● HomePage

● 上一層

● 下列為 LaTeX 文件原始檔 samp2.tex

-------------------------------------------------------------- cut from here ----------------------

%%%%%%%%%%%%%%%%%%%%%%%%%% %\input chitexl \catcode`\@=11 \def\thinhline{\noalign{\ifnum0=`}\fi\hrule \@height \arrayrulewidth \futurelet \@tempa\@xhline} \def\thickhline{\noalign{\ifnum0=`}\fi\hrule \@height 2\arrayrulewidth \futurelet \@tempa\@xhline} \def\@xhline{\ifx\@tempa\hline\vskip \doublerulesep\fi \ifnum0=`{\fi}} %%%%%%%%%%%%%%%%%%%%%%%%%%

\documentclass[12pt,thmsa]{report}

\input tcilatex

\begin{document} \mingb

\pagestyle{headings}

\title{\yuan 近\ \, 世\ \, 代\ \, 數\ \\ Modern Algebra}

\author{\fs Elbert A. Walker 艾伯特\thanks{author 作者} }

\date{6 October 1994}

\maketitle

\pskaib

\begin{abstract}

This document describes by example the use of {\tt asaetr.sty}, a \LaTeX\ style that somewhat conforms to the style used in the {\em Transactions of the ASAE}\/. \cite{dunford} An accompanying BiBTeX style file is also used to format the bibliography in a style similar to that used by ASAE.

\end{abstract}

\ming

\tableofcontents%

\listoffigures%

\listoftables%

\chapter[Group Theory 特 論 ]{\yuan 群 論 特 論 Group Theory}

\section[導 論]{\kaib 導 論 Introduction}

\chMagnification 1200

群論是一門領域甚廣的學科,幾乎任何數學訓練都需要它。本章將簡單介紹一些% 古典的 非-Abelian 群論。在{\underbar{第二章}},我們將介紹同構,正規子群, 商群,直和等基本觀念。 ...

\li 群論是一門領域甚廣的學科,幾乎任何數學訓練都需要它。本章將簡單介紹一些% 古典的 非-Abelian 群論。在{\underbar{第二章}},我們將介紹同構,正規子群, 商群,直和等基本觀念。 ...

\mingb

\section{\kaib Jordan-Holder 定理}

Let $G$ be a finite group. If $G$ is not simple, then $G$ has a normal subgroup $G_1\neq G$ such that $G/G_1$ is simple\textit{.} Just let $G_1$ be a maximal normal subgroup in the finite group $G$\textit{.} Similarly, $G_1$ has a normal subgroup $G_2$ such that $G_1/G_2$ is simple. Thus we get a descending chain \[ G=G_0\supset G_1\supset G_2\supset \cdots \supset G_n=\{e\} \] such that $G_{i+1}$ is normal in $G_i$, and $G_i/G_{i+1}$ is simple. Now suppose that \[ G=H_0\supset H_1\supset H_2\supset \ldots \supset H_m=\{e\} \] is another such chain of subgroups. The Jordan-Holder Theorem asserts that $% m=n$, and that there is a one-to-one correspondence between the factor groups $G_i/G_{i+1}$ and $H_j/H_{j+1}$ such that corresponding factor groups are isomorphic. We will prove this remarkable theorem, but first some notation and terminology are needed. \textbf{The groups considered are not necessarily finite.}

\begin{definition} \ \, 設 $G$ 為一群。 $G$ 的一正規級數就是一如下之群的鍊鎖: \[ G=G_0\supset G_1\supset G_2\supset \ldots \supset G_n=\{e\} \] 其中,對於每一 $i$,\ $\,$ $G_{i+1}$ 皆為 $G_i$ 之正規子群。 The groups $G_i/G_{i+1}$ are the factor groups of the chain. The length of the chain is the number of strict inclusions in the chain. A normal series is a composition series if each factor group $G_i/G_{i+1}$ is a simple group $% \neq \{e\}$. Two normal series are equivalent if there is a one-to-one correspondence between their factor groups such that corresponding factor groups are isomorphic.

