
Journal of Computational Physics 469 (2022) 111547
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

A shallow Ritz method for elliptic problems with singular

sources

Ming-Chih Lai a, Che-Chia Chang a, Wei-Syuan Lin a, Wei-Fan Hu b,c,
Te-Sheng Lin a,c,∗
a Department of Applied Mathematics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
b Department of Mathematics, National Central University, Taoyuan 32001, Taiwan
c National Center for Theoretical Sciences, National Taiwan University, Taipei 10617, Taiwan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 26 July 2021
Received in revised form 1 July 2022
Accepted 14 August 2022
Available online 22 August 2022

Keywords:
Shallow neural network
Deep Ritz method
Elliptic problems
Singular source
Immersed boundary method
Level set function

In this paper, a shallow Ritz-type neural network for solving elliptic equations with delta
function singular sources on an interface is developed. There are three novel features in the
present work; namely, (i) the delta function singularity is naturally removed, (ii) level set
function is introduced as a feature input, (iii) it is completely shallow, comprising only one
hidden layer. We first introduce the energy functional of the problem and then transform
the contribution of singular sources to a regular surface integral along the interface. In
such a way, the delta function singularity can be naturally removed without introducing
a discrete one that is commonly used in traditional regularization methods, such as the
well-known immersed boundary method. The original problem is then reformulated as
a minimization problem. We propose a shallow Ritz-type neural network with one hidden
layer to approximate the global minimizer of the energy functional. As a result, the network
is trained by minimizing the loss function that is a discrete version of the energy. In
addition, we include the level set function of the interface as a feature input of the network
and find that it significantly improves the training efficiency and accuracy. We perform a
series of numerical tests to show the accuracy of the present method and its capability for
problems in irregular domains and higher dimensions.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Fluid-structure interaction problems have many applications in science and engineering, one example of which is blood
flow (fluid) simulation in heart valve leaflets (embedded structure) [28]. The numerical simulation challenge for such prob-
lems is mainly that the shapes of embedded structures are often irregular and such structures change with time. To address
these issues, Peskin [28] proposed the so-called Immersed Boundary (IB) method, which is widely used because of its
simplicity of implementation. This method does not require body-fitted discretization of the structure, which can save sig-
nificant computational efforts.

The immersed boundary method is, in fact, both a mathematical formulation and numerical method for fluid-structure
interaction problems. In IB formulation, we represent the fluid variables in an Eulerian manner and the embedded structure
in Lagrangian one. The embedded structure is usually one-dimensional lower than the fluid dimensional space and regards

* Corresponding author.
E-mail addresses: mclai@math.nctu.edu.tw (M.-C. Lai), wfhu@math.ncu.edu.tw (W.-F. Hu), tslin@math.nctu.edu.tw (T.-S. Lin).
https://doi.org/10.1016/j.jcp.2022.111547
0021-9991/© 2022 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2022.111547
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2022.111547&domain=pdf
mailto:mclai@math.nctu.edu.tw
mailto:wfhu@math.ncu.edu.tw
mailto:tslin@math.nctu.edu.tw
https://doi.org/10.1016/j.jcp.2022.111547

M.-C. Lai, C.-C. Chang, W.-S. Lin et al. Journal of Computational Physics 469 (2022) 111547
as a singular force generator. Thus, the governing equations comprise Navier-Stokes (or Stokes) equations with singular
forces as the Dirac delta function. To solve the problem numerically, a projection-type of Navier-Stokes solver (for instance,
see an overview in [12]) often involves solving elliptic equations with singular sources for the intermediate velocity. The IB
numerical method then solves the equations by using finite difference discretization and a smooth version of the discrete
delta function to regularize the singular sources. This method is easy to implement but leads to first-order accuracy. Another
example is solving heat equations with singular sources. If time discretization is applied (for instance implicit Euler method),
then at each time step, an elliptic equation with singular sources must be solved. So motivated by the above applications,
we aim to solve elliptic problems with singular sources on an interface in this paper.

As mentioned above, the IB method is first-order accurate for elliptic interface problems due to the discrete regularization
of the delta function sources. There are several other grid-based methods that achieve better accuracy in literature. For
instance, the immersed interface method (IIM) proposed by LeVeque and Li [22] incorporates the jump conditions via local
coordinates into the finite difference scheme so that the local truncation error near the interface can be first-order resulting
in the overall second-order accuracy in maximum norm. A simple implementation version of IIM that directly uses the jump
conditions developed by the first author and his coworkers in [21,19] has the second-order accuracy in maximum norm as
well. A boundary condition capturing method (also named as ghost fluid method (GFM)) proposed by Liu et al. [25] is
able to solve the elliptic interface problems in a dimension-by-dimension manner, and captures the solution and its normal
derivative jumps sharply while smoothing the tangential derivative. The method is first-order accurate in maximum norm in
general. Recently, Egan and Gibou [9] have developed a novel idea to extend the original GFM by recovering the convergence
of the gradient so that second-order accuracy can be achieved without modifying the resultant linear system. Along with
this GFM approach, many other numerical methods for solving elliptic problems with interfaces or in irregular domains
[11,13,8,2,10,3] have been successfully developed to improve the overall accuracy in maximum norm. One should mention
that the linear systems resulting from those above methods are often symmetric positive definite, which can be solved
efficiently by using iterative methods. Nevertheless, like IIM, special numerical treatments are always needed in the finite
difference discretization of GFM near the interface or the irregular domain boundary. Thus, a mesh-free neural network
method for solving the above problems provides an alternative to circumvent the difficulty arising from discretization near
the interface or domain boundary for grid-based methods.

Solving partial differential equations (PDEs) with deep neural networks (DNNs) has drawn much attention in the scien-
tific computing community recently. Part of the theoretical reason can be attributed to the various kinds of expressive power
for function approximations using DNN such as those described in [6,17,27,16], just to name a few. In terms of implemen-
tation, there are mainly two different approaches; namely, the physics-informed neural networks [31], and the deep Ritz
method [7]. The major difference between the two approaches is how the loss is defined. One trains the physics-informed
neural networks by minimizing the mean squared error loss of the equation residual, along with the initial and boundary
condition errors. The deep Ritz method, however, begins with formulating the variational problem equivalent to the original
PDE, so the natural loss function in this framework is simply the energy. Both approaches share the same major mesh-free
advantage and therefore can practically solve problems in complex geometry [32] and in high-dimensional space [15,33].

Regarding deep learning approaches to solve PDEs with solutions that are piecewise smooth, Wang et al. [34] proposed a
deep Ritz-type approach to solve elliptic interface problems with high-contrast discontinuous coefficients, and Cai et al. [5]
introduced the deep least squares method to solve elliptic interface problems where the solutions are continuous but the
derivatives have jumps across the interface. In [14], a deep unfitted Nitsche method is developed where two deep neural
networks are formulated to represent two components of the solution. In [4], the authors developed an immersed boundary
neural network for solving elliptic equations with singular sources in which the delta function singularity still appears in
the formulation and is discretized by a smooth discrete delta function proposed by Peskin [28].

Recently, the authors of the present paper proposed an efficient and accurate Discontinuity Capturing Shallow Neural
Network (DCSNN) [18] to solve elliptic interface problems where the solution is only piecewise-continuous. By augmenting
one coordinate variable, the proposed shallow neural network is trained with PINNs-type loss.

In this paper, we propose a new shallow Ritz method for solving elliptic problems with singular sources. The novelties
of the proposed network are three-fold. First, we remove the delta function singularity appearing in the original PDE by
formulating the variational problem. Second, we include the level set function, which is commonly used as an interface
indicator, as an additional feature input of the network that effectively improves the model’s efficiency and accuracy. Third,
we approximate the solution using a shallow neural network with only one hidden layer that significantly reduces the
training cost in contrast to DNN.

The rest of the paper is organized as follows. In Section 2, we show how to transform a d-dimensional elliptic equation
with singular sources into an energy functional minimization problem. The shallow Ritz method to solve the problem is
presented in Section 3, followed by a series of numerical accuracy tests and comparisons in Section 4. We give some
concluding remarks and future work in Section 5.

