主　　題 Equiangular lines and spherical designs 時　　間 2015-10-22 下午 2:30~5:10 地　　點 鴻經館 107 室 主 講 者 余韋亘教授(Michigan State University) 內　　容 A set of lines in R^n is called equiangular if the angle between each pair of lines is the same. We address the question of determining the maximum size of equiangular line sets in R^n, using semidefinite programming to improve the upper bounds on this quantity. Improvements are obtain in dimensions 23<=n <=136. In particular, we show that the maximum number of equiangular lines in R^n is 276 for all 24 <=n <=41 and 344 for n=43. This provides a partial resolution of the conjecture set forth by Lemmens and Seidel (1973). We also study the existence problem for tight spherical designs of harmonic index T. We prove the nonexistence of tight {8,4} designs by using the theory of elliptic diophantine equations, and the semidefinite programming method of eliminating some 2-angular systems for small dimensions. 附　　件
 演講相關連結 近期演講 107 下學期演講 107 上學期演講 106 下學期演講 106 上學期演講 105 下學期演講

 Copyright © 2006 NCU Department of Mathematics All Rights Reserved. ~ 為求最好效果，建議以IE4.0以上之版本,1024*768 解析度瀏覽　~ 網站建置於2005年12月 ~ 國立中央大學數學系 National Central University Department of Mathematics 中壢市五權里 Chung-Li, Taiwan 32054 R. O. C. 電話: 03-4227151轉 65100 or 65117 Tel 886-3-4227151 x 65100 or Office 65117 傳真: 4257379 Fax 886-3-4257379