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A FRACTIONAL STEP IMMERSED BOUNDARY METHOD FOR
STOKES FLOW WITH AN INEXTENSIBLE INTERFACE

ENCLOSING A SOLID PARTICLE∗
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Abstract. In this paper, we develop a fractional step method based on the immersed boundary
(IB) formulation for Stokes flow with an inextensible (incompressible) interface enclosing a solid
particle. In addition to solving for the fluid variables such as the velocity and pressure, the present
problem involves finding an extra unknown elastic tension such that the surface divergence of the
velocity is zero along the interface, and an extra unknown particle surface force such that the velocity
satisfies the no-slip boundary condition along the particle surface. While the interface moves with
local fluid velocity, the enclosed particle hereby undergoes a rigid body motion, and the system is
closed by the force-free and torque-free conditions along the particle surface. The equations are then
discretized by standard centered difference schemes on a staggered grid, and the interactions between
the interface and particle with the fluid are discretized using a discrete delta function as in the IB
method. The resultant linear system of equations is symmetric and can be solved by fractional steps
so that only fast Poisson solvers are involved. The present method can be extended to Navier–
Stokes flow with moderate Reynolds number by treating the nonlinear advection terms explicitly
for the time integration. The convergent tests for a Stokes solver with or without an inextensible
interface are performed and confirm the desired accuracy. The tank-treading to tumbling motion for
an inextensible interface enclosing a solid particle with different filling fractions under a simple shear
flow has been studied extensively, and the results here are in good agreement with those obtained in
literature.

Key words. immersed boundary method, inextensible interface, solid particle, fractional step
method, Stokes flow
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1. Introduction. Most biological cells consist of a lipid bilayer membrane en-
capsulating the cellular content. For instance, a human leukocyte contain a nucleus
occupying 18%–44% of the volume [21], which affects the cell adhesion during inflam-
matory responses. It is important to study the dynamics of a compound vesicle (a
lipid bilayer membrane enclosing a fluid with a suspended particle) [26]. For simplic-
ity, we regard the lipid bilayer membrane as an inextensible interface. Thus, in this
paper, we develop a fractional step method based on the immersed boundary (IB)
formulation for Stokes flow with an inextensible (incompressible) interface enclosing
a solid particle.

Most previous studies in the literature have focused on an inextensible interface
enclosing a homogeneous fluid. Even in that case, there are still some numerical issues
to be addressed. In additional to solving for the fluid variables such as the velocity and
pressure, the above problem involves finding extra unknown elastic tension such that
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AN INEXTENSIBLE INTERFACE WITH A SOLID PARTICLE B693

the surface divergence of the velocity is zero along the interface. Once the velocity
is found, the interface moves according to the local fluid velocity as usual. Since the
interface is inextensible, the total length of the interface should be conserved. This
mathematical model is motivated by the simulation of vesicle dynamics [10], and the
deformation of erythrocytes [14, 17] and drug-carrying capsules [20], just to name a
few. In particular, the dynamics of moving vesicles have been extensively explored
both experimentally [6, 9] (see also and the references therein) and computationally
[10, 28, 25, 22, 7, 11]. Notice that the dynamics of vesicles are determined by their
boundary rigidity, inextensibility, and the hydrodynamical forces.

In previous literature, most related work is based on boundary integral methods;
see, for example, [28, 25, 22] and the references therein. However, boundary integral
methods generally assume infinite domains and cannot be generalized to full Navier–
Stokes equations since there is no corresponding Green function. Until recently, Kim
and Lai [7] applied a penalty IB method to simulate the dynamics of inextensible
vesicles. By introducing two different kinds of Lagrangian markers, the authors are
able to decouple the fluid and vesicle dynamics so that the computation can be per-
formed more efficiently. One potential problem with this approach is that the time
step depends on the penalty numbers and must be chosen smaller as the penalty
number becomes larger. In [11], a new finite difference scheme based on the immersed
interface method (IIM) has been developed for solving the present problem in Navier–
Stokes flow. The authors treat the unknown elastic tension as an augmented variable
so that the augmented IIM can be applied.

We summarize the contributions of the present work as follows:
• We develop a linearly semi-implicit scheme (section 3) for the model of Stokes
flow with an inextensible interface enclosing a solid particle, which has poten-
tial applications to the dynamics of a compound vesicle and is less investigated
in the literature. The present scheme can be extended to Navier–Stokes flow
with moderate Reynolds number by treating the nonlinear advection terms
explicitly.

• We show that the spreading operator of the tension and the surface diver-
gence operator of the velocity are skew-adjoint mathematically (section 2).
This skew-adjoint property is also preserved in the discrete form (section
4.1), which makes the resultant linear system symmetric (section 4.1 and also
Appendix B). A fractional step method that exploits fast Poisson solvers can
be efficiently applied to solving the linear system (section 4.3).

• Unlike our previous work using a penalty approach [7], here we are able to
estimate the local error of inextensibility for two successive time steps (see
(21) in section 3). In addition, there are no penalty parameters introduced as
in [7], so the time step size can be significantly increased (see the time step
chosen in section 5.2). From those points of view, the present scheme does
offer significant improvements or the accuracy and stability achieved in the
previous work.

• We present numerical results (section 5) of the tank-treading to tumbling
motions for an inextensible interface enclosing a solid particle with different
filling fractions under shear flow. We have found that, by the increase of the
filling fraction, the interface tends to transit from tank-treading to tumbling
(section 5.3). We also compute the critical filling fractions for different re-
duced areas (section 5.3), and the results are qualitatively consistent with
those in [26].

