous drop. We then describe
the numerical methods in Sec. III and discuss key implementa-
tion details of the immersed interface method (IIM). In Sec. IV
we present our findings, and finally we discuss our results in
Sec. V.

II. PROBLEM FORMULATION

A schematic diagram of the problem formulation is shown
in Fig. 1: we consider an initially spherical viscous drop
under an electric field E0, whose direction is parallel to the
axis of symmetry. The interface � separates the exterior fluid

FIG. 1. Sketch of the problem: A leaky dielectric viscous drop (in
domain �−) immersed in another leaky dielectric fluid (in domain
�+), with an external electric field E0 in the z direction. Subscript
“+” and “−” denote the exterior and interior fluids, respectively.

(superscript “+” for the exterior domain �+) from the interior
fluid (superscript “−” for the interior domain �−). Within
each fluid, the velocity field is described by the incompressible
Navier-Stokes equation

ρj

(
∂uj

∂t
+ uj · ∇uj

)
= −∇pj + μj∇2uj , (1)

∇ · uj = 0, (2)

where j =“+” for the exterior fluid and j =“−” for the interior
fluid. Here, we assume matching fluid densities and viscosities:
ρ+ = ρ− and μ+ = μ−. In the bulk the electric permittivity
εj and conductivity σ j may be different between the exterior
(“+”) and interior (“−”) of the drop. The ratios of permittivities
and conductivities are defined as

εr = ε−

ε+ , σr = σ−

σ+ . (3)

The drop interface � is given in parametric form X(s,t) =
(R(s,t),Z(s,t)) with s = 0 at the equator in the first quadrant.
Under an external electric field, bulk charges neutralize
instantaneously in the leaky dielectric framework [2], and
consequently the electric potential φ satisfies the Laplace
equation,

∇ · (ε∇φ) = 0, (4)

with boundary conditions at the interface,

[[φ]] = 0, [[σ∇φ · n]] = dqs

dt
, (5)

at the drop interface. n is the unit outward normal, qs = [[ε∇φ ·
n]] represents the surface charge density, and [[·]] denotes the
jump between outside and inside quantities. In general, the
charging time tc ≡ εj /σ j is much faster than the time scale
tEHD = μj/εjE2

0 of the electrohydrodyanimc flow: tc � tEHD.
Therefore, the charge relaxation term on the righthand side
of Eq. (5) can be ignored [16,22], and the jump condition on
the normal electric field reduces to [[σ∇φ · n]] = 0. In the far
field, the electric potential satisfies ∇φ+ = −E0 ẑ. The electric
force FE is related to the Maxwell stress M as FE = ∇ · M,
with M computed from the electric field E as

M = ε
(
E E − 1

2E2I
)
, (6)

where I is the identity tensor. In the leaky dielectric formula-
tion, the electric force is important only when there is a gradient
or jump in the electrical conductivity σ and/or permittivity ε.
As these electrical properties are assumed to be piecewise
constant with a possible jump across the drop interface in our
formulation (see Fig. 1), the electric force FE can be treated
as an interfacial force given by the jump in Maxwell stress in
the normal direction, as done in the boundary integral method
[23].

At the drop interface, the stress balance gives

(−p+ + p−)n + [[Thd]] · n + f = 0, (7)

where (Thd)ij ≡ μ(∂iuj + ∂jui) is the ij -th component of the
viscous stress tensor. The traction f consists of the surface
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tension [24,25] and electric force, and is given by

f = f γ + f E = γ

(
RsZss − RssZs

|X s |3 + Zs

R

)
n + [[M · n]],

(8)
where γ is the drop surface tension, |X s | = √

R2
s + Z2

s , and
the subscript “s” denotes partial derivatives with respect to s.

