

	Elliptic Cone $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=0$ $\begin{array}{ll}\text { Trace } & \text { Plane } \\ \text { Ellipse } & \text { Parallel to } x y \text {-plane } \\ \text { Hyperbola } & \text { Parallel to } x z \text {-plane } \\ \text { Hyperbola } & \text { Parallel to } y z \text {-plane }\end{array}$ The axis of the cone corresponds to the variable whose coefficient is negative. The traces in the coordinate planes parallel to this axis are intersecting lines.	
	Elliptic Paraboloid$z=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$Trace Plane Ellipse Parallel to $x y$-plane Parabola Parallel to $x z$-plane Parabola Parallel to $y z$-plane The axis of the paraboloid corresponds to the variable raised to the first power.	
	Hyperbolic Paraboloid $z=\frac{y^{2}}{b^{2}}-\frac{x^{2}}{a^{2}}$ $\begin{array}{ll}\text { Trace } & \text { Plane } \\ \text { Hyperbola } & \text { Parallel to } x y \text {-plane } \\ \text { Parabola } & \text { Parallel to } x z \text {-plane } \\ \text { Parabola } & \text { Parallel to } y z \text {-plane }\end{array}$ The axis of the paraboloid corresponds to the variable raised to the first power.	

	Ellipsoid$\)\begin{tabular}{ll} \(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1\) \\ \text { Trace } & \text { Plane } \\ \text { Ellipse } & \text { Parallel to }\(x y \text {-plane }\) \\ \text { Ellipse } & \text { Parallel to }\(x z \text {-plane }\) \\ \text { Ellipse }\(\quad \text { Parallel to } y z \text {-plane }\) \\ \text { The surface is a sphere if the } \\ \text { coefficients }\(a, b, \text { and } c \text { are equal }\) \\ \text { and nonzero. } \end{tabular}$	
	Hyperboloid of One Sheet$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1$Trace Plane Ellipse Parallel to $x y$-plane Hyperbola Parallel to $x z$-plane Hyperbola Parallel to $y z$-plane The axis of the hyperboloid corresponds to the variable whose coefficient is negative.	
	Hyperboloid of Two Sheets $\frac{z^{2}}{c^{2}}-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ $\begin{array}{ll}\text { Trace } & \text { Plane } \\ \text { Ellipse } & \text { Parallel to } x y \text {-plane } \\ \text { Hyperbola } & \text { Parallel to } x z \text {-plane } \\ \text { Hyperbola } & \text { Parallel to } y z \text {-plane }\end{array}$ The axis of the hyperboloid corresponds to the variable whose coefficient is positive. There is no trace in the coordinate plane perpendicular to this axis.	