The rest of the paper is organized as follows. In the next section, we describe
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B694 MING-CHIH LAI, WEI-FAN HU, AND WEN-WEI LIN

our governing equations for the Stokes flow with an inextensible interface enclosing
a suspended solid particle based on an IB formulation. We also show the skew-
adjoint property between the spreading operator acting on the tension and the surface
divergence operator acting on the velocity. In section 3, we discretize the governing
equations by centered difference schemes on a staggered grid. Some implementation
details including the proof of the symmetric property of the resultant matrix and the
existence of a solution in the linear system, and the fractional step method for solving
the resultant linear system are all given in section 4. Numerical results including the
convergence and efficiency tests and the simulations for tank-treading to tumbling
motion with different filling fractions for the present model are shown in section 5.
Some conclusions are given in section 6.

2. Governing equations. Consider a moving, immersed, inextensible interface
Γ enclosing a suspended solid particle P in a two-dimensional fluid domainΩ, as shown
in Figure 2.1. We assume that the fluids inside and outside of the interface are the
same and governed by the incompressible Stokes equations, and the particle’s gravity
is neglected. Using the IB formulation of the model [16, 7], the inextensible interface
and the solid particle surface are regarded as singular force generators in the fluid
equations. Let us describe the inextensible interface Γ and the particle surface ∂P
by parametric forms X(s, t) = (X1(s, t), X2(s, t)) and Y(α, t) = (Y1(α, t), Y2(α, t)),
respectively, where s and α are the corresponding Lagrangian parameters. The gov-
erning equations in dimensionless form can be written as follows:
(2.1)

−∇p+∆u+

∫

Γ

∂

∂s
(στ )δ(x −X(s, t)) ds+

∫

∂P
F(α, t)δ(x −Y(α, t)) dα = 0 in Ω,

(2.2) ∇ · u = 0 in Ω,

(2.3) ∇s ·U =
∂U

∂s
· τ |∂X/∂s| = 0 on Γ,

(2.4) U(s, t) =

∫

Ω
u(x, t)δ(x −X(s, t)) dx,

∂X

∂t
(s, t) = U(s, t) on Γ,

(2.5)

V(α, t) =

∫

Ω
u(x, t)δ(x−Y(α, t)) dx = V c(t)+ω(t)

[
−(Y2(α, t)− Y2c(t))

Y1(α, t) − Y1c(t)

]
on ∂P,

Γ

P

Ω

Fig. 2.1. A diagram of an inextensible interface enclosing a solid particle in a shear flow.
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AN INEXTENSIBLE INTERFACE WITH A SOLID PARTICLE B695

(2.6)

∫

∂P
F(α, t) dα = 0, where F(α, t) = (F1(α, t), F2(α, t)),

(2.7)

∫

∂P
F1(α, t) (Y2(α, t)− Y2c(t)) − F2(α, t) (Y1(α, t)− Y1c(t)) dα = 0.

Equations (2.1) and (2.2) are the familiar incompressible Stokes equations with
singular force terms arising from the inextensible interface and the particle surface.
Here, u = (u, v) and p are the velocity field and the pressure, both described in
Cartesian coordinates. Equation (2.3) represents the inextensibility constraint of the
interface which is equivalent to the zero surface divergence of the velocity along the
interface due to the fact that the local stretching factor [13],

∂

∂t

∣∣∣∣
∂X

∂s

∣∣∣∣ = (∇s ·U)

∣∣∣∣
∂X

∂s

∣∣∣∣ on Γ,

must be zero along the interface. Equation (2.4) simply states that the interface moves
along with the fluid and that the velocity U is the interpolation of the fluid velocity
at the interface. The interaction between the fluid and the interface or the particle is
linked by the two-dimensional Dirac delta function δ(x) = δ(x)δ(y).

Since the particle behaves like a rigid body, its motion is governed by the trans-
lational and rotational velocities around the center of the particle. Moreover, the
velocity of the particle surface must equal the fluid velocity (no-slip boundary con-
dition). Equation (2.5) describes the particle surface velocity in which V c(t) is the
translational velocity of the center of particle and ω(t) is the angular velocity compo-
nent of the particle. The particle center Y c(t) = (Y1c(t), Y2c(t)) thus moves according

to dY c
dt = V c(t). Since the particle center velocity V c(t) and the angular velocity

component ω(t) are also unknown, the system of equations must be closed by the
force-free (2.6) and torque-free (2.7) conditions for a rigid body motion. The torque-
free condition is derived in detail in Appendix A.

Like the pressure in incompressible flow, the elastic tension σ and the particle
surface force F in the present IB formulation are not known a priori, and they must be
determined as parts of the solution. In fact, the tension and the particle surface force
play the role of Lagrange multipliers in enforcing the local inextensible constraint (2.3)
along the interface and the no-slip boundary condition (2.5) along the particle surface,
respectively. So the major difficulty of solving the above interfacial problem enclosing
a solid particle is that one needs to find those solution variables simultaneously. In
this paper, we discretize (2.1)–(2.7) directly and use a fractional step method to solve
the resultant linear system of equations. The detailed numerical algorithm will be
given in the next section.

In the IB formulation, the force spreading operator and the velocity interpolating
operator are self-adjoint in both continuous and discrete senses [16]. Here, we would
like to show that the spreading operator acting on the function σ and the surface
divergence operator of the velocity are skew-adjoint with each other. To proceed, let
us define the spreading operator S of σ and the surface divergence operator ∇s of U
as follows:

(2.8) S(σ) =

∫

Γ

∂

∂s
(στ )δ(x−X(s)) ds,

(2.9) ∇s ·U =
∂U

∂s
· τ |∂X/∂s| = ∂

∂s

(∫

Ω
u(x)δ(x −X(s)) dx

)
· τ |∂X/∂s|.
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B696 MING-CHIH LAI, WEI-FAN HU, AND WEN-WEI LIN

We also define the inner product of functions on Ω and Γ in the following:

(2.10) ⟨u,v⟩Ω =

∫

Ω
u(x) · v(x) dx, ⟨f, g⟩Γ =

∫

Γ
f(l) g(l) dl,

where l in (2.10) is the arc-length parameter. Then we have

⟨S(σ),u⟩Ω =

∫

Ω

(∫

Γ

∂

∂s
(στ )δ(x−X(s)) ds

)
· u(x) dx

=

∫

Γ

∂

∂s
(στ ) ·

(∫

Ω
u(x)δ(x −X(s)) dx

)
ds

= −
∫

Γ
σ

(
τ · ∂U

∂s

)
ds

(integration by parts and the closed interface)

=

∫

Γ
σ

(
−∂U
∂s

· τ |∂X/∂s|
)∣∣∣∣

∂X

∂s

∣∣∣∣ ds

= ⟨σ,−∇s ·U⟩Γ = ⟨σ, S∗(U)⟩Γ.