2. Elliptic equations with singular sources on the interface

We consider a d-dimensional elliptic equation in a bounded domain � ⊂ Rd , divided by an embedded interface � ⊂
Rd−1 into two regions; namely, inside (�−) and outside (�+) of the interface, so that � = �− ∪ �+ ∪ �. The interface � is
2

M.-C. Lai, C.-C. Chang, W.-S. Lin et al. Journal of Computational Physics 469 (2022) 111547
represented by its parametric form X(s) with surface parametrization s ∈ Rd−1. The elliptic equation with singular sources
on the interface is written as

�u(x) − αu(x) = f (x) +
∫
�

c(s)δ(x − X(s)) ds, in �, (1)

u(x) = g(x), on ∂�, (2)

where α is a non-negative constant (α = 0 corresponds to the Poisson equation), f is a given function, c(s) is the source
density defined only on the interface, and δ is the d-dimensional Dirac delta function. Throughout this paper, we only focus
on the case of the Dirichlet boundary condition, but other boundary conditions can be easily applied without changing the
major ingredients of the proposed method.

As mentioned before, Eq. (1) appears in many realistic applications and, in particular, the fluid velocity equations in
the immersed boundary formulation for fluid-structure interaction problems [29]. The fundamental difficulty in numerically
solving Eq. (1) is that the second term of the right-hand side has the integral over the d − 1 dimensional interface, while
the delta function is d-dimensional, this leaves the term has one-dimensional delta function singularity. The IB method uses
finite difference discretization and a grid-based discrete delta function to approximate the integral term in Eq. (1). Because
of the singularity of the delta function, this regularization technique is only first-order accurate, no matter what discrete
delta functions are used. It was rigorously proved by Li [23] that the IB method for Eqs. (1)-(2) in 2D is indeed first-order
accurate.

It is known that the solution to Eq. (1) is piecewise smooth across the interface; more precisely, the solution is contin-
uous over the domain � but has a discontinuity in its normal derivative on the interface �. In fact, Eq. (1) is equivalent to
the following elliptic interface problem with the same boundary condition (2) as

�u(x) − αu(x) = f (x) in � \ �, �u�(s) = 0, �∂nu�(s) = c(s) on �, (3)

where the notation �·� represents the difference of the quantity (from the outside value to the inside value) across the inter-
face. The above derivation can be found for example in [24]. One can immediately see that the delta function singularity no
longer exists in Eq. (3), but in terms of normal derivative jump instead. It is also worth mentioning that using equation (3),
one can easily construct different analytic solutions for the purpose of numerical tests later.

As mentioned in the Introduction, we have developed a neural network solver called DCSNN [18] to approximate piece-
wise continuous functions and to solve more general elliptic interface problems than the one in Eq. (3). The DCSNN
augments an additional coordinate variable to label the pieces of a function so it inherently represents a discontinuous
function. However, as you can see from Eq. (3), the solution is continuous across the interface. So in this paper, we propose
a shallow Ritz-type neural network to solve Eqs. (1)-(2) by augmenting a level set function (continuous) as a feature input
so that the solution is continuous and the energy is the natural loss function of the neural network. To proceed, we first
reformulate Eq. (1) into a variational problem as follows.

2.1. Variational problem

As shown above, the solution to the elliptic equation with singular sources on the interface, Eq. (1), is continuous but
has discontinuous derivatives across the interface. Since the solution is not classically smooth, we are going to use the usual
Sobolev spaces H1

0(�) and H1(�) to define the solution space. We assume the right-hand side function f ∈ L2(�) and the
source strength c ∈ L2(�). In order to take the boundary condition (2) into account, followed the work in [26], we assume
that the boundary data g has a smooth extension g̃ to the bounded domain � so that u − g̃ ∈ H1

0(�) and g̃|∂� = g . So the
solution space can be defined as H1

g = {u ∈ H1(�) : u − g̃ ∈ H1
0(�)}. We now formulate equation (1) into its weak form by

simply multiplying the test function v ∈ H1
0(�) in Eq. (1). Using the Green’s first identity and the fact that test function v

vanishes at the boundary ∂�, we obtain the following weak formulation: find u ∈ H1
g such that

−
∫
�

∇u(x) · ∇v(x) dx − α

∫
�

u(x)v(x) dx =
∫
�

f (x)v(x) dx +
∫
�

c(s)v(X(s)) ds, (4)

for all v ∈ H1
0(�). Note that the second term on the right-hand side comes from the definition of the Dirac delta function

as ∫
�

v(x)

∫
�

c(s)δ(x − X(s)) ds dx

=
∫

c(s)
∫

v(x)δ(x − X(s)) dx ds =
∫

c(s)v(X(s)) ds. (5)
� � �

3

M.-C. Lai, C.-C. Chang, W.-S. Lin et al. Journal of Computational Physics 469 (2022) 111547
One can also derive the weak formulation by using the equivalent equation (3) with jump conditions in which the Green’s
first identity is applied separately in �+ and �− , and then summing up together to get Eq. (4). The existence and unique-
ness of the above weak solution can be found in [26].

To adopt a Ritz-type neural network to solve the problem, we now rewrite the above weak formulation (4) to its equiv-
alent minimization problem as follows. Find u ∈ H1

g such that L[u] ≤ L[v] for all v ∈ H1
g , where the energy functional reads

L[v] = 1

2

∫
�

|∇v(x)|2 dx + α

2

∫
�

v(x)2 dx +
∫
�

v(x) f (x) dx +
∫
�

c(s)v(X(s)) ds. (6)

As a result, just like the weak formulation, the delta function singularity disappears completely in the energy and its
contribution becomes a regular integral over the interface �. Thus, we do not need to handle the singularity problem
arising from the original equation (1).

2.2. Boundary condition enforcement

We aim to solve the problem by using neural networks as the solution representation. However, while neural networks
are expressive in function approximation, and one hidden layer neural network can be a universal approximator (see a
review in [30]), the boundary condition requirement in H1

g still seems to be infeasible. Thus, we simply relax the boundary
condition (2) by adding a penalty term to the energy (6) that reflects the penalty effect if the boundary condition is not
satisfied exactly. The energy functional is therefore modified as

L̃[v] = 1

2

∫
�

|∇v(x)|2 dx + α

2

∫
�

v(x)2 dx +
∫
�

v(x) f (x) dx

+
∫
�

c(s)v(X(s)) ds + β

∫
∂�

(v(x) − g(x))2 dx, (7)

where β is some positive penalty constant.
Now, it is interesting to see what the global minimizer will be for such a modified energy functional. To proceed, let us

decompose a function v ∈ H1(�) as a sum of two functions by writing v = u + h (the choice of u and h will be clear later).
We have its energy

L̃[v] = 1

2

∫
�

|∇u + ∇h|2 dx + α

2

∫
�

(u + h)2 dx +
∫
�

(u + h) f dx

+
∫
�

c(u + h) ds + β

∫
∂�

(u + h − g)2 dx

= L̃[u] + 1

2

∫
�

|∇h|2 dx + α

2

∫
�

h2 dx + β

∫
∂�

h2 dx

+
∫
�

(∇u · ∇h + αuh + hf) dx +
∫
�

ch ds + β

∫
∂�

2h(u − g) dx,

where the term
∫
�

∇u · ∇h dx can be rewritten, using the Green’s first identity under the smoothness assumption of u in
�+ and �− (i.e. u ∈ C2(�±)), as∫

�

∇u · ∇h dx =
∫

�−
∇u · ∇h dx +

∫
�+

∇u · ∇h dx

= −
∫

�\�
h�u dx −

∫
�

h�∂nu� ds +
∫
∂�

h∂nu dx.