III. NUMERICAL METHODS

Prior to solving the governing equations, the system
is nondimensionalized using the following scaling: x =
r0x∗, p = γ

r0
p∗, u =

√
γ

ρr0
u∗, and t =

√
ρr3

0
γ

T ∗. Here, r0 is the

initial radius of the drop, and ρ is the fluid density. The
dimensionless governing equations become (after dropping
the ∗)

∂u
∂T

+ u · ∇u = −∇p + Oh
u

+
∫ 2π

0
( f γ + CaE f E)δ2(x − X(s,t))ds, (9)

∇ · u = 0, (10)

∇ · (ε∇φ) = 0, [[φ]] = 0, [[σφn]] = 0, (11)

E = −∇φ, M = ε
(

E E − 1

2
E2I

)
,

f E = [[M]] · n and f γ =
(

RsZss − RssZs

|X s |3 + Zs

R

)
n. (12)

In addition to the ratios of permittivities and conductivities,
εr , σr , the other dimensionless parameters of the problem are
the Ohnesorge number and the electric capillary number:

Oh = μ/
√

ργ r0, CaE = ε+E2
0r0/γ. (13)

The Ohnesorge number represents the ratio of viscous force
to inertial and surface tension, and the electric capillary
number reflects the strength of the electric field. Moreover, the
Ohnesorge number is inversely proportional to the Reynolds

number, Re: Oh =
√

Ca
Re , where Ca is the capillary number.

We consider Eqs. (9)–(12) with axial symmetry in cylindri-
cal coordinates (r,z) and solve them over the r � 0 half-plane
(due to axisymmetry). In a previous study [26], we used
the immersed interface method to simulate the axisymmetric
electrohydrodynamic of a viscous drop. We also conducted
preliminary simulations of extreme drop deformation toward
breakup and obtained good agreement with results from
previous work [7]. Key components of the model [26] are
described below.

The augmented immersed interface method from Hu
et al. [27] is used to solve for the electric potential [Eq. (11)]
and compute the electric force on the drop interface. The
solutions in the interior and exterior of the drop are treated
independently, and both solutions are coupled at the drop
interface by introducing a new interfacial condition, called
the augmented variable. As such, a fast solver can be used
in the exterior and interior domains while the solution on the
drop interface is obtained using GMRES.

For the flow field, we follow the velocity decomposition
approach [28,29] to solve Eq. (9). In this approach, velocity
and pressure are split into a Stokes component (subscript s)
and a continuous component (subscript c) as

u = us + uc, p = ps + pc. (14)

(us ,ps) satisfies the incompressible Stokes equations, and is
computed using the schemes described in Ref. [26]. Once the
Stokes solution is known, we substitute Eq. (14) into Eq. (9)
to obtain the equations governing the continuous field:

∂uc

∂t
+ u · ∇uc = −∇pc + μ
uc + Fb, (15)

∇ · uc = 0, (16)

where the body force is

Fb = −∂us

∂t
− u · ∇us . (17)

The equations are then solved by projection method, with time
discretized using a second-order Adams-Bashforth scheme.

IV. RESULTS

A. Convergence Results

We first perform a convergence analysis to determine
the appropriate spatial and temporal discretizations. In our
simulations, the time step, �t , is proportional to the spatial
discretization, h, and is given by �t = h/75, where h = L/N .
The computational domain size L is set to 7.5. To validate
convergence, we compare our simulations with the base
state reported by Supeene et al. [8], where E = 1 MV/m
(electric capillary number, CaE = 0.009). For the simulations,
the densities of the drop and ambient fluid are considered
to be the same, ρ = ρ+ = ρ− = 1000 kg/m3. We consider
matching viscosities between the two fluids μ = μ+ = μ− =
0.001 Pa · s, and the surface tension γ = 0.03 N/m. The ratio
of electrical properties are σr = 1, εr = 80/3. With these
values of electrical property ratios, the drop deforms into
an oblate shape. For a drop radius, r0 = 1 μm, we obtain
the Ohnesorge number Oh = 0.1836 from Eq. (13). Figure 2
shows the ratio of drop deformation, D, to the deformation
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N = 64, Δt = h/75
N = 128
N = 256
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FIG. 2. Convergence results for the proposed IIM. (•) are
simulations using the FEM implementation for the base state from
Supeene et al. [8]. The ratio is shown as negative values, with the (−)
sign denoting oblate deformation.
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predicted by the Taylor’s approximation as a function of
dimensionless time. The deformation number

D = a − b

a + b
, (18)

where a (b) is the drop size in the direction parallel (orthogo-
nal) to the electric field. Based on these convergence results, we
fixed N = 512 in all the Navier-Stokes simulations presented
in this paper, unless otherwise noted.

