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(2) gk RIS ER F R A IR, JRED

im [£(2) % g(2)] = Jim f(z) % lim g(=)
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2

lim (< — 22 + 3)

r—2
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Hit g(c) # 0, AIRBmIRAER (4) DUkHERE (1),

=
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INEN BEEHEEKEMORE ¢ = c FPR 0 B, AT
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t. HEARARAEREBRKE, &R,
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[R]85 T SRR R Y 77 %
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IREN, 3K f(z) 7 x = ¢ ERE, 7TRIH g(x) B

BAEGL? ARTE « = c WBREFEBHEE v =
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z—1 r—1
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Ji—REH, HRABENE.

HEE: AREASERE, W2 Ummsysr LA
PR A AERRINRR, B AEEEES#HIH
HIRFAE B 2, JRED,
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F.. BEEmR (one-sided limits)
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K ¢ HZEB5EN o RRIMIR, 20E 7.

B
lim f(z) =1L
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T r BAEFET c RRIIE, MER.

R o = c WESEER
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JIHHER
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HRDALEHSET L, B8 Wi
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<ME> BEHRBFLME (&) UENBEEREATFRTE, &
EE & (compound function), ¥ f(z) B—&
B, AT EREUSERFRR f(2), MmRKER
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o HASEE 1K, %

im f(x) = Ilim (4—-2x)

rx—1— r—1—

— 4-1=3

HE—~HERELINRE « B0 1 i, &5
x <1, MRE f(z) WER,

f@)=4-a

B MEFRBALIRNERZIEN 4 — ¢ FESHREE, 7]
URABERZ, TEEmR 288 mRe—o, #E
RATHAMRAER 1 (e 17) RAKRER.
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i, NI EEmRGEEHMSE, EEmR
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|2z
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H
, 12| _ 2x
lim — = |im —
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r—0 2z
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= ¢ FIERAFE.

T
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A, ZESWRGAEFEE. 1,
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