Page 26 - Vector Analysis
P. 26
22 CHAPTER 1. Linear Algebra
Theorem 1.70. Let A be an n ˆ n matrix. Then
Adj(A)A = AAdj(A) = det(A)In.
Proof. Let A = [aij]. By definition of matrix multiplications,
() n () n [ ÿ ź ]
Adj(A)A Adj(A) imamj
ÿ ÿ
ij
= = εk1k2¨¨¨kn aℓkℓ amj
m=1 m=1 (k1,¨¨¨ ,kn)PP(n), km=i 1ďℓďn
ℓ‰m
$n
’ ÿź if i = j,
’
& εk1k2¨¨¨kn aℓkℓ
= (k1,¨¨¨ ,kn)PP(n) ℓ=1
’
’ 0 if i ‰ j.
%
The conclusion then follows from the definition of the determinant. ˝
Corollary 1.71. Let A = [aij] be an n ˆ n matrix, and C = [cij] be the adjoint matrix of
A. Then nn
det(A) = ÿ aijcji = ÿ ajicij @ 1 ď i ď n .
j=1 j=1
Corollary 1.72. Let A be an nˆn matrix and det(A) ‰ 0. Then the matrix Adj(A) is the
det(A)
inverse matrix of A, or equivalently,
Adj(A) = det(A)A´1. (1.2)
1.5.1 Variations of determinants
Let δ be an operator satisfying the “product rule” δ(f g) = f δg + (δf )g. Typically δ will be
differential operators. By the definition of the determinant,
n
δ det(A) = ÿ ź
εk1k2¨¨¨kn δ aℓkℓ
(k1,¨¨¨ ,kn)PP(n) ℓ=1
n[ ]
ÿÿ ź
= εk1k2¨¨¨kn δaiki aℓkℓ
i=1 (k1,¨¨¨ ,kn)PP(n) 1ďℓďn
ℓ‰i
n[ ÿ ź ]
ÿ
= εk1k2¨¨¨kn δaiki aℓkℓ
i,j=1 (k1,¨¨¨ ,kn)PP(n), ki=j 1ďℓďn
ℓ‰i
n (´1)i+j det (A(ˆi, ˆj))δaij
ÿ
= .
i,j=1
Therefore, we obtain the following