B. Equilibrium deformation

In the leaky dielectric formulation, equilibrium drop de-
formations are achieved when the electric force (Maxwell
stress) is balanced by the surface tension force on the drop
interface. At steady state a circulatory flow forms inside the
drop: With a uniform electric field from south to north poles,
the circulation is from the equator to the pole in a prolate drop,
and from the pole to the equator in an oblate drop. Equilibrium
deformation of a drop subject to a uniform DC electric field and
inertia has been previously reported [16]. Larger equilibrium
deformation is found in the presence of inertia, compared
to drop deformation in creeping flow. Moreover, the critical
electric capillary number (corresponding to the electric field
strength beyond which equilibrium deformation ceases to
exist) is reduced by the nonlinear inertia effects. To investigate
the inertia effects on the equilibrium drop shape, parameters
from our previous work [26] are used for both the prolate and
oblate drops. Figure 3 shows the drop deformation number D

as a function of electric capillary number CaE . The ratios of
electric properties are σr = 10, εr = 0.1 for the prolate drop
(D > 0), and σr = 0.1, εr = 2 for the oblate drop (D < 0) [7].

For CaE � 0.15, there is little difference between our
Navier-Stokes simulation results, boundary integral method
(BIM) simulation results [7], and predictions from our
spheroidal model [15]. This suggests that inertia effects are
not important at small CaE , and the deformation is well
approximated by the creeping flow theory. For CaE > 0.15
we observe significant inertia effects on equilibrium oblate
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FIG. 3. Drop deformation D as a function of electric capillary
number CaE for prolate (D > 0) and oblate (D < 0) drops. For the
prolate drop conductivity and permittivity ratios are σr = 10, εr =
0.1. For the oblate drop σr = 0.1, εr = 2. The comparisons show
results from the IIM and BIM [7] (♦) simulations, as well as
the prediction from the spheroidal model [5,15] (dash-dotted).
The Ohnesorge numbers are Oh = 0.459 (solid) and Oh = 0.1836
(dashed).
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FIG. 4. Comparison between creeping flow (left panel) and
Navier-Stokes flow (right panel) for steady-state shape of upper half
of drop. The red arrows represent the electric force acting on the
drop interface. (a, b) Prolate drop: σr = 10, εr = 0.1. The Ohnesorge
and electric capillary numbers are (a) Oh = 0.1836,CaE = 0.32, and
(b) Oh = 0.459,CaE = 0.32. (c) Oblate drop: σr = 0.1, εr = 2. The
Ohnesorge and electric capillary numbers are Oh = 0.459,CaE =
0.253.

deformations (D < 0), which are larger than the corresponding
drop deformations in creeping flow. Such inertia effects,
however, are not observed for prolate deformations (D > 0),
for which the creeping flow theory remains valid over a larger
range of capillary numbers, up to CaE ≈ 0.32.

Figure 4(a) shows comparison between prolate deforma-
tions in creeping flow (left panel) and Navier-Stokes flow
(right panel) for Oh = 0.1836. As shown in Fig. 5, the
difference in shape between the two cases is due to stronger
positive electric stress at the pole in the presence of inertia. In
Fig. 4(b) (prolate with CaE = 0.32 and Oh = 0.459), inertia
gives rise to a slightly larger equilibrium deformation, while
the opposite is observed in Fig. 4(c) (oblate with CaE = 0.253
and Oh = 0.459).

Figure 5 shows the normal and tangential electric stresses
for Fig. 4(a) (prolate drop with D > 0), as a function of arc
length s (where s = 0 at the equator). While there is little
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FIG. 5. Normal (a) and tangential (b) electric stresses for
Fig. 4(a). (prolate drop). CaE = 0.32, Oh = 0.1836 (solid) and Oh →
∞ (dashed, limit of creeping flow). In the legend, St denotes Stokes,
and NSt denotes Navier-Stokes.

difference in tangential stress between Stokes and Navier-
Stokes flows (an observation that is also valid for D < 0), there
is a significant difference in the normal electric stress around
the pole. In the presence of inertia (Oh = 0.1836), the greater
electric pressure produces larger drop deformation. Figure 6
shows the normal and tangential electric stresses for Fig. 4(c)
(oblate drop with D < 0), as a function of arc length s. The
normal electric stress changes sign along the drop interface,
being positive at the equator and strongly negative at the pole.
Positive electric pressure at the equator explains the elongation
of the drop in the direction perpendicular to the electric field.