Therefore we obtain

L̃[v] = L̃[u] + 1

2

∫
�

|∇h|2 dx + α

2

∫
�

h2 dx + β

∫
∂�

h2 dx

+
∫

h(−�u + αu + f) dx +
∫ (

c − �∂nu�
)

h ds +
∫

h (∂nu + 2β(u − g)) dx.
�\� � ∂�

4

M.-C. Lai, C.-C. Chang, W.-S. Lin et al. Journal of Computational Physics 469 (2022) 111547
That is, if we choose u as the solution of Eq. (3) but with a modified Robin-type boundary condition

u(x) + 1

2β
∂nu(x) = g(x), x ∈ ∂�, (8)

we should have

L̃[v] = L̃[u] + 1

2

∫
�

|∇(v − u)|2 dx + α

2

∫
�

(v − u)2 dx + β

∫
∂�

(v − u)2 dx. (9)

So it is clear that the solution of Eq. (3) (or equivalently Eq. (1)) with boundary condition (8) is the global minimizer of the
energy functional L̃. We thus formally write the solution to the variational problem as

u = arg min
v∈H1(�)

L̃[v], (10)

where H1(�) is the set of trial functions that does not require any constraint at the domain boundary. It is important to
mention that as the penalty constant β becomes larger, the above minimizer should approach to the solution of Eq. (3) with
exact boundary condition (2) (in fact, as β → ∞, Eq. (8) tends to be Eq. (2)).

2.3. Level set function augmentation

As shown above, the minimizer of the energy functional (or the solution of Eq. (3)) is a continuous function, but has
a jump discontinuity at its normal derivative on the interface. Therefore, the trial functions must carry the same feature.
We note that the construction of such a set of functions using neural net approximation requires additional efforts. Here,
inspired by DCSNN [18], where an augmented variable is introduced to categorize precisely the spatial coordinates into each
sub-domain, we also introduce an augmented variable and require the function to be continuous throughout the whole
domain. More precisely, consider a level set function φ(x) such that the zero level set gives the position of the interface �,
i.e., � = {x ∈Rd | φ(x) = 0}. We define a function U (x, z) :Rd+1 →R that satisfies

u(x) = U (x, φ(x)), x ∈ �. (11)

Here the level set function φ(x) is considered as a feature input in the augmented variable z. We require both the level
set function φ and the extension function U being continuous, so that u(x) is a continuous function. Although it looks
like the derivative discontinuity on the interface is not considered, the augmented variable φ(x) somehow gives additional
information to the function U related to the interface. As we will see later in the numerical experiments, indeed the
introduction of the augmented variable effectively improves the capability of neural networks in function approximation.

It is worth mentioning that we assume the solution to the problem takes the form: u(x) = U (x, φ(x)). Therefore, if one
instead uses an indicator function for the interface as the additional feature input, e.g., φ(x) = 1 if x ∈ �+ and φ(x) = −1
if x ∈ �− , the resulting function will be discontinuous, which essentially violates the assumption of a continuous solution
that we consider here.

2.4. Summary

To summarize, we solve elliptic equations with singular sources on the interface by looking for a d + 1 dimensional
continuous function of the form U (x, z). The target function is found by minimizing the energy functional L̃[u], where
u(x) = U (x, φ(x)). In the following we shall develop a neural network architecture to represent U and a loss function to be
used for model training.

3. A shallow Ritz method

We propose a shallow neural network to approximate the (d +1)-dimensional continuous function of the form U (x, φ(x))

and serve as an ansatz for solving the minimization problem Eq. (10). Based on the universal approximation theory [6],
we hereby design a shallow, feedforward, fully-connected neural network architecture, in which only one hidden layer is
employed. Let N be the number of neurons used in the hidden layer, the approximation function (or output layer) under
this network structure is explicitly expressed by

u(x) = U (x, φ(x)) = W [2]σ(W [1](x, φ(x))T + b[1]) + b[2], (12)

where W [1] ∈ RN×(d+1) and W [2] ∈ R1×N are the weight matrices, b[1] ∈ RN and b[2] ∈ R are the bias vectors, and σ is
the activation function. One can easily see that the function U is a linear combination of the activation functions and hence
shares exactly the same smoothness as σ . By collecting all the training parameters (including all the weights and biases) in
a vector p, the total number of parameters in the network (i.e., dimension of p) is counted by N p = (d + 3)N + 1.
5

M.-C. Lai, C.-C. Chang, W.-S. Lin et al. Journal of Computational Physics 469 (2022) 111547
As the solution we are looking for is the global minimizer of the energy functional, it is therefore natural to consider
the loss function in the training procedure using that energy. In this stage, we aim to learn the training parameters p via
minimizing the modified energy (7). The loss function in the training procedure is thus defined in the framework of deep
Ritz method [7] by replacing the integrals in Eq. (7) using discrete quadrature rules. That is, given training points in �,
along the embedding interface �, and on the domain boundary ∂�, denoted by {xi}M

i=1, {x j
�}M�

j=1 and {xk
∂�}Mb

k=1, respectively,
we define the loss function as

Loss(p) = Vol(�)

M

M∑
i=1

(
1

2
|∇u(xi)|2 + α

2
u(xi)2 + u(xi) f (xi)

)

+ Vol(�)

M�

M�∑
j=1

c(x j
�)u(x j

�) + β
Vol(∂�)

Mb

Mb∑
k=1

(
u(xk

∂�) − g(xk
∂�)

)2
,

(13)

where Vol(�) is the volume of � in Rd , while Vol(�) and Vol(∂�) are volumes of � and ∂�, respectively, in Rd−1. Here,
for brevity, we suppress the notation of the parameters p in the solution u as one can see their dependence through
the equation (12). Also note that, the evaluation of u at the domain training point xi is realized through the relation
u(xi) = U (xi, φ(xi)) so the feature input of the network is (xi, φ(xi)). Similarly, the evaluations of u at the training points
x j

� in � and xk
∂� in ∂� are defined in the same manner.

3.1. Selection of training points

As one can see, the quadrature rule used to derive the loss function (13) is of the Monte Carlo type, where the integrals in
modified energy Eq. (7) are approximated by the mean of the samples. However, since the energy is presented as integrals,
one may expect a better performance by evaluating these integrals using more accurate numerical quadrature rules. Thus,
if the problem under consideration is defined in regular domains such as a rectangle or a circle, the first intuitive way
to select the training points might be the quadrature nodes based on, e.g., midpoint or Gaussian quadrature rules, just to
name a few. (Note, if Gaussian nodes are chosen as the training points, one should change the weights in approximating the
energy functional.) But, we found that the training of neural networks heavily depends on “accurate” evaluations of these
integrals. The question is not which quadrature rule is chosen, but how to ensure accurate evaluation of the integral value.

In traditional scientific computing approach, a convergence test must be performed if we want to evaluate an integral to
the desired accuracy but without a prior information about the number of quadrature nodes required. Therefore, if we fix
the number of nodes to compute the integral, the result might not be reliable. In neural network approach, the parameters
change at each iteration of the training process meaning that the function presented by the network differs from iteration
to iteration. For the Ritz method, if the training points are fixed throughout the entire optimization process to minimize the
energy functional, we can not guarantee the numerical integration accuracy.

To ensure a reliable estimation of the energy, ideally, we should check the convergence of the numerical quadrature at
each training step which is not practical in reality. In this paper, we adopt the strategy proposed in [7]. That is, we use Monte
Carlo integration to evaluate the loss function Eq. (13) but re-select training points at each iteration of the optimization
process. The spirit of this idea is like the mini-batch gradient descent method. Imagine that our training dataset contains
all the points in the domain �, and at each iteration step, we train the model based on only one mini-batch of the entire
dataset. The training process is ended if certain stopping criteria are satisfied. We find that such a procedure, even though
it seems to be less accurate in evaluating the energy at first glance, is more stable in the sense that the loss will remain
close to the true energy.

3.2. Selection of optimizer

Even though the energy admits a global minimizer, as shown in the previous section, there may be local minimizers
in the space of network parameters. On the other hand, since we re-select the training points in each iteration, the loss
landscape will be different for each iteration. So it is not suitable to use traditional descent method such as the gradient
descend method for minimization. In this paper, we exploit the Adaptive Moment Estimation (Adam) optimizer [20], that
can deal with sparse gradients and non-stationary objectives, which is well-suited to the current aim. It has been empirically
found that Adam has never underperformed SGD in general [35].

