Section 5.4 (Systems of Linear Differential Equation); Eigenvalues and Eigenvectors

July 1, 2009
A Summary of This Session:
A Summary of This Session:
(1) Finding the eigenvalues and eigenvectors of a 2×2 matrix.
A Summary of This Session:
(1) Finding the eigenvalues and eigenvectors of a 2×2 matrix.
(2) 2×2 linear, first-order, systems of differential equations
A Summary of This Session:
(1) Finding the eigenvalues and eigenvectors of a 2×2 matrix.
(2) 2×2 linear, first-order, systems of differential equations
(3) Phase-plane method
A Summary of This Session:
(1) Finding the eigenvalues and eigenvectors of a 2×2 matrix.
(2) 2×2 linear, first-order, systems of differential equations
(3) Phase-plane method
A Summary of This Session:
(1) Finding the eigenvalues and eigenvectors of a 2×2 matrix.
(2) 2×2 linear, first-order, systems of differential equations
(3) Phase-plane method
We are interested in solving systems of first order differential equations of the form:

\[x' = f(x, y) \]
\[y' = g(x, y) \]
We are interested in solving systems of first order differential equations of the form:

\[x' = f(x, y) \]
\[y' = g(x, y) \]

or more generally, systems that look like:

\[x' = f(x, y, t) \]
\[y' = g(x, y, t) \]
Motivation

We are interested in solving systems of first order differential equations of the form:

\[
\begin{align*}
x' &= f(x, y) \\
y' &= g(x, y)
\end{align*}
\]

or more generally, systems that look like:

\[
\begin{align*}
x' &= f(x, y, t) \\
y' &= g(x, y, t)
\end{align*}
\]

In the first case, \(f(x, y)\) and \(g(x, y)\) do not depend on \(t\). They are called autonomous.
We are interested in solving systems of first order differential equations of the form:

\[x' = f(x, y) \]
\[y' = g(x, y) \]

or more generally, systems that look like:

\[x' = f(x, y, t) \]
\[y' = g(x, y, t) \]

In the first case, \(f(x, y) \) and \(g(x, y) \) do not depend on \(t \). They are called **autonomous**. In the second case, \(f(x, y, t) \) and \(g(x, y, t) \) depend on \(t \). They are called **non-autonomous**.
Examples

Which of the following examples is autonomous?
Examples

Which of the following examples is autonomous?
(a): 2 × 2 Systems of Linear Differential Equations
Examples

Which of the following examples is autonomous?
(a):

\[x' = 2x - 4xy \]
\[y' = 2x + 2y^2 \]
Examples

Which of the following examples is autonomous?
(a):

\[x' = 2x - 4xy \]
\[y' = 2x + 2y^2 \]

Answer: first-order, autonomous (not linear), 2 × 2 system of dfq’s
Examples

Which of the following examples is autonomous?
(a):

\[
x' = 2x - 4xy \\
y' = 2x + 2y^2
\]

Answer: first-order, autonomous (not linear), 2 \times 2 system of dfq’s

(b)

\[
x' = 2x + 4y - t \\
y' = x - 2y + \sin t
\]
Examples

Which of the following examples is autonomous?

(a):

\[x' = 2x - 4xy \]
\[y' = 2x + 2y^2 \]

Answer: first-order, autonomous (not linear), 2 × 2 system of dfq’s

(b)

\[x' = 2x + 4y - t \]
\[y' = x - 2y + \sin t \]

Answer: first-order, non-autonomous (yet linear), 2 × 2 system of dfq’s

2 × 2 Systems of Linear Differential Equations
Examples

Which of the following examples is autonomous?
(a):

\[
x' = 2x - 4xy \\
y' = 2x + 2y^2
\]

Answer: first-order, autonomous (not linear), 2 \times 2 system of dfq’s

(b)

\[
x' = 2x + 4y - t \\
y' = x - 2y + \sin t
\]

Answer: first-order, non-autonomous (yet linear), 2 \times 2 system of dfq’s

We are interested in **qualitative** as well as **quantitative** descriptions of the solutions.
To find the eigenvalues (and corresponding eigenvectors) of a matrix A means to find the (scalar) values λ and corresponding (non-zero) vectors \vec{v} which satisfy the vector equation

$$A\vec{v} = \lambda \vec{v}.$$

In some sense the eigenvectors define the main directions along which the matrix A acts (as a geometric transform).
To find the eigenvalues (and corresponding eigenvectors) of a matrix A means to find the (scalar) values λ and corresponding (non-zero) vectors \vec{v} which satisfy the vector equation

$$A\vec{v} = \lambda \vec{v}.$$

In some sense the eigenvectors define the main directions along which the matrix A acts (as a geometric transform).

