Martingales in finite probability space

Lecturer: Dr. Hong-Gwa Yeh
Department of Mathematics
National Central University
hgyeh@math.ncu.edu.tw
Finite Probability Space

\(\Omega \) = the set of all possible outcomes of a random experiment (\(\Omega \) is called a sample space, and \(\omega \in \Omega \) is called a sample point) note: we only consider \(|\Omega| < \infty \).

\(\mathcal{F} \subseteq 2^\Omega \) is called a \(\subseteq \)-algebra if

1. \(\Omega \in \mathcal{F} \)
2. \(A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F} \)
3. \(A_1, A_2, \ldots \in \mathcal{F} \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{F} \)

Ex: Toss a coin 3 times. \(\Omega = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\} \)

Let \(\mathcal{F}_0 = \{\emptyset, \Omega\} \),

\(\mathcal{F}_1 = \{\emptyset, \Omega, A_H, A_T\} \), where \(A_H = \{HHH, HHT, HTH, HTT\} \)
EX (continued) After the random experiment, you are not told the outcome, but you are told, for every set in \mathcal{F}, whether or not the outcome is in that set. For example, you would be told that the outcome is not in \emptyset, and is in Ω. Moreover, you might be told that outcome is not in A_1, but is in A_T. In effect, you have been told that the first toss was a T.

We interpret the σ-algebra \mathcal{F}_1 as a record of the "information of the first toss."
\((\Omega, \mathcal{F}, \mathbb{P})\)

Probability measure: Let \(\mathbb{P}\) be a \(\sigma\)-algebra on \(\Omega\).
\[\mathbb{P}: \mathcal{F} \rightarrow [0,1]\]

1. \(\mathbb{P}(\Omega) = 1\)
2. If \(A_1, A_2, \ldots\) is a sequence of disjoint sets in \(\mathcal{F}\), then \(\mathbb{P}(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mathbb{P}(A_i)\)

Probability space: \((\Omega, \mathcal{F}, \mathbb{P})\) is called a probability space.

Remark: Here we only consider the case that \(|\Omega| < \infty\).
\[\alpha(D) \]

decomposition of \(\Omega \): i.e. a collection \(\mathcal{D} = \{ D_1, D_2, \ldots, D_n \} \) of sets in \(\Omega \)

s.t. ① \(D_i \neq \emptyset \) for all \(i \) ② \(D_1 + D_2 + \cdots + D_n = \Omega \)

Fact: Let \(\mathcal{F} = \{ S : S \text{ is a union of sets in } \mathcal{D} \} \cup \{ \emptyset \} \).

Then \(\mathcal{F} \) is a \(\sigma \)-algebra, and is called the \(\sigma \)-algebra generated by \(\mathcal{D} \), and is denoted by \(\alpha(\mathcal{D}) \).

Fact: Let \(B \) be a \(\sigma \)-algebra of subsets of a finite space \(\Omega \).

Then \(\exists! \) decomposition \(\mathcal{D} \) of \(\Omega \) s.t. \(B = \alpha(\mathcal{D}) \)

Hint: see Shiryaev p.13. Let \(\mathcal{D} = \{ D \in B : D \neq \emptyset, D \cap B = D \text{ or } \emptyset \text{ for any } B \in B \} \).

This \(\mathcal{D} \) will meet our need.
G-measurable

Note: There is a one-to-one correspondence between σ-algebras and decomposition of a finite space Ω.

- Let $\mathcal{D} = \{D_1, \ldots, D_k\}$ be a decomposition of Ω. Let $Y = Y(\omega)$ be a function on Ω.

Def: Y is said to be \mathcal{D}-measurable if Y has the form

$$Y(\omega) = \sum_{i=1}^{k} y_i I_{D_i}(\omega)$$

i.e., Y takes constant values on the blocks of \mathcal{D}.

Remark: In above def., we also said that Y is G-measurable where G is the σ-algebra $\sigma(\mathcal{D})$.
Random Variable X, \mathcal{D}_X

Def: For a finite probability space (Ω, \mathcal{F}, P), we say that X is a random variable on it if X is an \mathcal{F}-measurable real-valued function defined on Ω.