4. Numerical results

In this section, we perform several numerical tests in two, three, and six dimensions for elliptic problems with singular
sources using the developed shallow Ritz method. In the following examples, we choose sigmoid as the activation function.
After the training process is complete, we check the accuracy by computing the error between the neural network solution
and the exact solution of the problem. To do this, we randomly choose Ntest testing points lying in � to compute the
relative L∞ and L2 errors as
6

M.-C. Lai, C.-C. Chang, W.-S. Lin et al. Journal of Computational Physics 469 (2022) 111547
‖uS − u‖∞
‖u‖∞

,
‖uS − u‖2

‖u‖2
,

respectively, where

‖u‖∞ = max
1≤i≤Ntest

|u(xi)|, ‖u‖2 =
√√√√ 1

Ntest

Ntest∑
i=1

(u(xi))2.

Here u is the exact solution of Eqs. (1)-(2) while uS is the solution obtained from the present model. In general, we set
Ntest = 100M , where M is the number of training points in �. We always terminate the training procedure after 50000
iterations with a fixed learning rate 5 × 10−3.

Throughout all numerical experiments conducted here, the training time of the present network typically takes a few
minutes on a desktop with 8-core Intel i7-10700k CPU and a Nvidia 2080Ti graphic card. Particularly, we found that the
training time usually scales linearly with the number of training points but only weakly with the number of neurons.
Regarding the choice of the number of neurons, we usually increase the number of neurons until the loss value (also the
approximation of the energy) tends to converge. As you can see in our numerical results, just a moderate number of neurons
(up to 40) is generally sufficient to give predictive accuracy less than 1% relative error in L2 norm.

In the following numerical experiments, we will just list the analytic form of the exact solution in � and the level
set function to represent the interface �. The resultant function f (x) and the source density c(s) in Eq. (1) can be easily
computed via the equation itself and the derivative normal jump condition �∂nu� = c(s), respectively.

Example 1. In the first example, we choose a square domain � = [−1, 1] × [−1, 1] with a circular interface that can be
labeled by the zero-level set of the function φ(x, y) = x2 + y2 − 0.52. The exact solution is chosen as

u(x, y) =
{

− ln
(
x2 + y2

)
(x, y) ∈ �+,

− ln(0.52) (x, y) ∈ �−.
(14)

We choose α = 0 in this example.

Fixed training points. At first, we would like to show the over-fitting problem of using training points that are fixed
throughout the entire optimization process. Instead of using the Monte Carlo method to approximate the energy, we use
the midpoint rule with fixed uniform grid points on domain �, interface �, and domain boundary ∂�, which is supposed
to be more accurate in approximating the integrals. Notice that, the midpoint quadrature rule leads to exactly the same
formula for the loss function as in Eq. (13). More precisely, in the selection of training points, we use 40 × 40 uniform
quadrature nodes in the domain � as

(xi, yi) = (−1 + (i − 1/2)�x,−1 + (j − 1/2)�y) , i = 1, · · · ,40, j = 1, · · · ,40, (15)

where �x = �y = 1
20 is the grid size. Both the interface and the domain boundary have 160 grids points, which are also

uniformly distributed. So overall we have M = 1600, M� = Mb = 160 which gives 1920 training points in total. The shallow
neural network consists of one hidden layer with 30 neurons, for a total number of N p = 151 parameters to be trained.
The penalty constant is set by β = 200. We note that the number of training points is much larger than the number of
parameters used in this case.

The training loss obtained during the optimization process is shown in Fig. 1(a) as a solid (blue) line. One can see
that the loss function indeed decreases throughout the entire training process. Meanwhile, the losses corresponding to the
domain (�), domain boundary (∂�) and the interface (�) are also shown in panels (b), (c) and (d) as solid (blue) lines,
respectively.

In addition, in Fig. 1(a), we plot a dotted (black) line indicating the energy value that corresponds to the exact solution;
that is, the theoretical minimum energy. As the loss function is a discrete representation of the energy, one might expect
to have the same global energy minimizer so the loss should not go below the theoretical minimum value. However, it
is surprising to see that the training loss becomes significantly lower than the dotted line at about 25000 iterations so
consequently the solution obtained afterwards is completely different from the exact one, although is not shown here. To
find out what went wrong, we carefully re-evaluated all terms in the loss function (13) using 106 testing points throughout
training to ensure accurate evaluations of its continuous counterparts in the energy. The results are shown as dashed (red)
lines in Fig. 1. We infer these values as the actual corresponding energy values in training process, as they are more
accurately representing the true energy values. It can also be seen in panel (a) that the actual energy during training is
indeed always larger than the theoretical minimum value which is consistent with our previous analysis. Besides, at about
25000 iterations, the actual energy is increasing, unlike the training loss that continues to decrease. We also observe that
the contributions of loss from the domain boundary and interface are accurately predicted while the one from the domain
(shown in panel (b)) is far from the correct value at later stage of training. Consequently the training loss is totally different
from its actual energy during training (see Fig. 1(a) at later stage of iterations) and predicts the values that are much less
than the correct ones.
7

M.-C. Lai, C.-C. Chang, W.-S. Lin et al. Journal of Computational Physics 469 (2022) 111547
Fig. 1. Evaluation of the loss functions. The solid (blue) line shows the loss obtained during training process while the dashed (red) line shows a re-
evaluation of the loss using testing points. The dotted (black) line in (a) indicates the theoretical energy value corresponding to the exact solution. (For
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 2. Evaluation of the loss functions. The solid (blue) line shows the loss obtained during training process while the dashed (red) line shows a re-
evaluation of the loss using 106 testing points. The dotted (black) line in (a) indicates the theoretical energy value corresponding to the exact solution.

Fig. 3. Comparison between the performance of optimizers. The dotted (black) line indicates the theoretical minimum energy given by the exact solution.
The inset shows a zoom-in to the region close to the minimum energy.

Such a scenario is known as over-fitting: the model learns too much detail of the training data and it deteriorates the
performance of the model on new data. We therefore conclude that using fixed training points causes the problem of
over-fitting. We should also point out that it happens even when the number of training points is much greater than the
number of parameters (here in this experiment M + M� + Mb = 1920 vs. Np = 151). To overcome such a difficulty, in the
following we use a strategy similar to the mini-batch gradient descent method; that is, we re-select the training points
randomly in each iteration during the optimization process. As the training set is not fixed throughout the entire process,
the loss evaluation in each iteration is made with a fresh set of points and therefore does not inherently overfit. The above
confirmation is shown in Fig. 2(a) where we solve Example 1 again, but with 1600 randomly selected training points in
each iteration. This time, the training and testing loss, shown as solid (blue) and dashed (red) lines respectively, align nicely
with the theoretical energy minimum, which shows clearly the training is not over-fitted. Meanwhile, the contribution of
loss from the domain also predicts correctly, see Fig. 2(b).

Comparison of optimizers. With the above re-selection strategy, we then compare the training performance with two
different optimizers: Adam and stochastic gradient descent (SGD). The results are shown in Fig. 3 where the dashed (red)
and solid (blue) lines show the training losses corresponding to Adam and SGD, respectively. The dotted (black) line indicates
8

M.-C. Lai, C.-C. Chang, W.-S. Lin et al. Journal of Computational Physics 469 (2022) 111547
Table 1
Comparison between immersed boundary method and shallow Ritz method. uI B : Solution ob-
tained by the IB method. uS : Solution obtained by the present model. u: Exact solution.
(M, M�, Mb) = (200, 80, 80), β = 200.

Ndeg ‖uI B − u‖∞/‖u‖∞ (N, N p) ‖uS − u‖∞/‖u‖∞ ‖uS − u‖2/‖u‖2

6400 1.9333e−02 (10, 51) 1.8172e−02 1.1883e−02

25600 9.7151e−03 (20, 101) 9.5521e−03 6.7409e−03

102400 4.8355e−03 (30, 151) 7.5025e−03 6.8292e−03

Table 2
Comparison between the networks with or without the third level set function input. uT : Solution obtained by a shallow
network with 2 neurons in the input layer. uS : Solution obtained by the present model. u: Exact solution. (M, M�, Mb) =
(1600, 160, 160), β = 200.