Example 1: Let $A = \begin{pmatrix} -5 & 2 \\ 1 & -4 \end{pmatrix}$. Find its eigenvalues and corresponding eigenvectors.
To find the eigenvalues (and corresponding eigenvectors) of a matrix A means to find the (scalar) values λ and corresponding (non-zero) vectors \vec{v} which satisfy the vector equation

$$A\vec{v} = \lambda\vec{v}.$$

In some sense the eigenvectors define the main directions along which the matrix A acts (as a geometric transform).

Example 1: Let $A = \begin{pmatrix} -5 & 2 \\ 1 & -4 \end{pmatrix}$. Find its eigenvalues and corresponding eigenvectors.

We let $\vec{v} = \begin{pmatrix} x \\ y \end{pmatrix}$.
The equation

\[A \vec{v} = \lambda \vec{v}. \]

means:

\[-5x + 2y = \lambda x \]
\[x - 4y = \lambda y \]
The equation

\[A \mathbf{v} = \lambda \mathbf{v}. \]

means:

\[-5x + 2y = \lambda x\]
\[x - 4y = \lambda y\]

or

\[(-5 - \lambda)x + 2y = 0\]
\[x + (-4 - \lambda)y = 0\]
The equation

$$A\vec{v} = \lambda \vec{v}.$$

means:

$$-5x + 2y = \lambda x$$
$$x - 4y = \lambda y$$

or

$$(-5 - \lambda)x + 2y = 0$$
$$x + (-4 - \lambda)y = 0$$

This system of equations describes the intersection of two lines which go through the origin. In order to have a non-zero solution, the determinant must be zero (this follows from Cramer’s rule). So

$$\begin{vmatrix} (-5 - \lambda) & 2 \\ 1 & (-4 - \lambda) \end{vmatrix} = 0$$
The equation

\[A \vec{v} = \lambda \vec{v}. \]

means:

\[-5x + 2y = \lambda x \]
\[x - 4y = \lambda y\]

or

\[(-5 - \lambda)x + 2y = 0\]
\[x + (-4 - \lambda)y = 0\]

This system of equations describes the intersection of two lines which go through the origin. In order to have a non-zero solution, the determinant must be zero (this follows from Cramer’s rule). So

\[
\begin{vmatrix}
-5 - \lambda & 2 \\
1 & -4 - \lambda
\end{vmatrix}
= 0
\]
Therefore

\[(-5 - \lambda)(-4 - \lambda) - 2 = 0 \]
Therefore

\((-5 - \lambda)(-4 - \lambda) - 2 = 0\)

or

\(\lambda^2 + 9\lambda + 20 - 2 = 0\)
Therefore

\[(-5 - \lambda)(-4 - \lambda) - 2 = 0 \]

or

\[\lambda^2 + 9\lambda + 20 - 2 = 0 \]

That is

\[\lambda^2 + 9\lambda + 18 = 0 \]
Therefore

\[(-5 - \lambda)(-4 - \lambda) - 2 = 0 \]

or

\[\lambda^2 + 9\lambda + 20 - 2 = 0 \]

That is

\[\lambda^2 + 9\lambda + 18 = 0 \]

Solving gives: \(\lambda = -3, -6 \).
Therefore
\[(−5 − λ)(−4 − λ) − 2 = 0\]
or
\[λ^2 + 9λ + 20 − 2 = 0\]
That is
\[λ^2 + 9λ + 18 = 0\]
Solving gives: \(λ = −3, −6\).
Now we find the eigenvectors.
For $\lambda_1 = -3$, the system becomes:

$$-2x + 2y = 0$$
$$x - y = 0$$
For $\lambda_1 = -3$, the system becomes:

\[
-2x + 2y = 0 \\
x - y = 0
\]

Both equations lead to: $x = y$. So we can choose the eigenvector to be $\vec{v}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.
For $\lambda_1 = -3$, the system becomes:

$$
-2x + 2y = 0 \\
x - y = 0
$$

Both equations lead to: $x = y$. So we can choose the eigenvector to be $\vec{v}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