Def: Let X be a r.v having the values x_1, x_2, \ldots, x_k with positive probabilities i.e. $X = \sum_{i=1}^{k} x_i I_{D_i}(w)$, where $D_i = \{ \omega \in \Omega : X(\omega) = x_i \}$

We define the decomposition $\mathcal{D}_X = \{ D_1, D_2, \ldots, D_k \}$.

If $X_1, X_2, \ldots X_m$ are r.vs then decomposition $\mathcal{D}_{X_1, X_2, \ldots, X_m}$ is defined in the same way.

Note: $\alpha(\mathcal{D}_X)$ is the smallest σ-algebra over which X is measurable.
\(P(A|\mathcal{D}) \)

- \((\Omega, \mathcal{F}, P)\) is a finite prob. space, \(A \in \mathcal{F}, \ \{D_i \in \mathcal{F} \ \forall i \)
- \(\mathcal{D} = \{ D_1, \ldots, D_k \} \) is a decomposition of \(\Omega \) with \(P(D_i) > 0 \ \forall i \).

Def: Define the \(P(A|\mathcal{D}) : \Omega \rightarrow \mathbb{R} \) as follows

\[
P(A|\mathcal{D})(\omega) = \sum_{i=1}^{k} P(A|D_i) I_{D_i}(\omega)
\]

Facts:

1. \(ANB = \emptyset \Rightarrow P(A \cup B|\mathcal{D}) = P(A|\mathcal{D}) + P(B|\mathcal{D}) \)
2. \(P(A|\mathcal{D}(\Omega)) = P(A) \) constant rv
3. \(\mathbb{E} P(A|\mathcal{D}) = P(A) \)
4. \(P(A|\mathcal{D}) \) is \(\mathcal{D} \)-measurable and hence is \(\mathcal{F} \)-measurable

i.e. \(P(A|\mathcal{D}) \) is a rv.
\[E(X|D) \]

Def: Define the function \(E(X|D) : \Omega \to \mathbb{R} \) as follows:

\[
E(X|D)(\omega) = \sum_{i=1}^{n} x_i P(X=x_i|D)(\omega)
\]

Fact: (2) \(E(X|D) \) is \(D \)-measurable and hence \(\mathcal{F} \)-measurable, i.e., \(E(X|D) \) is a rv.

\[
E(X|D) = \sum_{j=1}^{k} \left(\sum_{i=1}^{n} x_i P(X=x_i|D_j) \right) I_{D_j}
\]

\[= \sum_{j=1}^{k} E(X|D_j) I_{D_j}. \]

the average value of \(X \) on the block \(D_j \)

\[
E\left(E(X|D) \right) = EX
\]
Remark: If $\mathcal{F} = \sigma(\mathcal{C})$ then

$\mathcal{P}(A1\mathcal{F})$ is also denoted by $\mathcal{P}(A1\mathcal{I})$,

and $\mathcal{E}(A1\mathcal{F})$ is also denoted by $\mathcal{E}(A1\mathcal{I})$.

Warning: we only use this notation for finite probability space.
Tower Property

Thm If two σ-algebras \mathcal{F}, \mathcal{G} have $\mathcal{F} \subseteq \mathcal{G}$ then
\[E (E (X | \mathcal{G}) | \mathcal{F}) = E (X | \mathcal{F}) \]

Fact (1) If X is \mathcal{D}-measurable for a decomposition \mathcal{D} of \mathcal{S}, then
\[E (X | \mathcal{D}) = X \quad \text{and} \quad E (XY | \mathcal{D}) = X E (Y | \mathcal{D}) \]

"taking out what is known"

Fact (2) If X is independent of decomposition \mathcal{D} (i.e. $\forall D_i \in \mathcal{D}$, X and I_{D_i} are independent) then
\[E (X | \mathcal{D}) = EX \]

bt of (2): Say $\mathcal{D} = \{ D_1, \ldots, D_k \}$. Then
\[E (X | \mathcal{D}) = \sum_{i=1}^k E (X | D_i) I_{D_i} = \sum_{i=1}^k EX I_{D_i} = EX. \]
\[P(A|X_1, X_2, ..., X_M) \]