Several other combinations of (σr, εr ) from Lac and
Homsy [7] are used in our simulations to represent different
regions in the (R, Q) diagram (Fig. 2 in Lac and Homsy [7]).
Figure 7(a) shows a prolate “A” drop (counterclockwise circu-
lation) with (σr,εr ) = (0.1,0.04). Figure 7(b) shows a prolate
“B” drop (clockwise circulation) with (σr,εr ) = (0.01,0.1).
Figure 7(c) shows an oblate drop (clockwise circulation)
with (σr,εr ) = (2,20). For the prolate drops, the Ohnesorge
numbers are 0.459, 0.6426, respectively, and CaE = 15. For
the oblate drop, we set Oh = 0.6426 and CaE = 0.27.

Combining Figs. 4 and 7, we observe that the inertia
effects on the drop deformation are highly correlated with the
direction of the electric stress on the drop interface: Larger drop
deformation in the presence of inertia is found when the normal
electric stress points outward, while inertia reduces drop
deformation when the normal electric stress points inward.
Figure 8 shows the distribution of the normal and tangential

0 0.5 1 1.5 2 2.5 3
−1

−0.5

0

0.5

s

N
or

m
al

 e
le

ct
ric

 s
tr

es
s

St
NSt

α
(a)

β

β

α

0 0.5 1 1.5 2 2.5 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

s

T
an

ge
nt

ia
l e

le
ct

ric
 s

tr
es

s
St
NSt

α

(b)

β

β
α

FIG. 6. Normal (a) and tangential (b) electric stresses for
Fig. 4(c) (oblate drop). CaE = 0.253, Oh = 0.459 (solid) and Oh →
∞ (dashed, limit of creeping flow). In the legend, St denotes Stokes,
and NSt denotes Navier-Stokes.
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FIG. 7. Comparison between creeping flow (left panel) and
Navier-Stokes flow (right panel) for steady-state shape of upper half
of drop. (a) Prolate “A”: σr = 0.1, εr = 0.04; the electric capillary
and Ohnesorge numbers are CaE = 15, Oh = 0.459. (b) Prolate “B”:
σr = 0.01, εr = 0.1; the electric capillary and Ohnesorge numbers
are CaE = 15, Oh = 0.6426. (c) Oblate: σr = 2, εr = 20; the electric
capillary and Ohnesorge numbers are CaE = 0.27, Oh = 0.6426.
The red arrows represent the electric force acting on the drop interface.
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FIG. 8. Electric stresses for drop deformations shown in
fig. 7. (a)-(b): σr = 0.1, εr = 0.04,CaE = 15, Oh = 0.459. (c)-(d):
σr = 0.01, εr = 0.1,CaE = 15, Oh = 0.6426. (e)-(f): σr = 2, εr =
20,CaE = 0.27, Oh = 0.6426.

electric stresses along the fluid interface for the three cases in
Fig. 7. As the drop deformation is similar between Stokes and
Navier-Stokes flows for all three cases, the electric stresses are
similar in all three cases as expected.

C. Drop deformation above critical capillary number

Under a strong electric field, the steady equilibrium drop
shape often ceases to exist for electric capillary number CaE >

CaE,cr, and the drop becomes unstable and breaks up through
one of two modes: pinch-off or tip-streaming. In the pinch-off
mode, a single drop deforms into two bulbous ends connected
by a thin thread, which eventually pinches as the drop breaks
into multiple daughter drops. In the tip-streaming mode, the
formation of a conical end (also known as Taylor cone)
precedes the emission of fluid jets through the pointed ends.
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FIG. 9. Onset of drop pinch-off for the oblate shape. Conductivity
and permittivity ratios are σr = 0.1, εr = 2. Oh = 0.6426 and CaE =
0.415, 0.52, 0.72 at times T = 5.78, 4.24, 2.98, from top to bottom.
The arrow represents the direction of the electric field.