(N, N p) ‖uT − u‖∞/‖u‖∞ ‖uT − u‖2/‖u‖2 (N, N p) ‖uS − u‖∞/‖u‖∞ ‖uS − u‖2/‖u‖2

(10, 41) 4.0140e−01 3.9491e−01 (10, 51) 1.7232e−02 8.3483e−03

(30, 121) 3.6079e−01 2.4959e−01 (20, 101) 7.1492e−03 3.7503e−03

(500, 2001) 3.2370e−01 2.1671e−01 (30, 151) 5.5734e−03 3.6137e−03

the theoretical minimum energy attained by the exact solution. It can be seen that the losses of the two optimizers decrease
rapidly, while the Adam optimizer converges slightly faster.

We also show an enlarged view of the region near the minimum energy in the inset of the figure. The loss oscillates
because of the stochastic nature of the training points selection, as expected. But on average, Adam converges faster and is
closer (more accurate) to the minimum energy than SGD. Therefore, in all the following examples, we use Adam optimizer.

Comparison with the immersed boundary method. Here we compare the solution of the present shallow Ritz method with
the numerical solution obtained by the IB method, which is known to be a first-order accurate finite difference method for
equations (1)-(2) on Cartesian grids [1] due to the employment of the discrete (or regularized) delta function. Note that in
the IB method, the total number of degrees of freedom (unknowns), denoted by Ndeg , is equal to the sum of the number of
the Cartesian grid points m2. We also denote m� as the number of Lagrangian markers on the interface.

Table 1 shows the comparison results. The IB method uses the grid resolutions m = m� = 80, 160, and 320 corresponding
to the number Ndeg = 6400, 25600, and 102400, respectively, while the present shallow Ritz method uses N = 10, 20, and
30 neurons in the hidden layer of the network, corresponding to just N p = 51, 101, and 151 parameters. One can see
how significantly different those numbers of unknowns are. Using just a few number of neurons with training points
(M, M�, Mb) = (200, 80, 80), and the penalty constant β = 200, the results obtained by the present network are comparable
with the ones obtained by the IB method even in the relative L∞ errors.

The accuracy of the proposed shallow Ritz method possibly depends on several factors. One is the penalty constant β .
With a finite penalty constant, the minimizer of the energy functional is changed to satisfy a Robin-type boundary condition
that introduces an O (β−1) error. The second one is the quadrature rule that approximates the energy functional. Here, we
choose the Monte Carlo type quadrature rule that has convergence rate O (M−1/2), where M is the number of sampling
points. The third one is the precision of the computation. Neural networks can be easily implemented on GPUs to take
full advantage of parallel computing but at the expense of accuracy. However, we also implement the code running in
double precision by fixing β and M but does not seem to improve the overall accuracy significantly. So once the number
of neurons is sufficient (here N = 20), the magnitude of the error becomes steady. This explains why an increase in the
number of neurons to N = 30 does not help improve the accuracy.

Example 2. In the second example, we aim to demonstrate the effectiveness of the present level set function augmentation
described in Subsection 2.3 by solving the problems with or without the level set function input. We choose a setup similar
to the previous example, a square domain � = [−1, 1] ×[−1, 1] with a circular interface of radius 0.5 centered at the origin.
We choose α = 1 and the exact solution is given as

u(x, y) =
{

− ln
(
x2 + y2

) + sin(x) + sin(y) (x, y) ∈ �+,

− ln(0.52) + sin(x) + sin(y) (x, y) ∈ �−.
(16)

If one does not require an augmented variable, i.e., not taking the third input of a level set function, a shallow network
can be developed with just 2 neurons in the input layer (recall for the present shallow Ritz method, there are 3 neurons
in the input layer for two-dimensional problems). For this network, the total number of parameters becomes (d + 2)N + 1
where N is the number of neurons used in the hidden layer. The network can be trained with exactly the same loss function
defined in Eq. (13), and we denote the solution without augmentation as uT .

Table 2 shows a comparison between the accuracy performance of uT (without level set function input) and uS (with
level set function input) where the number of training points are given as (M, M�, Mb) = (1600, 160, 160). In fact, it is not
9

M.-C. Lai, C.-C. Chang, W.-S. Lin et al. Journal of Computational Physics 469 (2022) 111547
Table 3
Comparison between the networks with different
penalty constant β . uS : Solution obtained by the
present model in Example 2. u: Exact solution.
(M, M�, Mb) = (1600, 160, 160). The number of neu-
rons and number of parameters (N, Np) = (30, 151).

β ‖uS − u‖∞/‖u‖∞ ‖uS − u‖2/‖u‖2

1 3.6104e−01 5.3255e−01

10 4.9901e−02 6.4870e−02

100 6.9001e−03 6.7623e−03

Table 4
Comparison between the networks with different depths.
uS : Solution obtained by the present model in Example 2.
u: Exact solution. (M, M�, Mb) = (1600, 160, 160), β = 200.

(k, Nk, N p) ‖uS − u‖∞/‖u‖∞ ‖uS − u‖2/‖u‖2

(1, 30, 151) 5.5734e−03 3.6137e−03

(2, 10, 161) 9.0884e−03 5.8180e−03

(3, 7, 148) 7.4770e−03 6.2458e−03

(3, 30, 2011) 9.2629e−03 7.7047e−03

Table 5
uS : Solution obtained by the present model in Example 3.
u: Exact solution. (M, M�, Mb) = (400, 80, 80), β = 200.

(N, N p) ‖uS − u‖∞/‖u‖∞ ‖uS − u‖2/‖u‖2

(30, 151) 1.7095e−02 8.8148e−03

(40, 201) 1.2277e−02 8.5489e−03

required using such many training points in the domain, but we just want to avoid insufficient training points in all the
following runs.

Indeed, the augmented input carrying level set function information can effectively improve training accuracy. For uT ,
the network output fails to capture the exact solution as one can see the relative L∞ error is of the order 10−1 even with
500 neurons in the hidden layer (2001 parameters). However, for the present network with level set function augmentation,
using 20 neurons in the hidden layer is already capable to approximate the solution to the order 10−3 both in relative L∞
and L2 errors. This example precisely shows the effectiveness of the augmented variable for carrying additional level set
information to the network.

To quantify further the sources of error in the proposed method, in Table 3 we show the experiments to see the effect
of the penalty constant β . It reveals that the error is linearly proportional to 1/β . Such a result is also consistent with the
analysis in Sec. 2.2, where we have shown the global minimizer satisfies a boundary condition that is changed by O (1/β)

to the true one.
We also conduct experiments to test the effect of network depth structure on the error. Here, we consider k-hidden layer

network, where k = 1, 2, 3. To have a fair comparison, we choose the number of neurons in each hidden layer Nk accordingly
so that the total parameters Np to be trained are similar. Table 4 shows the relative L∞ and L2 errors for those k-hidden
layer networks. One can immediately see that for networks with roughly the same number of parameters, the magnitudes
of the error are quite similar. Also, an increase in the number of parameters does not really improve the accuracy for the
present problem, as clearly shown by the result of the three-hidden layer network (k, Nk, Np) = (3, 30, 2011) where the
error remains in the order of 10−3.

Example 3. In the third example, we highlight the mesh-free nature of neural network by considering an irregular domain
� that is given by a polar curve r(θ) = 1 − 0.2 cos(5θ). The interface � is chosen as an ellipse that can be labeled by the
zero level set of the function φ(x, y) = x2

0.72 + y2

0.52 − 1. We fix α = 0 and the exact solution is chosen as

u(x, y) =

⎧⎪⎨
⎪⎩

ln
(

x2

0.72 + y2

0.52

)
(x, y) ∈ �+,

sin(x) cos(y)

[(
x2

0.72 + y2

0.52

)2 − 1

]
(x, y) ∈ �−.

(17)

We randomly sample training points in the domain with (M, M�, Mb) = (400, 80, 80). The results are shown in Table 5
and the solutions are accurate to the order of 10−3 in relative L2 error with just 30 neurons in the hidden layer. We should
also point out that it can be quite tedious to implement for traditional finite difference methods to solve the problem on
10

M.-C. Lai, C.-C. Chang, W.-S. Lin et al. Journal of Computational Physics 469 (2022) 111547
Fig. 4. Cross sections at (a) y = 0 and (b) x = 0 for the solution in Example 3 with N = 40. The model solution uS is shown as solid (blue) line and the
exact solution is shown as dashed (red) line.