(2.11)

It follows that the spreading operator and the surface divergence operator are skew-
adjoint.

The reason for showing the skew-adjointness of those two operators is twofold.
First, since the surface divergence of the velocity is zero, the above derivation leads
to ⟨S(σ),u⟩Ω = 0. That is, the present elastic tension does not do work to the fluid,
which is not surprising since it is merely the Lagrange multiplier for the inextensible
constraint. However, if we add bending force along the interface, such as the one in
vesicle problems [25, 7], then the bending force does do work to the fluid. Second, the
skew-adjointness is also satisfied in the discrete sense (see the next section) so that
the resultant matrix is symmetric.

3. Numerical discretization. We now are ready to discretize (2.1)–(2.7) by the
IB method. For simplicity, we assume that the computational domain Ω = [a, b]×[c, d]
is a rectangular domain and that the fluid variables are defined on the staggered
marker-and-cell (MAC) grid [4]. That is, as shown in Figure 3.1, the pressure is
defined on the grid points labelled as x = (xi, yj) = (a+(i−1/2)∆x, c+(j−1/2)∆y),
i = 1, 2, . . . ,m and j = 1, 2, . . . , n, while the velocity components u and v are defined
at (xi−1/2, yj) = (a+(i−1)∆x, c+(j−1/2)∆y) and (xi, yj−1/2) = (a+(i−1/2)∆x, c+
(j − 1)∆y), respectively. Here, we assume that a uniform mesh width h = ∆x = ∆y
is used, although that is not necessary. For the immersed inextensible interface X, we
use a collection of discrete points sk = k∆s, k = 0, 1, . . .M , with the interface mesh
width ∆s so the Lagrangian markers of the interface are represented by Xk = X(sk).
Similarly, we use a collection of discrete points αk = k∆α, k = 0, 1, . . .Mp, so that the
particle surface points are represented by Yk = Y(αk). Both ∆s and ∆α are roughly
chosen as a half of fluid mesh h. Both the interface and the particle surface are closed
so that we have X0 = XM and Y0 = YMp . The elastic tension is defined at the “half-
integer” points given by sk−1/2 = (k − 1/2)∆s, so we denote it by σk−1/2. Without
loss of generality, for any function defined on the interface ψ(s), we approximate the
partial derivative ∂ψ

∂s by the centered difference scheme as

(3.1) Dsψ =
ψ(s+∆s/2)− ψ(s−∆s/2)

∆s
.
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Fig. 3.1. The computational domain Ω with staggered grid.

Thus, the interface stretching factor and the unit tangent can be approximated by
|DsX| and τ = DsX/ |DsX|, which in turn are also defined at the half-integer points.
We denote them by |DsX|k−1/2 and τ k−1/2, respectively.

Let ∆t be the time step size, and the superscript of the variables denote the time
step index. At the beginning of each time step l, the interface configuration Xl

k, the
particle surface Yl

k = (Y l
1k, Y

l
2k), and its center Yl

c = (Y l
1c, Y

l
2c) are all given. Despite

the fact that the problem is nonlinear, here we propose a linearly semi-implicit scheme
for (2.1)–(2.7). The time step can be advanced as follows:
(3.2)

−∇hp
l+1 +∆hu

l+1 +
M∑

k=1

Ds

(
σl+1τ l

)
k
δh(x−Xl

k)∆s+

Mp∑

k=1

Fl+1
k δh(x−Yl

k)∆α = 0,

(3.3) ∇h · ul+1 = 0,

(3.4) ∇sh ·Ul+1
k =

Ul+1
k −Ul+1

k−1

∆s
· τ l

k−1/2

∣∣DsX
l
∣∣
k−1/2

= 0 for k = 1, 2, . . . ,M,

(3.5) Ul+1
k =

∑

x

u(x)l+1δh(x−Xl
k)h

2 for k = 1, 2, . . . ,M,
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B698 MING-CHIH LAI, WEI-FAN HU, AND WEN-WEI LIN

V l+1
k =

∑

x

u(x)l+1δh(x−Yl
k)h

2

= V l+1
c + ωl+1

[
−(Y l

2k − Y l
2c)

Y l
1k − Y l

1c

]
for k = 1, 2, . . . ,Mp,(3.6)

(3.7)

Mp∑

k=1

Fl+1
k ∆α = 0,

(3.8)

Mp∑

k=1

(
F l+1
1k (Y l

2k − Y l
2c)− F l+1

2k (Y l
1k − Y l

1c)
)
∆α = 0,

where the spatial operators ∇h, ∆h, and ∇sh · are the standard second-order cen-
tered difference approximations to the gradient, Laplacian, and surface divergence.
Here, δh is a smoother version of discrete delta function developed in [27] as δh(x) =
1
h2 φ(xh )φ(

y
h ), with

φ(r) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

3
8 + π

32 − r2

4 , |r| < 0.5,

1
4 + 1−|r|

8

√
−2 + 8|r|− 4r2 − 1

8 sin
−1
(√

2(|r| − 1)
)
, 0.5 ≤ |r| ≤ 1.5,

17
16 − π

64 − 3|r|
4 + r2

8 + |r|−2
16

√
−14 + 16|r|− 4r2

+ 1
16 sin

−1
(√

2(|r| − 2)
)
, 1.5 ≤ |r| ≤ 2.5,

0, 2.5 ≤ |r|.