- \((\Omega, \mathcal{F}, \mathbb{P})\) is a finite prob space, \(A \in \mathcal{F}\)
- \(\forall X: \Omega \rightarrow \{x_i, ..., x_k\} \text{ with } P(X=x_i) > 0 \ \forall i\)

\textbf{Def:} \[P(A|X) \overset{\text{def}}{=} P(A|D_X) \]

\[P(A|X_1, X_2, ..., X_m) \overset{\text{def}}{=} P(A|D_{X_1, X_2, ..., X_m}) \]

\textbf{Facts:}

1. \[P(A|X)(\omega) = \sum_{i=1}^{k} P(A|X=x_i) I_{\{X=x_i\}}(\omega) \]
2. \[P(A|X_1, X_2, ..., X_m)(\omega) \]
 \[= \sum_{y_1, ..., y_m} P(A|X_1=x_1, ..., X_m=y_m) I_{\{X_1=x_1, ..., X_m=y_m\}}(\omega) \]
\[E(X|Y_1, Y_2, \ldots, Y_M) \]

Def: In a finite probability space, we define a random variable \(E(X|Y) \) as follows:

\[E(X|Y) \stackrel{\text{def}}{=} E(X|\mathcal{D}_Y) \]

\[E(X|Y_1, Y_2, \ldots, Y_m) \stackrel{\text{def}}{=} E(X|\mathcal{D}_{Y_1, Y_2, \ldots, Y_m}) \]

Fact: The random variable \(E(X|Y) \) is the random variable \(f(Y) \) such that \(f(y) = E(X|Y=y) \).

Pf: Let \(Y: \Omega \rightarrow \{y_1, \ldots, y_k\} \) with \(P(Y=y_i) > 0 \) \(\forall i \).

\[E(X|Y) = E(X|\mathcal{D}_Y) = \sum_{j=1}^{k} E(X|D_j) I_{D_j}, \text{ where } D_j = \{Y=y_j\} \]

Remark: We can generalize the above fact to the random variable \(E(X|Y_1, \ldots, Y_m) \).
Example for $\mathbb{E}(X_1 | Y_1, Y_2, \ldots, Y_m)$

Example Consider independent throws of an unbiased 6-sided die. For $1 \leq i \leq 6$, let X_i denote the number of times the value i appears in n throws of the die. Then

$\mathbb{E}(X_1 | X_2) = \frac{n - X_2}{5}, \quad \mathbb{E}(X_1 | X_2, X_3) = \frac{n - X_2 - X_3}{4}.$

Proof:

$\mathbb{E}(X_1 + X_2 + \ldots + X_6 | X_2 = \alpha, X_3 = \beta) = n$

$\Rightarrow 4 \mathbb{E}(X_1 | X_2 = \alpha, X_3 = \beta) = n - \alpha - \beta \Rightarrow \mathbb{E}(X_1 | X_2 = \alpha, X_3 = \beta) = \frac{n - \alpha - \beta}{4}.$

$\Rightarrow \mathbb{E}(X_1 | X_2, X_3) = \frac{n - X_2 - X_3}{4}.$

QED
A filter in finite prob. spaces

- Given a finite probability space \((\Omega, 2^\omega, P)\).

Def: A filter is a nested sequence of \(\sigma\)-algebras in \(-2\)

\[\emptyset \subseteq \mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \cdots \subseteq \mathcal{F}_n = 2^\omega\]

Remark: In above definition, if we have decompositions \(\mathcal{D}_0 \cdots \mathcal{D}_n\)

s.t. \(\mathcal{D}_0 = \{\Omega\}\), \(\mathcal{D}_i(\mathcal{D}_i) = \mathcal{F}_i\), \(\forall i\), and \(\mathcal{D}_n = \{\{\omega\} : \omega \in \Omega\}\)