Fig. 5. Left: The solution profile obtained by the present shallow Ritz method with N = 40. Right: The profile of absolute error.

Table 6
uS : Solution obtained by the present model in Ex-
ample 4 (three-dimensional case). u: Exact solution.
(M, M�, Mb) = (216, 216, 216), β = 100.

(N, N p) ‖uS − u‖∞/‖u‖∞ ‖uS − u‖2/‖u‖2

(20, 121) 1.9960e−02 1.4343e−02

(30, 181) 1.6274e−02 9.9769e−03

(40, 241) 1.2727e−02 8.7665e−03

such irregular domain. Thus, we emphasize that the irregular domain case can be properly handled with no substantial
difficulty.

We also show the cross-sections of the solution at y = 0 and x = 0 in Fig. 4(a) and (b), respectively. One can see that,
the present network indeed accurately approximates the solution even though there are cusps at the interface. Furthermore,
in Fig. 5 showing the solution profile and absolute error correspondingly, we observe that the largest error occurs in the
region close to the interface, but is not significantly larger than the values in other regions.

Example 4. In this example, we show the ability of the present method to solve three-dimensional problems. We choose
the domain as a cube � = [−1, 1]3 with a spherical interface that is labeled by a zero-level set of the function φ(x, y, z) =

x2

0.42 + y2

0.42 + z2

0.42 − 1. The exact solution is chosen as

u(x, y, z) =
{

x(−1 + exp(0.42 − (x2 + y2 + z2))) (x, y, z) ∈ �+,

−1 + cos(0.42 − (x2 + y2 + z2)) (x, y, z) ∈ �−.
(18)

In this test, we choose α = 1 and (M, M�, Mb) = (216, 216, 216). The results are shown in Table 6. Again, the present
network shows a good performance. The relative L2 error is less than 1% with just 30 neurons in the hidden layer.

Example 5. As the last example, we demonstrate the capability of the present method to solve high-dimensional problem
by taking the dimension size d = 6. For the problem setup, we consider a 6-sphere of radius 0.6 as the domain � enclosing
another smaller 6-sphere of radius 0.5 as the interface �. The interface � can be labeled by the zero level set of the function

φ(x) =
(‖x‖2

)2 − 1. We fix α = 0 and the exact solution is chosen as
0.5

11

M.-C. Lai, C.-C. Chang, W.-S. Lin et al. Journal of Computational Physics 469 (2022) 111547
Table 7
uS : Solution obtained by the present model in Ex-
ample 5 (six-dimensional case). u: Exact solution.
(M, M�, Mb) = (500, 1065, 1065), β = 100.

(N, N p) ‖uS − u‖∞/‖u‖∞ ‖uS − u‖2/‖u‖2

(10, 91) 2.8309e−02 6.4073e−03

(20, 181) 2.6612e−02 7.0114e−03

(30, 271) 2.0292e−02 6.9735e−03

Table 8
Comparison between the number of training points in Example 5. uS : Solution
obtained by the present model. u: Exact solution.

(M, M�, Mb) (N, N p) ‖uS − u‖∞/‖u‖∞ ‖uS − u‖2/‖u‖2

(100,278,278) (10, 91) 2.4877e−02 7.4379e−03

(200,496,496) (10, 91) 2.5073e−02 7.2977e−03

(500,1065,1065) (10, 91) 2.8309e−02 6.4073e−03

Fig. 6. The evolution plots of (a) training loss, and (b) relative L2 error. (M, M�, Mb) = (100, 278, 278): solid (blue) line; (200, 496, 496): dashed (red) line;
(500, 1065, 1065): dotted (yellow) line.

u(x) =
{

exp(0.52 − ‖x‖2
2) + ∑5

i=1 sin(xi) x ∈ �+,

1 + 2 sin(0.52 − ‖x‖2
2) + ∑5

i=1 sin(xi) x ∈ �−,
(19)

where x = (x1, x2, x3, x4, x5, x6).
Here, we choose the number of training points based on the following strategy. Given a radius R , the volume and surface

area of the 6-sphere are (1/6)π3 R6 and π3 R5, respectively, so the ratio between these two numbers is R6 : 6R5. We then
choose the number of training points in the sphere and on the surface based on this ratio; that is, if we have 500 points in
the domain that corresponds to the effective radius R = (500)1/6, then we select 6R5 ≈ 1065 points on the boundary and
interface.

The results are shown in Table 7. With just 10 neurons in the hidden layer, the relative L2 error is in the order of 10−3.
In addition, we compare the performance between different number of training points, shown in Table 8. It is surprising
to see that accuracy of the solution is already good enough by choosing (M, M�, Mb) = (100, 278, 278) in six dimensions,
while doubling or even quintupling the training points does not improve the accuracy. More precisely, we also show the
evolution of the training loss and the relative L2 error during the training process in Fig. 6. One can see that the results are
almost indistinguishable from three different training point choices. Here, even in 6 dimensions, we only need as few as
656 training points to achieve the desired accuracy. A possible explanation is that the error of the Monte Carlo integration
is independent of the problem dimension. Although we have conducted other possible sources of error such as the choice
of penalty number β and the network depth in Example 2, a detailed error analysis is still required for further investigation.

5. Conclusion

In this paper, a novel shallow Ritz method is developed to solve elliptic problems with delta function singular sources
on the interface. By introducing an energy functional, we reformulate the governing equation as a variational problem. The
crucial observation is that the contribution of the singular source in the equation becomes a regular surface integral term
in the energy. Therefore, we do not need to introduce the discrete delta function used in traditional regularization methods,
such as the immersed boundary method. To enforce the boundary condition, we add a penalty term to the energy and find
that this treatment changes the global minimizer to one that satisfies Robin-type boundary condition.

We propose a shallow neural network to approximate the global minimizer of the energy functional, and train the
network by minimizing a loss function that presents a discrete version of the energy. In addition, we include the level set
12

M.-C. Lai, C.-C. Chang, W.-S. Lin et al. Journal of Computational Physics 469 (2022) 111547
function as an additional feature input to the network and find that it significantly improves the training accuracy. We
perform a series of numerical tests to show the accuracy and efficiency of the present network and its capability to handle
problems in irregular domains or high dimensions. As shown in numerical experiments in this paper, most testing problems
can be solved with acceptable accuracy by the present network with moderate number of neurons (no larger than 40).
Although the present network is similar in spirit to the deep Ritz method [7], here we consider a completely shallow one
(only one hidden layer) so it significantly reduces the computational complexity and learning workload without sacrificing
the accuracy.

We have to emphasize that it is not our intention to compete with the traditional methods such as immersed boundary
(IB) method, immersed interface method (IIM), immersed finite element (IFE) method or other grid-based methods listed
in the reference. Instead, we just provide an alternative using neural network method and follow the recent pioneering
deep Ritz method by E and Yu in [7] to solve the elliptic interface problems with singular delta function sources. Since
the underlying solution of the problem is usually not smooth (the function is continuous but not for its derivatives) across
the interface, the traditional accurate methods (for instance IIM, IFE method, see the book of Li and Ito [24]) need special
treatments near the interface. However, due to the mesh-free advantage, the present neural network uses the level set
function of the interface as a feature input and learns the solution directly. Once the network is trained successfully, the
solution at any point in the domain can be obtained by a feedforward one hidden layer neural network approximation.
So from this point of view, it is efficient. In fact, the training time of the present network takes only a few minutes on a
desktop, even for a 6-dimensional problem listed in Example 5. Meanwhile, neural networks can be easily implemented on
GPUs to take full advantage of parallel computation and are easy to deal with problems defined in irregular domains as
well. Another advantage is that the present approach can handle high dimensional problems with exactly same framework
and the number of hyperparameters (unknowns in neural network method) to be trained scales only linearly with the
dimension.