One should notice that this discrete delta function has one grid support wider than the
one often used in the community. The advantage of using the above smoothing delta
function is that it reduces oscillations of the elastic tension caused by the present IB
method. The computation for the elastic tension cause oscillations in other literature
[28, 7, 11].

Once we obtain the new velocity field ul+1 on the fluid grid, we can interpolate
the new velocity to the marker points by (3.5) and move the Lagrangian markers to
new positions. That is,

(3.9) Xl+1
k = Xl

k +∆tUl+1
k .

Therefore, we have

Xl+1
k −Xl+1

k−1

∆s
=

Xl
k −Xl

k−1

∆s
+∆t

Ul+1
k −Ul+1

k−1

∆s
.

By multiplying the above equation by itself and using the zero discrete surface diver-
gence (3.4), we obtain the equality

∣∣∣∣∣
Xl+1

k −Xl+1
k−1

∆s

∣∣∣∣∣

2

=

∣∣∣∣∣
Xl

k −Xl
k−1

∆s

∣∣∣∣∣

2

+ (∆t)2

∣∣∣∣∣
Ul+1

k −Ul+1
k−1

∆s

∣∣∣∣∣

2

,

which leads to

(3.10) |DsX
l+1|2k−1/2 = |DsX

l|2k−1/2 + (∆t)2 |DsU
l+1|2k−1/2.
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Thus, we conclude that the pointwise error for the local stretching factor is first-order
accurate, which is comparable to the accuracy of the IB method.

For the solid particle motion, the particle center velocity V c and the angular
velocity component ω will be solved as parts of the solution. Instead of first using the
interpolation formula to find the new velocity and then updating the particle surface
points, we simply adopt the idea of rigid body motion to determine the particle surface
position. That is, we compute the new particle center and the rotational angle by

(3.11) Yl+1
c = Yl

c +∆tVl+1
c , θl+1 = θl +∆tωl+1,

and then use them to find the new particle surface position as

(3.12) Yl+1
k = Yl+1

c +

[
cos θl+1 − sin θl+1

sin θl+1 cos θl+1

]
Y0

k.

4. Implementation details.

4.1. Discrete skew-adjoint operators. In this subsection, we show that the
spreading operator S acting on the elastic tension and the surface divergence operator
∇s acting on the velocity are also skew-adjoint in the discrete sense. That is, we shall
prove the numerical identity for (2.11). To proceed, we first define the corresponding
discrete inner product on the fluid grid Ωh and the interfacial grid Γh as
(4.1)

⟨u,v⟩Ωh =
∑

x

u(x) · v(x)h2, ⟨φ,ψ⟩Γh =
M∑

k=1

φk−1/2 ψk−1/2 |DsX|k−1/2 ∆s,

where the second summation is nothing but the midpoint rule for the second integral
of (2.10). We also define the discrete spreading operator Sh acting on the discrete
elastic tension σh as

(4.2) Sh(σh) =
M∑

k=1

Ds (στ )k δh(x−Xk)∆s.

Then we have

⟨Sh(σh),u⟩Ωh =
∑

x

(
M∑

k=1

Ds (στ )k δh(x−Xk)∆s

)
· u(x)h2

=
M∑

k=1

Ds (στ )k ·
(
∑

x

u(x)δh(x−Xk)h
2

)
∆s =

M∑

k=1

Ds (στ )k ·Uk ∆s

=
M∑

k=1

σk+1/2 τ k+1/2 − σk−1/2 τ k−1/2

∆s
·Uk ∆s

= −
M∑

k=1

σk−1/2

(
Uk −Uk−1

∆s

)
· τ k−1/2 ∆s (summation by parts)

= ⟨σh,−∇sh ·U⟩Γh = ⟨σh, S∗
h(U)⟩Γh .

Note that this discrete skew-adjoint property is crucial to our IB formulation for
solving (3.2)–(3.8). Due to the fact that discrete surface divergence of the velocity is
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zero in (3.4), we can rescale this constraint to make the resultant matrix obtained by
(3.4) be the transpose of the matrix obtained by the discrete spreading operator of
the tension. One can also verify this symmetric property by expressing those terms
explicitly, which is given in Appendix B.

4.2. Existence of a solution. By using the staggered grid to discretize the
fluid variables, the matrix obtained by the discrete divergence of the fluid velocity
can be written as the transpose of the discrete gradient of the pressure. As derived
before, the matrix obtained by the discrete surface divergence of the velocity can be
written as the transpose of the matrix obtained by the discrete spreading operator of
the tension. Similarly, the matrix obtained by the discrete spreading operator of the
force arising from the particle solid boundary can be written as the transpose of the
matrix obtained by the discrete interpolating operator of velocity. Thus, the linear
system for (3.2)–(3.8) is symmetric and can be written as

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

L G S E 0

GT 0 0 0 0

ST 0 0 0 0

ET 0 0 0 R

0 0 0 RT 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

u

p

σ

F

Θ

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bc1

bc2

0

0

0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,(4.3)

where the submatrix L, G, S, E, and R represents the discrete Laplacian ∆h, discrete
gradient −∇h, the discrete spreading operator Sh on tension, the discrete spreading
operator Eh on the surface force, and the discrete rigid body motion equation. The
submatrix sizes of L, G, S, E, and R are ((m−1)n+m(n−1))×((m−1)n+m(n−1)),
((m−1)n+m(n−1))×(mn), (m−1)n+m(n−1)×M , (m−1)n+m(n−1)×2Mp, and
2Mp × 3, respectively. The unknown Θ = [V1c, V2c,ω]T ; the right-hand-side vector
[bc1, bc2, 0, 0, 0]T of (4.3) consists only of the velocity boundary conditions, since the
pressure does not need the boundary condition in the present grid arrangement. The
detailed entities of the submatrices S and R can be found in Appendices A and B.