Then sometimes we write the above filter as

\[\{\Omega\} = \mathcal{D}_0 \subseteq \mathcal{D}_1 \subseteq \cdots \subseteq \mathcal{D}_n = \{\{\omega\} : \omega \in \Omega\}\]
Martingale (I) general setting

Def: Given a finite r.s. \((\Omega, 2^\Omega, P)\) with a filter \(\{\emptyset, \Omega\} = \mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \cdots \subseteq \mathcal{F}_n = 2^\Omega\), a sequence of r.v.s \(X_0, X_1, \ldots, X_n\) is called a **martingale** w.r.t. the filter \(\mathcal{F}_0, \mathcal{F}_1, \ldots, \mathcal{F}_n\) if \(\mathbb{E}(X_k | \mathcal{F}_k) = X_k\) for each \(k = 0, 1, 2, \ldots, n-1\).

Notation: Sometimes we use \((X_k, \mathcal{F}_k)_{k=0}^n\) to denote the above martingale.

Fact: (1) \(X_k\) is \(\mathcal{F}_k\)-measurable, \(k = 0, 1, 2, \ldots, n\).
(2) \(\mathbb{E}X_k = \mathbb{E}X_0\) for each \(k = 1, 2, \ldots, n\).
Martingale (II) special case

Def: A sequence of rvs X_0, X_1, \ldots, X_m is called a martingale if for $0 \leq i \leq m$, $\mathbb{E}(X_{i+1} | X_0, X_1, \ldots, X_i) = X_i$.

Recall: $\mathbb{E}(X_{i+1} | X_0, X_1, \ldots, X_i) \overset{\text{def}}{=} \mathbb{E}(X_{i+1} | \mathcal{D}_{X_0, X_1, \ldots, X_i})$

Note: In the above definition, X_0, X_1, \ldots, X_m is a martingale w.r.t. the filter $\alpha(\mathcal{D}_{X_0}), \alpha(\mathcal{D}_{X_0, X_1}), \alpha(\mathcal{D}_{X_0, X_1, X_2}), \ldots, \alpha(\mathcal{D}_{X_0, X_1, \ldots, X_m}), \mathbb{P}$ in the general setting.
Recall

Suppose $\mathcal{Z}_k = \alpha(\{D_{k1}, D_{k2}, \ldots, D_{kt}\})$. Then $E(X_{k+1} \mid \mathcal{Z}_k) = X_k$ implies

$$X_k = \sum_{i=1}^{t} E(X_{k+1} \mid D_{ki}) I_{D_{ki}}$$
An illustration of a martingale

- We assume that $\mathcal{I}_0 = \mathcal{F}_0$, $\mathcal{I}(\mathcal{D}_1) = \mathcal{F}_1$, $\mathcal{I}(\mathcal{D}_2) = \mathcal{F}_2$.
- The values of X_i are indicated by the red lines.

\begin{align*}
X_0 &= \mathbb{E}X_1 I_\Omega \\
X_1 &= \mathbb{E}(X_2 | D_1) I_{D_1} + \mathbb{E}(X_2 | D_2) I_{D_2} \\
X_2 &= \mathbb{E}(X_3 | D_1) I_{D_1} + \mathbb{E}(X_3 | D_2) I_{D_2} + \mathbb{E}(X_3 | D_3) I_{D_3} \\
&\quad + \mathbb{E}(X_3 | D_\alpha) I_{D_\alpha} + \mathbb{E}(X_3 | D_\beta) I_{D_\beta}
\end{align*}

Note $\mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \mathcal{F}_2$.
Doob Martingales

- Let \((\Omega, 2^\Omega, P)\) be a finite ps. with a filter \(\mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \cdots \subseteq \mathcal{F}_n\).

Thm Let \(X\) be a rv on \((\Omega, 2^\Omega, P)\). Define \(X_i = \mathbb{E}(X_1 | \mathcal{F}_i)\) for \(i = 0, 1, 2, \ldots, n\). Then \((X_i, \mathcal{F}_i)_{i=0}^n\) is a martingale.