\end{definition}

\begin{theorem}[Jordan-Holder] \ \, Any two composition series of a group are equivalent. \end{theorem}

\proof\ \ If a group has a composition series of length one, then the group is simple and any two composition series are certainly equivalent. Now suppose that a group $G$ has a composition series

\begin{equation} \label{one} G=G_0\supset G_1\supset G_2\supset \ldots \supset G_n=\{e\} \end{equation}

of length $n>1$, and that if a group has a composition series of length less than $n$, then any two composition series of that group are equivalent. Let

\begin{equation} \label{two} G=H_0\supset H_1\supset H_2\supset \ldots \supset H_m=\{e\} \end{equation} be any composition series of $G$. Consider the series

\begin{equation} \label{three} G=G_0\supset G_1\supset G_1\cap H_1\supset G_2\cap H_1\supset \ldots \supset G_n\cap H_1=\{e\} \end{equation} and

\begin{equation} \label{four} G=H_0\supset H_1\supset H_1\cap G_1\supset H_2\cap G_1\supset \ldots \supset H_m\cap G_1=\{e\} \end{equation} Since $G_{i+1}\cap H_1$ is a normal subgroup of $G_i\cap H_1$ and $% G_i\supset G_{i+1}$, the Third Isomorphism Theorem (\textbf{2.3.12}) yields \[ (G_i\cap H_1)/(G_{i+1}\cap H_1)=(G_i\cap H_1)/(G_{i+1}\cap (G_i\cap H_1))\approx \] \[ G_{i+1}(G_i\cap H_1)/G_{i+1}, \] and $G_{i+1}(G_i\cap H_1)$ is a normal subgroup of $G_i$ since it is a product of two normal subgroups. Since $G_i/G_{i+1}$ is a simple group, $% (G_{i+1}(G_i\cap H_1))/G_{i+1}$ is either $G_i/G_{i+1}$ or $G_{i+1}/G_{i+1}$% . That is, $G_{i+1}(G_i\cap H_1)$ is either $G_{i+1}$ or $G_i$. Therefore, if we remove repetitions from \[ G_1\supset (G_1\cap H_1)\supset (G_2\cap H_1)\supset \ldots \supset (G_n\cap H_1)=\{e\}, \] we get a composition series for $G_1$. By our induction hypothesis, the resulting composition series is equivalent to the composition series \[ G_1\supset G_2\supset \ldots \supset G_n=\{e\}\text{,} \] and hence (\ref{one}) and (\ref{three}) (with repetitions removed) are equivalent. $\cdots$

\section{\kaib 問 題 集 Problem set}

\begin{enumerate}

\item 試証: 若 $G$ 有一合成級數,則任何正規子群 $G$ 都有合成級數。

\item 試証: 若 $N$ 在 $G$ 中為正規,且若 $G$ 有一合成級數,則 $G/N$ 亦然。

\item Suppose that $G$ has a composition series and that $N$ is normal in $% G $. Prove that $G$ has a composition series of which $N$ is a member.

\item Suppose that $G$ has a composition series. Prove that any normal series of $G$ has a refinement that is a composition series.

\item \label{zasslemma}(\textbf{Zassenhaus's Lemma}) Let \textit{A} and $B$ be subgroups of a group $G$, and let $M$ and $N$ be normal in \textit{A} and $B$, respectively. Prove that \end{enumerate}

\chapter{\yuan 其 他}

\section{圖形與表格}

\begin{figure}[htb]

\setlength{\unitlength}{0.1mm}

\begin{center}

\begin{picture}(181,181)(0,0) \thinlines \multiput(80,80)(-20,-20){4}{\framebox(80,80){}} \thicklines \put(0,0){\framebox(180,180){}} \put(60,60){\line( 1, 1){ 60}} \end{picture} \end{center} \caption[原始之圖]{原始之圖 Primitive figure.}

\end{figure}

{ \renewcommand{\footnoterule}{}

\begin{table}[hbp]

\footnotesize \vglue0pt

\caption{出版工具 Comparison of Publishing Tools}

\begin{center} \renewcommand{\footnoterule}{} \begin{center} \renewcommand{\thefootnote}{\fnsym{footnote}}

\begin{tabular}{crr}

\thickhline Tool & \multicolumn{1}{c}

{Learning Curve %\footnote{1.0 being easiest} }

& \multicolumn{1}{c}{Support %\footnote{10.0 being the best} }\\

\thinhline

FrameMaker & 5.0 & 6.0 \\ Troff & 10.0 & 1.0 \\

\TeX %\footnote{\TeX\ is the winner!}\/

& 7.0 & 10.0 \\

\thickhline

\end{tabular}

\linethickness{0pt}

\end{center}

\end{center}

\end{table} }

\begin{thebibliography}{9}

\bibitem[杜甫 1964]{dunford} N. Dunford and J. Schwartz, 泛函分析,

\bibitem{} M. Struwe, \emph{Semilinear wave equations}, Bull. Amer. Math. Soc. \textbf{26} (1992), 53-85.

\bibitem{} W.P. Thurston, \emph{Geometry and topology of three manifolds}, Lecture notes, Princeton Univ., NJ, 1979.

\end{thebibliography}

\appendix

\chapter{使 用 ChiTeX}

\begin{theindex} \item 代數 1, 12 \item series 2, 33 \subitem convergent, 22, 55 \indexspace \end{theindex}

\end{document}