Let us discuss the existence of the solution for the linear system (4.3). For clarity,
we denote the matrix in (4.3) by A. As known, without the effects of the inextensible
interface and the solid particle, the problem becomes pure Stokes flow, and the linear
system is

(4.4)

[
L G

GT 0

] [
u

p

]
=

[
bc1

bc2

]
.

Let us denote the matrix in (4.4) by Ã. It is wellknown that the nullity of Ã equals 1
since the pressure is unique up to a constant, and the existence of a solution can be
verified by using the discrete incompressible constraint (3.3). To be precise, since the
rank of deficiency of Ã is 1, based on the algebraic structure of the submatrix G, the
kernel of Ã is

(4.5) ker(Ã) = span{[ 0 · · · 0︸ ︷︷ ︸
(m−1)n+m(n−1)

1 · · · 1︸ ︷︷ ︸
mn

]T }.D
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And for any vector z ∈ ker(ÃT ) = ker(Ã), we have

zT
[

bc1
bc2

]
=

mn∑

k=1

(bc2)k =
n∑

j=1

u0 ,j

h
−

n∑

j=1

um,j

h
+

m∑

i=1

vi,0
h

−
m∑

i=1

vi,n
h

= −

⎛

⎝−
n∑

j=1

u0 ,jh+
n∑

j=1

um,jh−
m∑

i=1

vi,0h+
m∑

i=1

vi,nh

⎞

⎠ h−2

=

⎛

⎝
m∑

i=1

n∑

j=1

(
ui,j − ui−1,j

h
+

vi,j − vi,j−1

h

)
h2

⎞

⎠h−2

= 0 (by the discrete incompressibility (3.3)),(4.6)

which shows the compatibility condition for the existence of a solution.
If we add the effects of the interface and the solid particle, then the matrix Ã is

augmented by additional submatrices to become A as in (4.3). Since the matrices S
and E come from the discrete spreading operator, the entries of S and E depend on
the positions of moving Lagrangian markers. It is unlikely to show rigorously that the
nullity of A is exactly equal to 1; however, we have confirmed the above statement to
be true in our numerical experiments. So the apparent kernel can be

(4.7) ker(A) = span{[ 0 · · · 0︸ ︷︷ ︸
(m−1)n+m(n−1)

1 · · · 1︸ ︷︷ ︸
mn

0 · · · 0︸ ︷︷ ︸
M

0 · · · 0︸ ︷︷ ︸
2Mp

0, 0, 0︸ ︷︷ ︸
3

]T },

and the existence of a solution for the linear system (4.3) follows the equality of (4.6)
immediately.

4.3. Fractional step method. In this subsection, we apply the idea of the
fractional step method developed by Taira and Colonius [24] to solve the resultant
linear system of equations (4.3). In [24], the authors applied the IB method to simulate
the incompressible flow over solid bodies with prescribed body surface velocity. Unlike
the previous feedback forcing approaches in [5, 19, 12], they introduced the boundary
force as another Lagrange multiplier to enforce the no-slip condition for the velocity
at the immersed boundary. From this point of view, the present approach shares the
spirit of [24] by introducing the elastic tension as a new Lagrange multiplier to enforce
the surface divergence-free constraint (3.4) along the interface. Thus, it is natural to
group all Lagrange multipliers into a new column vector q = [p,σ,F,Θ]T and combine
the submatrices G, S, and E as Q = [G,S,E, 0], so the linear system (4.3) becomes
(4.8)

[
L Q

QT D

][
u

q

]
=

[
bc1

b̃

]
, where D =

⎡

⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 0 R

0 0 RT 0

⎤

⎥⎥⎥⎥⎥⎦
and b̃ =

⎡

⎢⎢⎢⎢⎢⎣

bc2

0

0

0

⎤

⎥⎥⎥⎥⎥⎦
.

As in [24], we perform a block LU decomposition to the above equation to obtain

[
L 0

QT −QTL−1Q+D

][
I L−1Q

0 I

][
u

q

]
=

[
bc1

b̃

]
.(4.9)D
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Note that the above decomposition is possible (L−1 exists) since the matrix L arising
from the discrete Laplacian operator is symmetric and negative definite. One can
further split the above matrix equation into the following steps by introducing an
intermediate velocity u∗:

Lu∗ = bc1,(4.10)
(
−QTL−1Q+D

)
q = b̃ −QTu∗,(4.11)

u = u∗ − L−1Qq.(4.12)

Now we are ready to describe the detailed numerical implementation for solving
(4.10)–(4.12). It is common practice to avoid the direct computation of the inverse
of the matrix L since it is too expensive. In [24], a second-order approximation for
L−1 based on Taylor expansion is implemented for solving equations similar to our
(4.11)–(4.12), and the conjugate gradient method is applied to solve those equations
iteratively. However, this leads to another time step constraint related to the viscosity
and the eigenvalues of the discrete Laplacian. In this paper, since we are working on
the Stokes flow rather than the Navier–Stokes, we are unable to approximate L−1

using Taylor’s expansion. Although we do not approximate the L−1 directly, we still
can solve (4.10)–(4.12) efficiently thanks to the fast Poisson solver developed in public
software package FISHPACK [1]. (The present matrix L is nothing but the discrete
Laplacian operator.) The detailed steps for solving (4.10)–(4.12) are as follows:
Step 1. Solve (4.10) by two fast Poisson solvers to obtain intermediate velocity field

u∗.
Step 2. Solve (4.11) by the GMRES method. In each iteration, a matrix-vector prod-

uct (−QTL−1Q)ϕ is needed; fortunately, this can be obtained by letting
z = L−1Qϕ and solving Lz = Qϕ. Once it is done, we multiply z by −QT to
obtain the product needed. Again, the time-consuming cost in each iteration
is one fast Poisson solver.