For $\lambda_2 = -6$, the system becomes:

$$
x + 2y = 0 \\
x + 2y = 0
$$
For $\lambda_1 = -3$, the system becomes:

$$
\begin{align*}
-2x + 2y &= 0 \\
x - y &= 0
\end{align*}
$$

Both equations lead to: $x = y$. So we can choose the eigenvector to be $\vec{v}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

For $\lambda_2 = -6$, the system becomes:

$$
\begin{align*}
x + 2y &= 0 \\
x + 2y &= 0
\end{align*}
$$

Both equations lead to: $x = -2y$. So we can choose the eigenvector to be $\vec{v}_2 = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$.
For $\lambda_1 = -3$, the system becomes:

\[-2x + 2y = 0\]
\[x - y = 0\]

Both equations lead to: $x = y$. So we can choose the eigenvector to be $\vec{v}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

For $\lambda_2 = -6$, the system becomes:

\[x + 2y = 0\]
\[x + 2y = 0\]

Both equations lead to: $x = -2y$. So we can choose the eigenvector to be $\vec{v}_2 = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$.
Using eigenvalues and eigenfunctions to solve linear first order systems

This is an alternative method to the annihilator method which explains the nature of the solution obtained.
Using eigenvalues and eigenfunctions to solve linear first order systems

This is an alternative method to the annihilator method which explains the nature of the solution obtained.

Example 2: Solve:

\[x' = -5x + 2y \]
\[y' = x - 4y \]
Using eigenvalues and eigenfunctions to solve linear first order systems

This is an alternative method to the annihilator method which explains the nature of the solution obtained.

Example 2: Solve:

\[x' = -5x + 2y \]
\[y' = x - 4y \]

Here is how we solve it:

1. Find the matrix \(A \) corresponding to this linear system and put the equation in matrix form \(\mathbf{v}' = A \mathbf{v} \).
Using eigenvalues and eigenfunctions to solve linear first order systems

This is an alternative method to the annihilator method which explains the nature of the solution obtained.

Example 2: Solve:

\[x' = -5x + 2y \]
\[y' = x - 4y \]

Here is how we solve it:

1. Find the matrix A corresponding to this linear systems and put the equation in matrix form $\vec{v}' = A \vec{v}$.
2. Find the eigenvalues and corresponding eigenvectors of A
Using eigenvalues and eigenfunctions to solve linear first order systems

This is an alternative method to the annihilator method which explains the nature of the solution obtained.

Example 2: Solve:

\[
\begin{align*}
x' &= -5x + 2y \\
y' &= x - 4y
\end{align*}
\]

Here is how we solve it:

1. Find the matrix \(A \) corresponding to this linear system and put the equation in matrix form \(\vec{v}' = A \vec{v} \).
2. Find the eigenvalues and corresponding eigenvectors of \(A \).
3. The solution vector

\[
\vec{v} = c_1 e^{\lambda_1 t} \vec{v}_1 + c_2 e^{\lambda_2 t} \vec{v}_2
\]
Using eigenvalues and eigenfunctions to solve linear first order systems

This is an alternative method to the annihilator method which explains the nature of the solution obtained.

Example 2: Solve:

\[
\begin{align*}
x' &= -5x + 2y \\
y' &= x - 4y
\end{align*}
\]

Here is how we solve it:

1. Find the matrix \(A \) corresponding to this linear systems and put the equation in matrix form \(\vec{v}' = A \vec{v} \).
2. Find the eigenvalues and corresponding eigenvectors of \(A \)
3. The solution vector

\[
\vec{v} = c_1 e^{\lambda_1 t} \vec{v}_1 + c_2 e^{\lambda_2 t} \vec{v}_2
\]
We already did half of the work in Example 1. From there, we know \(A = \begin{pmatrix} -5 & 2 \\ 1 & -4 \end{pmatrix} \).
We already did half of the work in **Example 1**. From there, we know \(A = \begin{pmatrix} -5 & 2 \\ 1 & -4 \end{pmatrix} \).

The eigenvalues and corresponding eigenvectors are: \(\lambda_1 = -3 \), \(\vec{v}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \).
We already did half of the work in **Example 1**. From there, we know \(A = \begin{pmatrix} -5 & 2 \\ 1 & -4 \end{pmatrix} \).