As mentioned before, the accuracy of the proposed shallow Ritz method possibly depends on three factors, namely the
penalty constant β , the quadrature rule for estimating the energy functional, and the precision of the computation. To
improve accuracy, we must consider three factors simultaneously. We believe that the present one hidden layer network is
not the reason caused the accuracy no better than 10−3 in relative L∞ or L2 error throughout all numerical experiments
here. The one hidden layer network with sufficiently smooth activation function has been proved to be capable to represent
an arbitrary function and its derivatives to arbitrary accuracy. From the numerical results shown in Section 4, the accuracy
obtained by the present method is comparable with the one existing in related literatures despite the fact that the present
network has simplest structure (one hidden layer). For example, the pioneering work of E and Yu in [7] where the authors
used the deep learning network ResNet (say a stack of 4 blocks with 2 fully-connected layers in each block), the relative L2
errors for all considered problems are also up to 10−3. In the recent work of Guo and Yang in [14], a similar ResNet was
applied to solve elliptic interface problems where the jump conditions are put into their unfitted Nitsche’s energy functional.
Again, most of their numerical results in relative L2 errors are no better than 10−3. Certainly, it will be interesting to
investigate further to improve the accuracy of the Ritz-type neural network method for solving PDEs which we shall leave
as our future work. Nevertheless, from the authors’ point of view, the Ritz-type neural network is still valuable and useful
for computational physics applications due to following two reasons. First, it is completely mesh-free for high-dimensional
problems when traditional numerical methods are hard to tackle. Second, in many interesting physical problems, finding a
solution to the problem is often equivalent to finding the minimum of its energy law, which falls into the Ritz-type neural
network methodology naturally.

The present goal is to solve some elliptic interface problems using a Ritz-type neural network. Indeed, for given �, �,
f (x), c(s) and the boundary condition, we need to train a new network that satisfies the equation and boundary condition
simultaneously. These given information are all from the original PDE formulation so there is no difficulty in generating
the training data. (That is, generating training data from a well-posed PDE can be done without knowing any numerical
techniques for solving that PDE.) However, when using some traditional numerical techniques such as IB method for the
present problem, if the domain � and mesh size are fixed, the matrix of resultant linear system remains the same even
if the interface � and the right-hand side functions f (x), c(s) are changed. So from this point of view, the IB method is
more generalizable. Therefore, to improve the generalizability of the present network, we might consider to design a neural
network as an operator representation that has the solution as the output. But this is beyond the scope of the paper and
we leave it as our future work.

In the present work, we only consider stationary elliptic problems with constant coefficients. There should be no diffi-
culty in considering problems with contrast coefficients or even variable coefficients. The same framework can be applied
straightforwardly by writing the corresponding energy functionals. As a forthcoming extension, we shall consider time-
dependent problems, and particularly the moving interface problems.

CRediT authorship contribution statement

Ming-Chih Lai: Conceptualization, Methodology, Supervision, Writing – original draft, Writing – review & editing. Che-
Chia Chang: Numerical experiments and Visualization. Wei-Syuan Lin: Numerical experiments and Visualization. Wei-Fan
Hu: Supervision, Visualization and Writing – original draft. Te-Sheng Lin: Conceptualization, Methodology, Supervision, Writ-
ing – original draft, Writing – review & editing.
13

M.-C. Lai, C.-C. Chang, W.-S. Lin et al. Journal of Computational Physics 469 (2022) 111547
Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgement

T.-S. Lin and W.-F. Hu acknowledge supports by Ministry of Science and Technology (MOST), Taiwan, under research grant
109-2115-M-009-006-MY2 and 109-2115-M-008-014-MY2, respectively. T.-S. Lin and W.-F. Hu also acknowledge support by
NCTS of Taiwan. M.-C. Lai acknowledges the support by MOST, Taiwan, under research grants 108-2119-M-009-012-MY2
and 110-2115-M-A49-011-MY3.

References

[1] R.P. Beyer, R.J. LeVeque, Analysis of a one-dimensional model for the immersed boundary method, SIAM J. Numer. Anal. 29 (2) (1992) 332–364.
[2] D. Bochkov, F. Gibou, Solving Poisson-type equations with Robin boundary conditions on piecewise smooth interfaces, J. Comput. Phys. 376 (2019)

1156–1198.
[3] D. Bochkov, F. Gibou, Solving elliptic interface problems with jump conditions on Cartesian grids, J. Comput. Phys. 407 (2020) 109269.
[4] R.B. Balam, F. Hernandez-Lopez, J. Trejo-Sanchez, M.U. Zapata, An immersed boundary neural network for solving elliptic equations with singular forces

on arbitrary domains, Math. Biosci. Eng. 18 (1) (2020) 22–56.
[5] Z. Cai, J. Chen, M. Liu, X. Liu, Deep least-squares methods: an unsupervised learning-based numerical method for solving elliptic PDEs, J. Comput. Phys.

420 (2020) 109707.
[6] G. Cybenko, Approximation by superpositions of a sigmoidal function, Math. Control Signals Syst. 2 (1989) 303–314.
[7] W. E, B. Yu, The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems, Commun. Math. Stat. 6 (2018) 1–12.
[8] R. Egan, F. Gibou, Geometric discretization of the multidimensional Dirac delta distribution - application to the Poisson equation with singular source

terms, J. Comput. Phys. 346 (2017) 71–90.
[9] R. Egan, F. Gibou, xGFM: recovering convergence of fluxes in the ghost fluid method, J. Comput. Phys. 409 (2020) 109351.

[10] F. Gibou, D. Hyde, R. Fedkiw, Sharp interface approaches and deep learning techniques for multiphase flows, J. Comput. Phys. 380 (2019) 442–463.
[11] F. Gibou, C. Min, Efficient symmetric positive definite second-order accurate monolithic solver for fluid/solid interactions, J. Comput. Phys. 231 (2012)

3246–3263.
[12] J.L. Guermond, P. Minev, J. Shen, An overview of projection methods for incompressible flows, Comput. Methods Appl. Mech. Eng. 195 (44) (2006)

6011–6045.
[13] A. Guittet, M. Lepilliez, S. Tanguy, F. Gibou, Solving elliptic problems with discontinuities on irregular domains - the Voronoi interface method, J.

Comput. Phys. 298 (2015) 747–765.
[14] H. Guo, X. Yang, Deep unfitted Nitsche method for elliptic interface problems, Commun. Comput. Phys. 31 (4) (2022) 1162–1179.
[15] J. Han, A. Jentzen, W. E, Solving high-dimensional partial differential equations using deep learning, Proc. Natl. Acad. Sci. 115 (2018) 8505–8510.
[16] B. Hanin, M. Sellke, Approximating continuous functions by ReLU nets of minimal width, arXiv:1710 .11278, 2018.
[17] K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are universal approximators, Neural Netw. 2 (1989) 359–366.
[18] W.-F. Hu, T.-S. Lin, M.-C. Lai, A discontinuity capturing shallow neural network for elliptic interface problems, arXiv:2106 .05587, 2021.
[19] W.-F. Hu, M.-C. Lai, Y.-N. Young, A hybrid immersed boundary and immersed interface method for electrohydrodynamic simulations, J. Comput. Phys.

282 (2015) 47–61.
[20] D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, in: International Conference on Learning Representations (ICLR), 2015.
[21] M.-C. Lai, H.-C. Tseng, A simple implementation of the immersed interface methods for Stokes flows with singular forces, Comput. Fluids 37 (2) (2008)

99–106.
[22] R.J. LeVeque, Z. Li, The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal.