Step 3. Find the velocity field u from (4.12). Since q is solved via Step 2, by solving
Lw = Qq, we then obtain u = u∗−w. Again, this involves applying two fast
Poisson solvers.

Therefore, the overall cost in Steps 1–3 for our present numerical algorithm can be
counted in terms of the number of fast Poisson solvers applied. In the next section,
we shall show the numbers of fast Poisson solvers used in the Stokes flow for different
grid resolutions.

5. Numerical results. In this section, we perform a series of numerical tests
for the present scheme. Throughout this section, the computational domain is chosen
as Ω = [−1, 1] × [−1, 1]. All numerical runs were carried out on a PC with 4G of
RAM using double precision arithmetics.

5.1. Convergence and efficiency tests for the Stokes solver. In this sub-
section, we perform the convergence test and evaluate the efficiency for the present
Stokes solver. The numerical algorithm for solving this problem is exactly same as
Steps 1–3 described in the previous section but in a simpler manner; that is, Q = G
and q = p. Other efficient Stokes solvers can be found in [23, 2, 18] and the references
therein.

Here, we use the following test example so that we can easily compute the errors
between the exact and numerical solutions:

ue(x, y) = sinx cos y, ve(x, y) = − cosx sin y, and pe(x, y) = ex sin y.
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Table 5.1
Numerical accuracy for the Stokes solver.

m = n 32 64 128 256 512

∥ue − uh∥∞ 1.578e-4 4.481e-5 1.206e-5 3.153e-6 8.120e-7
Rate - 1.82 1.89 1.94 1.96
∥ve − vh∥∞ 1.578e-4 4.481e-5 1.206e-5 3.153e-6 8.120e-7
Rate - 1.82 1.89 1.94 1.96
∥pe − ph∥∞ 9.615e-4 4.286e-4 2.052e-4 1.005e-4 4.970e-5
Rate - 1.17 1.06 1.03 1.02

Table 5.2
The cost in CPU time and iterations.

m = n 32 64 128 256 512

Iterations 12 14 15 16 18
CPU time(sec) 0.02 0.05 0.20 0.93 4.97

Note that the above solution does not satisfy the pure Stokes equations, so we need to
add some external force field (can be easily computed) into the equations. However,
it does not change the method or algorithm since the extra force term appears on
the right-hand side of equations. Along the boundary of computational domain,
the Dirichlet boundary conditions for the velocity are provided, while no pressure
boundary condition is needed in our setting.

It is worth mentioning that the pressure is unique up to a constant in Stokes
equations. Rather than pinning a certain value to a particular discrete pressure as
in [24], uniqueness can be guaranteed by setting up a constraint for the discrete
pressure as

(5.1)
∑

i,j

pi,j h
2 =

∫

Ω
pe(x) dx.

So our initial guess p0ij in the GMRES iteration can be chosen as p0ij =
∫
Ω pe(x) dx/|Ω|.

In those tests, the tolerance of the residual is chosen as 10−8 .
Table 5.1 shows the maximum errors between the exact and numerical solutions

for different grid resolutions. One can see that the velocity field has clear second-order
accuracy, while the pressure has first-order accuracy. Table 5.2 shows the efficiency
of the present Stokes solver. One can see that the number of iterations increases
slightly even we double the grid size, and the CPU time for a 512× 512 grid is just a
few seconds.

5.2. Convergence test for the Stokes flow with an inextensible interface
enclosing a solid particle. In this subsection, we perform a convergence study
for the present numerical algorithm to the Stokes flow with an inextensible interface
enclosing a solid particle. Here, we put an inextensible interface Γ and particle P with
initial configuration X(s) = (0.25 cos(s), 0.5 sin(s)) and Y(s) = (0.1 cos(s), 0.1 sin(s))
under a shear flow (u, v) = (χy, 0) in a fluid domain Ω. The dimensionless shear
rate χ is chosen to be χ = 1. We also choose the different grid size as m = n =
32, 64, 128, 256, 512 in which the corresponding mesh width is h = 2/m. We also set
the Lagrangian mesh widths to be ∆s ≈ h/2 and ∆α ≈ h/2, and the time step size
to ∆t = h/4.

Since the analytical solution is not available in this test, we choose the result
obtained from the finest mesh m = n = 512 as our reference solution and compute the
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Table 5.3
The mesh refinement results for the perimeter of the interface Lh, the interface configuration

Xh, and the velocity uh and vh.

m = 32 m = 64 rate m = 128 rate m = 256 rate

|Lh − L0|/L0 3.511e-2 2.089e-2 0.75 1.220e-2 0.78 6.749e-3 0.85
∥Xh −Xref∥∞ 3.413e-3 1.079e-3 1.66 4.438e-4 1.28 1.622e-4 1.45
∥uh − uref∥∞ 6.552e-2 2.592e-2 1.34 1.053e-2 1.30 4.047e-3 1.38
∥vh − vref∥∞ 1.133e-1 3.660e-2 1.63 1.554e-2 1.24 4.968e-3 1.64

maximum error between the reference and the numerical solutions. All the numerical
solutions are computed up to time T = 0.0625. Since the interface is inextensible,
the perimeter of the interface should remain a constant theoretically as time evolves.
Let L0 and Lh be the perimeters of the interface at the initial time and final time
T = 0.0625, respectively. The relative error of the perimeter is defined as |Lh −
L0 |/L0 . Table 5.3 shows the relative errors of the perimeter, the maximum errors
of the interface configuration, and the maximum errors for the fluid velocity field.
Note that the fluid variables are defined at the staggered grid, so when we refine
the mesh, the numerical solutions will not coincide with the same grid locations.
In these runs, we simply use a linear interpolation to compute the solutions at the
desired locations. Due to the fact that the IB formulation has the singular forcing
term in the equations, regularizing the singular term by smoothing the discrete delta
function causes the method to be first-order accurate. As shown in [3], even though
the calculated pressure has O(1) error near the interface, its gradient has the same
discretization error as the singular delta force term near the interface. Thus, the
overall accuracy of the velocity field in the IB method is first-order accurate in the
L∞ norm. The numerical results shown in Table 5.3 are consistent with what we
expect from theory.