Prf: For \(k = 0, 1, 2, \ldots, n-1\), \(\mathbb{E}(X_{k+1} | \mathcal{F}_k) = \mathbb{E}(\mathbb{E}(X_1 | \mathcal{F}_{km+1}) | \mathcal{F}_k) = \mathbb{E}(X_1 | \mathcal{F}_k)\) by Tower Thm.

Ex: Toss a fair coin three times. Let \(X_i = 1\) if \(i\)th toss is head, \(X_i = 0\) otherwise, \(i = 1, 2, 3\). Let \(f(X_1, X_2, X_3) = \sum_{i=1}^3 X_i\).

The Doob process. \(Y_0 = \mathbb{E}(f(X) | \mathcal{F}_0) = \mathbb{E}f(X) = \frac{3}{2}\), where \(X = (X_1, X_2, X_3)\)

\(Y_1 = \mathbb{E}(f(X) | \mathcal{D}_1) = \mathbb{E}(\sum_{i=1}^3 X_i | X_1) = X_1 + 1\)

\(Y_2 = \mathbb{E}(f(X) | \mathcal{D}_2) = \mathbb{E}(f(X) | X_1, X_2) = X_1 + X_2 + \frac{1}{2}\)

\(Y_3 = \mathbb{E}(f(X) | \mathcal{D}_3) = X_1 + X_2 + X_3\)

\(\{\Omega\} = \mathcal{D}_0 \subseteq \mathcal{D}_1 \subseteq \mathcal{D}_2 \subseteq \mathcal{D}_3 = 2^\Omega, \text{ where }\)

\(\mathcal{D}_0 = \{ \{X_1=1\}, \{X_1=0\} \}, \mathcal{D}_1 = \{ \{X_1=1, X_2=0\}\{X_1=1, X_2=1\}, \{X_1=0, X_2=1\}\}, \mathcal{D}_2 = \{ \{X_1=1, X_2=0\}\{X_1=1, X_2=1\}, \{X_1=0, X_2=1\}\}, \mathcal{D}_3 = \{ \{X_1=1, X_2=0\}\{X_1=1, X_2=1\}, \{X_1=0, X_2=0\}\}\)
Edge Exposure Martingale

- Consider random graph space $G_{n,p}$. Label the $\binom{n}{2}$ possible edges with the sequence $1, 2, 3, \ldots, m$.

Define the rvs $I_j(\omega) = \begin{cases} 1 & \text{if edge } j \text{ appears in } \omega \\ 0 & \text{o.w.} \end{cases}$

Consider any real-valued function F over $G_{n,p}$, e.g., the clique number.

The **edge exposure martingale** if defined to be the sequence of rvs $X_0, X_1, X_2, \ldots, X_m$ s.t.

- $X_0 = \mathbb{E}(F)$
- $X_1 = \mathbb{E}(F | I_.)$
- \vdots
- $X_{m-1} = \mathbb{E}(F | I_1, I_2, \ldots, I_{m-1})$
- $X_m = F(G_{n,p})$

Note: X_0, X_1, \ldots, X_m is a Doob martingale.
Vertex Exposure Martingale

- In the same setting as in the edge exposure martingale.

Let $I_{xy}(w) = \begin{cases} 1 & \text{if edge } xy \text{ appears in } w \\ 0 & \text{o.w.} \end{cases}$

The vertex exposure martingale is defined to be the sequence of rvs Y_1, Y_2, \ldots, Y_n s.t.

$Y_1 = \mathcal{E}(F)$

$Y_2 = \mathcal{E}(F \mid I_{xy}, \{x,y\} \in \binom{[2]}{2})$

$Y_3 = \mathcal{E}(F \mid I_{xy}, \{x,y\} \in \binom{[3]}{2})$

\vdots

$Y_n = \mathcal{E}(F \mid I_{xy}, \{x,y\} \in \binom{[n-1]}{2})$

$Y_n = \mathcal{F}(G_{n,p})$

Note Y_1, Y_2, \ldots, Y_n is a Doob Martingale.

By ordering the edge appropriately, the vertex exposure martingale is a subsequence of the edge exposure martingale.
References