31 (4) (1994) 1019–1044.
[23] Z. Li, On convergence of the immersed boundary method for elliptic interface problems, Math. Comput. 84 (2015) 1169–1188.
[24] Z. Li, K. Ito, The Immersed Interface Method, SIAM, 2006.
[25] X.-D. Liu, R.P. Fedkiw, M. Kang, A boundary condition capturing method for Poisson’s equation on irregular domains, J. Comput. Phys. 160 (2000)

151–178.
[26] X.-D. Liu, T. Sideris, Convergence of the ghost fluid method for elliptic equations with interfaces, Math. Comput. 72 (2003) 1731–1746.
[27] Z. Lu, H. Pu, F. Wang, Z. Hu, L. Wang, The expressive power of neural networks: a view from the width, in: NIPS’17, 2017, pp. 6232–6240.
[28] C.S. Peskin, Numerical analysis of blood flow in the heart, J. Comput. Phys. 25 (1977) 220–252.
[29] C.S. Peskin, The immersed boundary method, Acta Numer. 11 (2002) 479–517.
[30] A. Pinkus, Approximation theory of the MLP model in neural networks, Acta Numer. 8 (1999) 143–195.
[31] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: a deep learning framework for solving forward and inverse problems

involving nonlinear partial differential equations, J. Comput. Phys. 378 (2019) 686–707.
[32] H. Sheng, C. Yang, PFNN: a penalty-free neural network method for solving a class of second-order boundary-value problems on complex geometries,

J. Comput. Phys. 428 (2021) 110085.
[33] J. Sirignano, K. Spiliopoulos, DGM: a deep learning algorithm for solving partial differential equations, J. Comput. Phys. 375 (2018) 1339–1364.
[34] Z. Wang, Z. Zhang, A mesh-free method for interface problems using the deep learning approach, J. Comput. Phys. 400 (2020) 108963.
[35] D. Choi, C.J. Shallue, Z. Nado, J. Lee, C.J. Maddison, G.E. Dahl, On empirical comparisons of optimizers for deep learning, arXiv:1910 .05446, 2019.
14

http://refhub.elsevier.com/S0021-9991(22)00609-X/bib48017EB9F99313669E850C1E8C5DCF2Ds1
http://refhub.elsevier.com/S0021-9991(22)00609-X/bib1E7995234C1ADB13A2F1C93B6FD498A0s1
http://refhub.elsevier.com/S0021-9991(22)00609-X/bib1E7995234C1ADB13A2F1C93B6FD498A0s1
http://refhub.elsevier.com/S0021-9991(22)00609-X/bib9AA8FEF9B4F807446E58D201194E1899s1
http://refhub.elsevier.com/S0021-9991(22)00609-X/bibDB6D7CB1D884F51632E6A34986593A72s1
http://refhub.elsevier.com/S0021-9991(22)00609-X/bibDB6D7CB1D884F51632E6A34986593A72s1
http://refhub.elsevier.com/S0021-9991(22)00609-X/bib250804C452BD54A4C6889940D58E1076s1
http://refhub.elsevier.com/S0021-9991(22)00609-X/bib250804C452BD54A4C6889940D58E1076s1
http://refhub.elsevier.com/S0021-9991(22)00609-X/bib6E22BE1723DF8EBB3D0E65E120FF8B92s1
http://refhub.elsevier.com/S0021-9991(22)00609-X/bibB0702196770E29D69E58BA30F6F9BB2Ds1
http://refhub.elsevier.com/S0021-9991(22)00609-X/bib1914023D5829415F040AEB73604AE781s1
http://refhub.elsevier.com/S0021-9991(22)00609-X/bib1914023D5829415F040AEB73604AE781s1
http://refhub.elsevier.com/S0021-9991(22)00609-X/bib8666D5009DFFA71D06B2CB4139F25540s1
http://refhub.elsevier.com/S0021-9991(22)00609-X/bibEDC22835498C46F868F15CF64AD52F3Bs1
http://refhub.elsevier.com/S0021-9991(22)00609-X/bibDA9D600789F63E3CD3E553FC008DAC3Cs1
http://refhub.elsevier.com/S0021-9991(22)00609-X/bibDA9D600789F63E3CD3E553FC008DAC3Cs1
http://refhub.elsevier.com/S0021-9991(22)00609-X/bib37E1B0F114B108FE60AB892351ECD8BDs1
http://refhub.elsevier.com/S0021-9991(22)00609-X/bib37E1B0F114B108FE60AB892351ECD8BDs1
http://refhub.elsevier.com/S0021-9991(22)00609-X/bibDEA6DE1EE3E769B32890DC94EB373E1As1
http://refhub.elsevier.com/S0021-9991(22)00609-X/bibDEA6DE1EE3E769B32890DC94EB373E1As1
http://refhub.elsevier.com/S0021-9991(22)00609-X/bib56AB456B227798B98FB1F58D34D06AAFs1
http://refhub.elsevier.com/S0021-9991(22)00609-X/bib873E51C93C0F041354F92561E61DD32Es1
http://refhub.elsevier.com/S0021-9991(22)00609-X/bib48059BC517D388323C25B7F585EEEF1Es1
http://refhub.elsevier.com/S0021-9991(22)00609-X/bib79E151D780A28806D360B913996C0A5As1
http://refhub.elsevier.com/S0021-9991(22)00609-X/bibB0A69E92640A7E37767157289BFE5F7As1
http://refhub.elsevier.com/S0021-9991(22)00609-X/bib4E2BC068691C918B0D802C6CB2CD8D19s1
http://refhub.elsevier.com/S0021-9991(22)00609-X/bib4E2BC068691C918B0D802C6CB2CD8D19s1
http://refhub.elsevier.com/S0021-9991(22)00609-X/bibBBA53CCB55DC1483A3B88E847A46178Fs1
http://refhub.elsevier.com/S0021-9991(22)00609-X/bib38D4B6F3F70C1AE32345A1E5D6BB156Ds1
http://refhub.elsevier.com/S0021-9991(22)00609-X/bib38D4B6F3F70C1AE32345A1E5D6BB156Ds1
http://refhub.elsevier.com/S0021-9991(22)00609-X/bib40FA8B2C15960B87F6E2EEDCA1041BE9s1
http://refhub.elsevier.com/S0021-9991(22)00609-X/bib40FA8B2C15960B87F6E2EEDCA1041BE9s1
http://refhub.elsevier.com/S0021-9991(22)00609-X/bib80BAFD517925EA38C2480439810F58F5s1
http://refhub.elsevier.com/S0021-9991(22)00609-X/bibD73045F478FB36433B71B0209C7CF470s1
http://refhub.elsevier.com/S0021-9991(22)00609-X/bibE0CFB6FDB5A41F0929D9CC8F4EC51BEFs1
http://refhub.elsevier.com/S0021-9991(22)00609-X/bibE0CFB6FDB5A41F0929D9CC8F4EC51BEFs1
http://refhub.elsevier.com/S0021-9991(22)00609-X/bib0631395DF4F1F6CF385627C61BA2BF6Fs1
http://refhub.elsevier.com/S0021-9991(22)00609-X/bib083B6CB078F72F761263145499D75806s1
http://refhub.elsevier.com/S0021-9991(22)00609-X/bib2DCC9DA5CF6838BA7B9A658EBEC5E3F6s1
http://refhub.elsevier.com/S0021-9991(22)00609-X/bib3AEC6111A5127898EC8439384377E5BDs1
http://refhub.elsevier.com/S0021-9991(22)00609-X/bibFF6A429716C4EE5B49DAF117B59AE4BFs1
http://refhub.elsevier.com/S0021-9991(22)00609-X/bib9018985BF90EF1E1516DB4D0DA1B8089s1
http://refhub.elsevier.com/S0021-9991(22)00609-X/bib9018985BF90EF1E1516DB4D0DA1B8089s1
http://refhub.elsevier.com/S0021-9991(22)00609-X/bibE4E1F1B6A4DE2C8636EC1A2DFD9739AEs1
http://refhub.elsevier.com/S0021-9991(22)00609-X/bibE4E1F1B6A4DE2C8636EC1A2DFD9739AEs1
http://refhub.elsevier.com/S0021-9991(22)00609-X/bib180376E9DA3E8C8861C589B9F578F98Es1
http://refhub.elsevier.com/S0021-9991(22)00609-X/bibE2F65AF6D4E49DED8EA69D1A7B873EBAs1
http://refhub.elsevier.com/S0021-9991(22)00609-X/bib94BD5788F82FAE8E46D5BF8C6778CFDDs1

	A shallow Ritz method for elliptic problems with singular sources
	1 Introduction
	2 Elliptic equations with singular sources on the interface
	2.1 Variational problem
	2.2 Boundary condition enforcement
	2.3 Level set function augmentation
	2.4 Summary

	3 A shallow Ritz method
	3.1 Selection of training points
	3.2 Selection of optimizer

	4 Numerical results
	5 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgement
	References