Of the two modes, tip-streaming in electrohydrodynamics has
been studied extensively, in a wide range of cases, such as
with perfect dielectric [8,17,30], electrolytic solutions [31], in
the presence of surfactants [32], in non-Newtonian fluids [9],
and between liquid-gas interfaces [20]. In the present case of
a leaky dielectric drop immersed in another leaky dielectric
fluid, the pinch-off mechanism is typically observed [9,32].
However, exceptions have been reported, such as in the case
of prolate drops with clockwise circulation [7].

In this section, we investigate the inertia effect on drop elec-
trohydrodynamics when CaE > CaE,cr. We focus on oblate
deformations and use the same ratios of conductivities and
permittivities as in Sec. IV B.

The critical capillary number for an oblate drop with
σr = 0.1 and εr = 2 has been reported in the range CaE,cr ≈
0.297–0.304 [7,26]. For CaE slightly above the critical value,
the drop deforms into a dumbbell shape, pinching off at its
center and splitting into two smaller droplets [7,26]. Here we
focus on drop dynamics at CaE significantly greater than the
critical value. Figure 9 shows the oblate drop deformations at
various values of CaE > CaE,cr. Our simulation results suggest
that the drop becomes more elongated as CaE increases.
At CaE = 0.415, the pinch-off now occurs near the end
points, suggesting that the drop now breaks into three smaller
droplets. As CaE is increased to 0.52, we note an indentation
at the center of the drop (magnification in Fig. 10). The
magnitude of the indentation becomes more pronounced as
CaE increases. For CaE = 0.72, we observe the inertia effects
on the drop dynamics (Fig. 11): While the center of the drop
remains smooth in creeping flow, inertia effects cause severe
indentation at the center. As a result of the inertia-induced
indentation at the center of the drop, we suspect that more
daughter drops may be found for the drop with inertia than
without.

The drop shapes in Fig. 11 are shown at the onset of
drop pinch-off. Focusing on the onset of drop pinch-off, we
find that inertia effects give rise to an earlier onset of drop
pinch-off. For CaE = 0.52, the drop begins to pinch-off at
T = 6.15 in creeping flow, compared to T = 4.24 with inertia.
The difference in time is reduced at a higher CaE = 0.72:
T = 3.96 in creeping flow, and T = 2.98 with inertia. The
observation that inertia effects expedite the onset of pinch-off
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FIG. 10. Comparison of onset of drop pinch-off between the
Stokes (dashed) and Navier-Stokes (solid) simulations with Oh =
0.6426 and CaE = 0.52. The inset shows the detailed drop shape at
the center. This pinch-off dynamic is more apparent at higher electric
capillary number, as shown in Fig. 11.

is consistent with the inertia effects on drop deformation for
CaE below critical: drops in Navier-Stokes flow reach their
steady equilibrium shape more rapidly than in creeping flow.

Figure 12 shows the flow field around the drop shapes in
Fig. 9. We observe that the flow is strongest near the neck,
moving in the direction toward pinching the neck. Away from
the neck, the fluid flow is relatively quiescent. To develop
a better understanding of the pinch-off drop dynamics, we
analyze the electric stresses as we did in Sec. IV B. Figure 13
shows the normal and tangential Maxwell stresses for the
case with CaE = 0.72 in Fig. 11. In Fig. 13(a), the symbols
correspond to various positions on the drop’s interface (inset),
with α at the equator and β at the pole.

The normal electric stress sheds light on the formation of
the indentation at the drop center, which is also a site for
drop pinch-off at higher CaE . From Fig. 13(a), we observe
the minima in normal electric stress correspond to possible
pinch-off sites on the drop interface, including one at location
β (see Fig. 13). They also represent regions of greatest negative
electric pressure. By comparison, for viscous drops in Stokes
flow, the minima at β does not appear and the possible pinch-
off sites are near the bulbous end of the drop. We therefore
speculate that for an oblate drop (D < 0), the normal electric