The eigenvalues and corresponding eigenvectors are: \(\lambda_1 = -3, \quad \vec{v}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \)

and \(\lambda_2 = -6, \quad \vec{v}_2 = \begin{pmatrix} -2 \\ 1 \end{pmatrix} \).
We already did half of the work in Example 1. From there, we know \(A = \begin{pmatrix} -5 & 2 \\ 1 & -4 \end{pmatrix} \).

The eigenvalues and corresponding eigenvectors are: \(\lambda_1 = -3 \), \(\vec{v}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \) and \(\lambda_2 = -6 \), \(\vec{v}_2 = \begin{pmatrix} -2 \\ 1 \end{pmatrix} \).

Therefore the solution vector is given by:

\[
\vec{v} = c_1 e^{-3t} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + c_2 e^{-6t} \begin{pmatrix} -2 \\ 1 \end{pmatrix}
\]
Example 2, cont’d

We already did half of the work in Example 1. From there, we know

\[A = \begin{pmatrix} -5 & 2 \\ 1 & -4 \end{pmatrix}. \]

The eigenvalues and corresponding eigenvectors are: \(\lambda_1 = -3, \)

\[\vec{v}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \]

and \(\lambda_2 = -6, \vec{v}_2 = \begin{pmatrix} -2 \\ 1 \end{pmatrix}. \)

Therefore the solution vector is given by:

\[\vec{v} = c_1 e^{-3t} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + c_2 e^{-6t} \begin{pmatrix} -2 \\ 1 \end{pmatrix} \]

This means: \(x(t) = c_1 e^{-3t} - 2c_2 e^{-6t} \) and \(y(t) = c_1 e^{-3t} + c_2 e^{-6t}. \)
Example 2, cont’d

Let’s graph this using **pplane** (http://math.rice.edu/~dfield/dfpp.html). What do you observe?

\[
\begin{align*}
x' &= -5x + 2y \\
y' &= x - 4y
\end{align*}
\]
Example 3

Find the eigenvalues and corresponding eigenvectors of the matrix

\[A = \begin{pmatrix} 3 & 4 \\ 4 & 3 \end{pmatrix} \]

and use them to write down the solution to

\[x' = 3x + 4y \]
\[y' = 4x + 3y \]
Example 3

Find the eigenvalues and corresponding eigenvectors of the matrix

\[A = \begin{pmatrix} 3 & 4 \\ 4 & 3 \end{pmatrix} \]

and use them to write down the solution to

\[
\begin{align*}
x' &= 3x + 4y \\
y' &= 4x + 3y
\end{align*}
\]

Make sure to plot the phase plane.
Example 3

Find the eigenvalues and corresponding eigenvectors of the matrix

\[A = \begin{pmatrix} 3 & 4 \\ 4 & 3 \end{pmatrix} \]

and use them to write down the solution to

\[x' = 3x + 4y \]
\[y' = 4x + 3y \]

Make sure to plot the phase plane.
The eigenvalues and corresponding eigenvectors are: $\lambda_1 = 7,$

$\vec{v}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
The eigenvalues and corresponding eigenvectors are: $\lambda_1 = 7$, $\vec{v}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $\lambda_2 = -1$, $\vec{v}_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$.
The eigenvalues and corresponding eigenvectors are: $\lambda_1 = 7, \quad \vec{v}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

and $\lambda_2 = -1, \quad \vec{v}_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$.

Therefore the solution vector is given by:

$$\vec{v} = c_1 e^{7t} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + c_2 e^{-t} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$
The eigenvalues and corresponding eigenvectors are: \(\lambda_1 = 7 \),
\[\vec{v}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \]
and \(\lambda_2 = -1 \), \[\vec{v}_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix} \].

Therefore the solution vector is given by:
\[\vec{v} = c_1 e^{7t} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + c_2 e^{-t} \begin{pmatrix} -1 \\ 1 \end{pmatrix} \]

This means: \(x(t) = c_1 e^{7t} - c_2 e^{-t} \) and \(y(t) = c_1 e^{7t} + c_2 e^{-t} \).
Example 3, Phase Plane

\[x' = 3x + 4y \]
\[y' = 4x + 3y \]