Page 26 - Vector Analysis
P. 26

22 CHAPTER 1. Linear Algebra

Theorem 1.70. Let A be an n ˆ n matrix. Then

                                        Adj(A)A = AAdj(A) = det(A)In.

Proof. Let A = [aij]. By definition of matrix multiplications,

()                           n   ()                         n   [             ÿ                               ź   ]
 Adj(A)A                          Adj(A) imamj
                            ÿ                              ÿ
                     ij
                         =                           =                                        εk1k2¨¨¨kn          aℓkℓ amj

                            m=1                            m=1 (k1,¨¨¨ ,kn)PP(n), km=i                     1ďℓďn
                                                                                                            ℓ‰m

                            $n

                            ’        ÿź                                     if i = j,
                            ’
                            &                  εk1k2¨¨¨kn       aℓkℓ

                         = (k1,¨¨¨ ,kn)PP(n)               ℓ=1

                            ’

                            ’                     0                         if i ‰ j.
                            %

The conclusion then follows from the definition of the determinant.                                                           ˝

Corollary 1.71. Let A = [aij] be an n ˆ n matrix, and C = [cij] be the adjoint matrix of

A. Then                                              nn

                                 det(A) = ÿ aijcji = ÿ ajicij @ 1 ď i ď n .

                                               j=1 j=1

Corollary  1.72.         Let  A  be  an  nˆn   matrix      and     det(A)     ‰     0.  Then  the    matrix       Adj(A)  is  the
                                                                                                                  det(A)

inverse matrix of A, or equivalently,

                                               Adj(A) = det(A)A´1.                                                          (1.2)

1.5.1 Variations of determinants

Let δ be an operator satisfying the “product rule” δ(f g) = f δg + (δf )g. Typically δ will be

differential operators. By the definition of the determinant,

                                                                         n

                         δ det(A) =            ÿ                         ź

                                                           εk1k2¨¨¨kn δ       aℓkℓ

                                        (k1,¨¨¨ ,kn)PP(n)                ℓ=1

                                         n[ ]
                                        ÿÿ                                             ź

                                     =                          εk1k2¨¨¨kn δaiki              aℓkℓ

                                        i=1 (k1,¨¨¨ ,kn)PP(n)                          1ďℓďn

                                                                                       ℓ‰i

                                          n[               ÿ                                  ź            ]
                                        ÿ
                                     =                                   εk1k2¨¨¨kn δaiki            aℓkℓ

                                        i,j=1 (k1,¨¨¨ ,kn)PP(n), ki=j                         1ďℓďn
                                                                                                ℓ‰i

                                          n  (´1)i+j       det  (A(ˆi,   ˆj))δaij

                                         ÿ

                                     =                                              .

                                        i,j=1

Therefore, we obtain the following
   21   22   23   24   25   26   27   28   29   30   31