5.3. Tank-treading to tumbling motion under shear flow. Unlike the pre-
vious subsection where we focus on the numerical convergence test for our present
scheme, here we consider the physical transient deformation of an inextensible inter-
face with or without an enclosing rigid particle in a simple shear flow. As mentioned
before, the motivation of this test is to simulate the compound vesicle dynamics, which
have a lot of applications in bio-fluid problems [26].

In the present numerical experiments, we choose the residual tolerance for GM-
RES as 10−4 , which is larger than the pure Stokes flow. This is because the elastic
tension σ tends to oscillate along the interface, which makes the GMRES method
solving (4.11) difficult to converge if the residual tolerance is too small. It will be
more appealing if one can find a good preconditioner for solving linear system (4.11)
so that GMRES method can converge faster. However, this issue has not yet been
resolved.

We first consider the case of an inextensible interface without enclosing a solid
particle in a simple shear flow. It is wellknown that the equilibrium dynamics of
an inextensible interface or vesicle under a simple shear flow will undergo a tanking-
treading motion if the viscosity contrast is under a certain threshold [8]. Here, by tank-
treading motion we mean that the configuration of the interface remains stationary
while there is a tangential motion along the interface. As studied in previous literature
[28, 9, 10, 25, 7], the motion of this steady interface can be characterized by both the
inclination angle θ between the long axis of interface and the flow direction, and the

D
ow

nl
oa

de
d 

10
/1

5/
13

 to
 1

40
.1

13
.2

2.
21

0.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

AN INEXTENSIBLE INTERFACE WITH A SOLID PARTICLE B705

0.5 0.6 0.7 0.8 0.9
0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

reduced area V

θ/
π

χ=1
χ=5
χ=10

0.5 0.6 0.7 0.8 0.9
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

reduced area V

f

χ=1
χ=5
χ=10

Fig. 5.1. The inclination angles θ/π (left) and the tank-treading frequency f = 2π/
∫
Γ

dl
u · τ

(right) versus reduced areas V with different dimensionless shear rates for the tank-treading motion
of an inextensible interface in a shear flow.

tank-treading frequency f = 2π/
∫
Γ

dl
uτ

of the revolution, where uτ is the tangential
velocity component. The inclination angle has been found to be strongly dependent
on the reduced area V = 4πA0

L2
0
, where A0 is the enclosed area of the interface and

L0 is the total length of interface. (Notice that, by the above definition, a circle
has the reduced area V = 1, while an ellipse with larger aspect ratio has a smaller
reduced area.) However, the inclination angle is independent of the dimensionless
shear rate χ. This behavior is verified in the left panel of Figure 5.1, which shows the
steady inclination angle (θ/π) versus the reduced area (V ) with different shear rates
χ = 1, 5, 10, and it is in a good agreement with previous studies [28, 9, 10, 25, 7]. As
the reduced area increases, the inclination angle increases as well. The right panel of
Figure 5.1 shows the tank-treading frequency f versus the reduced area V for different
shear rates. One can see that as the dimensionless shear rate increases, the tangential
motion becomes stronger; thus, the frequency becomes larger. Moreover, by fixing
the shear rate, if the interface has larger reduced area, then it has larger frequency
as well. Again, our numerical results are in good agreement with previous studies in
the literature.

Now we consider the case of an inextensible interface enclosing a solid particle (a
compound interface) under a shear flow. As shown in [26], the compound interfacial
dynamics will have the transition from tank-treading (TT) to tumbling (TB) if the
inclusion effect is strong enough. That is, if the filling fraction φ = a2π/A0 of the
particle (a is the inclusion particle radius, A0 is the interface enclosing area) is above
some critical threshold, then the interface will start to tumble rather than being sta-
tionary. This can be explained as follows. By including a solid particle, the energy
dissipation enhances, so the compound interface behaves like an inclusion-free inter-
face that encapsulates a more viscous fluid. The larger the inclusion is, the higher the
viscosity will be. Figures 5.2 and 5.3 show the time evolutionary plots for interfacial
configurations with different filling fractions, φ = 0.08 and φ = 0.42, respectively. One
can indeed see that in the smaller filling fraction case in Figure 5.2, the compound
interface has TT motion, while in the larger filling fraction case in Figure 5.3, it has
the TB motion.

Meanwhile, in the TT regime, as the filling fraction increases, both the inclination
angle and the TT frequency will decrease. Besides, as in the inclusion-free case, the
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Fig. 5.2. The motion of an compound interface in a shear flow with initial configuration
X(s) = (0.25 cos(s), 0.5 sin(s)) and Y(s) = (0.1 cos(s), 0.1 sin(s)). φ = 0.08.

Fig. 5.3. The motion of an compound interface in a shear flow with initial configuration
X(s) = (0.25 cos(s), 0.5 sin(s)) and Y(s) = (0.23 cos(s), 0.23 sin(s)). φ = 0.42.

compound interface with larger reduced area has larger inclination angle and TT
frequency when the filling fraction is small. Both behaviors can be confirmed in
Figure 5.4 and are consistent qualitatively with those in [26].