E

FIG. 11. Comparison of extreme drop deformation, between
the Stokes (dashed) and Navier-Stokes (solid) simulations. Oh =
0.6426,CaE = 0.52, (top) and CaE = 0.72 (bottom). For CaE =
0.52,T = 6.15 (Stokes) and T = 4.24 (Navier-Stokes). For CaE =
0.72, T = 3.96 (Stokes) and T = 2.98 (Navier-Stokes). The arrow
represents the direction of the electric field.
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FIG. 12. Flow field at the onset of drop pinch-off for the
oblate shape. Conductivity and permittivity ratios are σr =
0.1, εr = 2. Oh = 0.6426 and CaE = 0.415, 0.52, 0.72 at times
T = 5.37, 3.9, 2.93, from top to bottom. The arrow represents the
direction of the electric field.

stress would be a useful tool to study the breakup dynamics of
a viscous drop.

V. CONCLUSION

In this study, we numerically investigated the electrohy-
drodynamics of a viscous drop under a uniform DC electric
field. We focus on the drop deformation in relation to the
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FIG. 13. Normal (a) and tangential (b) electric stresses for the
oblate deformation with CaE = 0.72. Other parameters are Oh =
0.6426 (solid) and Oh → ∞ (dashed, limit of creeping flow). The
symbols in (a) show the value of the stress at various positions on the
drop interface (inset).
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spatial distribution of forces and stresses on the interface of
a leaky dielectric viscous drop under a DC electric field. The
present results also attempt to uncover the principal features
that differentiate the electrohydrodynamics of viscous drops
in Navier-Stokes flows from those in Stokes flow. In particular
we elucidate the dependence of the electrohydrodynamics of
a viscous drop on both the electric capillary number CaE and
Ohnesorge number Oh.

For most combinations of (σr,εr ), a critical electric field
strength exists such that a steady equilibrium drop is possible
only for CaE < CaE,cr. For some combinations, however, a
steady equilibrium drop is possible even under an extremely
large electric field [CaE � 1, such as Fig. 7(a)]. In Sec. IV B
we reported results from a numerical investigation of the inertia
effects on the steady equilibrium drop shape for prolate “A,”
prolate “B,” and oblate drops. Previous studies reported that
inertia leads to higher prolate “A” deformations compared
to creeping flow, consistent with our numerical results. We
also found that the inertia effects on the equilibrium drop
deformation number D are highly correlated with the direction
of electric stresses along the drop interface: the magnitude of
D increases due to inertia when the electric stresses point
outward, while the drop deformation is decreased by inertia
when the electric stresses point inward.

When the electric capillary number is above the critical
value (CaE > CaE,cr), we observed several distinct features.
Firstly, no steady equilibrium drop shape exists and the type
and mode of the subsequent drop breakup are dependent on
the electric capillary number, CaE . As CaE increases, the
drop becomes more elongated prior to breakup, which often
happens as the drop pinches off at the bulbous ends. Increasing
CaE resulted in two (Stokes flow) or more (Navier-Stokes
flow) droplets being formed. We showed that in the presence
of inertia, small indentations are found at the center of the

elongated drop. The indentations became more pronounced
with CaE , yielding to pinch-offs at the drop center (in addition
to those at the bulbous ends). Secondly, inertia led to faster
dynamics than in the case of Stokes flow. This observation
holds regardless of the electric capillary number.

Finally, we presented results for the Maxwell stresses for
oblate drop deformations above critical CaE . We found that
in the case of Navier-Stokes flows, large electric pressure
gradients along the drop interface positively correlate with
sites of pinch-offs. To our knowledge, such a connection has
not been reported previously for oblate drops. Moreover, our
results suggest that drop breakup through pinch-off could be
predicted from analyzing the electric stresses along the drop
interface.

In our leaky dielectric formulation we neglected the effects
of surface charge transport, which is found to be important for
a slightly deformed oblate viscous drop in an electric field [33].
In particular, the surface charge relaxation is found to reduce
the oblate deformation at high electric field strength [33],
while in the prolate case the charge transport may lead to
jet formation near the poles [31]. In an ongoing work we are
investigating how charge convection may affect the dynamics
for both oblate and prolate drops, and how these drop dynamics
in leaky dielectric formulation may differ from those in
electrokinetic framework.
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