We also investigate the critical value of filling fraction versus the reduced area
for the TT motion to TB transition, as in Figure 5.5. Above the critical value, the
interface motion will transit from TT to TB. One can easily see that as the reduced
area increases, the critical filling fraction increases too. This is exactly the similar
behavior as the inclusion-free case in which the critical viscosity contrast increases
with the reduced area.
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Fig. 5.4. The inclination angles θ/π (left) and the tank-treading frequency f = 2π/
∫
Γ

dl
u · τ

versus filling fraction φ the in tank-treading regime.

0.6 0.65 0.7 0.75 0.8 0.85 0.9
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

reduced area

fil
lin

g 
fr

ac
tio

n 
φ

TB

TT

Fig. 5.5. The critical filling fraction for the TT to TB transition versus the reduced area.

6. Conclusions. Biological fluid mechanics often require one to study the dy-
namics of a lipid membrane encapsulating some cellular contents. For instance, a
compound vesicle usually consists of a lipid bilayer membrane enclosing a fluid with
a suspended particle. Since the bilayer membrane resists area dilation and its thick-
ness is on the order of a nanometer, one can regard the membrane as an inextensible
(incompressible) interface. In this paper, we consider the problem of an inextensi-
ble interface enclosing a solid particle in Stokes flow. We first write the governing
equations in the immersed boundary (IB) framework, in which the interface and solid
boundary are treated as force generators in the fluid. In additional to solving for the
fluid variables, the present problem involves finding an extra unknown elastic ten-
sion such that the surface divergence of the velocity is zero along the interface, and
an extra unknown particle surface force such that the velocity satisfies the no-slip
boundary condition along the particle surface. We show that the spreading operator
of the tension and the surface divergence operator of the velocity are skew-adjoint
mathematically. While the interface moves with local fluid velocity, the enclosed par-
ticle hereby undergoes a rigid body motion, and the system is closed by the force-free
and torque-free conditions along the particle surface.
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The governing equations are then discretized by standard centered difference
schemes on a staggered grid, and the interactions between the interface and parti-
cle and the fluid are discretized using discrete delta function as in the IB method.
The discrete spreading operator of the tension and the discrete surface divergence op-
erator of the velocity used in the present scheme preserve the skew-adjoint property
numerically. The resultant linear system of equations is therefore symmetric and can
be solved by fractional steps so that only fast Poisson solvers are involved. The present
method can be extended to Navier–Stokes flow with moderate Reynolds number by
treating the nonlinear advection terms explicitly for the time integration. It is also
important to mention that, unlike our previous work using the penalty approach [7],
we are able to estimate the local error of inextensibility for two successive time steps
in the present scheme. In addition, since there are no penalty parameters introduced
as in [7], the time step size can be significantly increased.

We study the tank-treading (TT) and tumbling (TB) dynamics for an inextensible
interface enclosing a solid particle with different filling fractions under shear flow. We
have found that by the increase of the filling fraction, the interface tends to transit
from TT to TB. In the TT regime (when the filling fraction is small), the inclination
angle and TT frequency will increase as the reduced area increases. Those angle and
frequency will decrease as the filling fraction increases. We also have found that the
critical filling fraction (from TT to TB) will increase as the reduced area increases,
which is qualitatively consistent with the results in [26].

Appendix A. In this appendix, we first give a simple derivation for the rigid
particle motion equation (2.5) and the torque-free condition (2.7) in twodimensions.
These can be derived directly from the following equations in threedimensions,

V = Vc + ω × (Y −Yc),

∫

∂P
F× (Y −Yc) dP = 0,

by setting the third component of the vector-valued functions to be zero. For instance,
we set V = (V1, V2, 0), so the vorticity vector ω = (0, 0,ω).

The symmetric property of the (3.6)–(3.8) can be seen as follows:

V1k = V1c − ω(Y2k − Y2c), V2k = V2c + ω(Y1k − Y1c),

Mp∑

K=1

F1k∆α = 0,

Mp∑

k=1

F2k∆α = 0,

Mp∑

k=1

(F1k(Y2k − Y2c)− F2k(Y1k − Y1c))∆α = 0.

We can scale out the coefficient ∆α so that the above three equations can be written
in the matrix form

[
0 R

RT 0

][
F
Θ

]
, where R =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −(Y21 − Y2c)

...
...

...

1 0 −(Y2Mp − Y2c)

0 1 (Y11 − Y1c)

...
...

...

0 1 (Y1Mp − Y1c)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and Θ =

⎡

⎢⎢⎣

V1c

V2c

ω

⎤

⎥⎥⎦.
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Appendix B. In this appendix, we derive that the matrix obtained from the
discrete spreading operator Sh of σh and the matrix obtained from discrete surface
divergence operator ∇sh of U are transpose with each other. To see this, we first
rewrite the operator Sh(σh) as

Sh(σh) =
M−1∑

k=0

Ds (στ )k δh(x−Xk)∆s

=
M−1∑

k=0

σk+1/2 τ k+1/2 − σk−1/2 τ k−1/2

∆s
δh(x −Xk)∆s

=
M∑

k=1

σk−1/2 τ k−1/2 δh(x −Xk−1)−
M∑

k=1

σk−1/2τ k−1/2δh(x−Xk)

− σ−1/2τ−1/2δh(x−X0 ) + σM−1/2τM−1/2δh(x−XM )

=
M∑

k=1

(δh(x−Xk−1)− δh(x−Xk)) τ k−1/2 σk−1/2.

Note that the last two terms are cancelled out due to the periodicity of the interface.
Now we can write the discrete operator ∇sh as

∇sh ·Uk =
Uk −Uk−1

∆s
· τ k−1/2 |DsX|k−1/2

= − h2

∆s |DsX|k−1/2

∑

x

(δh(x−Xk−1)− δh(x−Xk)) τ k−1/2 · ui,j .

Since the discrete surface divergence operator of the velocity is zero, we can scale out
the coefficient − h2

∆s |DsX|k−1 /2
so that the resultant matrices obtained from Sh and

∇sh · are transpose to each other.
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